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NON-ZERO-SUM BEST-CHOICE GAMES WHERE TWO STOPS ARE

REQUIRED

Minoru Sakaguchi
�
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Abstract. Suppose that players I and II want to jointly employ two secretaries suc-

cessively one-by-one from a set of n applicants. Best ability of management (foreign

language) is wanted by I (II). We assume that these two kinds of abilities are mutually

independent for every applicant. Applicants present themselves one-by-one sequen-

tially. Facing each applicant, each player chooses either to Accept or to Reject. The

game ends either when the second time of choice-pair A{A happens getting the payo�s

predetermined by the game rule, or when n � 2 applicants except the last two are

rejected. If choice-pair is A{R or R{A, then arbitration comes in and forces players to

take the same choice as I's (II's) with probability p (�p); 1
2
� p � 1. Each player aims to

maximize the expected payo� he can get. Explicit solutions are derived to this n-stage

game, for the cases where abilities of each applicant are observed as bivariate random

variables with full-information and with no-information. Some numerical results are

presented.

In the beginnings of Sections 1 and 2, we present results on one-stop best-choice games

and then proceed to two-stop games in Sections (1a) � (2b).

1. A Non-zero-sum Full-information Best-choice Game.

Let (Xi; Yi); i = 1; 2; � � � ; n; be i.i.d. random variables each with bivariate-independent

uniform distribution on [0; 1]2 interpreted here as the ability-pair of the i-th applicant jointly

observed by I and II in stage i. As each (Xi; Yi) comes up, players I and II must choose

either to Accept (A) or to Reject(R) it expecting that better applicant may come up in the

future.

If both players accept the i-th then the game terminates with payo�s Xi to I and Yi to

II. If both players reject the i-th, this is rejected and (i+1)-st applicant is presented and the

game continues. If one player accepts the i-th and the other reject it, then arbitration comes

in and forces players to take the same choice as I's (II's) with probability p (�p). Arbitration

is fair (unfair) if p = (6=) 1
2
. We consider that 1

2
� p � 1 throughout this paper, without

losing generality. If n�1 applicants are rejected except the last, then players should accept

the last one. Each player aims to maximize the expected payo� he can get.

Let (un; vn) be the values of the game �
(1)
n , say. The Optimality Equation is

(un; vn) = E[eq.val. Mn(X;Y )](1.1)

where

Mn(x; y) =

R A

R un�1; vn�1 pun�1 + �px; pvn�1 + �py

A px + �pun�1; py + �pvn�1 x; y

(1.2)
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(n � 1;u0 = v0 = 0)

De�ne state (x; y; n) to mean that n applicants remain to be observed and the �rst one

has just been observed with values x and y.

Theorem 1 (i) The equilibrium strategy-pair is : In state (x, y, n)

I chooses A (R), if x � (<) un�1, independently of y,

II chooses A (R), if y � (<) vn�1, independently of x.

The values of the game �
(1)
n satisfy the simultaneous recurrence relation

un = T1(un�1; vn�1); vn = T2(un�1; vn�1)(1.3)

where

T1(u; v) =
1

2

�
pu

2 + �p(2u� 1)v + 1
	
; T2(u; v) =

1

2

�
�pv2 + p(2v � 1)u+ 1

	
:(1.4)

(ii) un � vn; n � 1; as n ! 1; un " n1 and vn " v1, where (u1; v1) is a unique root of

the system

u = T1(u; v); v = T2(u; v)

or equivalently

pu
2 = (2u� 1)(1� �pv); �pv2 = (2v � 1)(1 � pu)(1.5)

For the proof see Ref. [2]. It also contains details for the cases p = 1
2
and 1.

1a. Maximizing the Sum of Values of Two Accepted Applicants.

Now suppose that players must employ two secretaries from a set of n applicants.

If n � 2 applicants are rejected except the last two, then players should accept these two

applicants. Each player aims to maximize the expected value of the sum of two r.v.s he

accepts.

Let (Un; Vn) be the values of the game �
(2a)
n , say. The Optimality Equation is

(Un; Vn) = E[eq.val. Mn(X;Y )](1.6)

where

Mn(x; y) =

R A

R Un�1; Vn�1

�p(x + un�1) + pUn�1,

�p(y + vn�1) + pVn�1

A
p(x + un�1) + �pUn�1,

x + un�1; y + vn�1p(y + vn�1) + �pVn�1

(1.7)

�
n � 2;U2 = V2 = 1; u1 = v1 =

1

2

�

and un�1; vn�1 are the eq. values of game �
(1)

n�1.

De�ne state [x; y; n] to mean that n applicants remain to be observed in the game �
(2a)
n

and the �rst applicant has just been observed with values x and y.
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Theorem 2 The equilibrium strategy-pair is : In state [x; y; n]

I chooses A (R), if x > (�) Un�1 � un�1, independently of y,

II chooses A (R), if y > (�) Vn�1 � vn�1, independently of x.

Values of the game satisfy the simultaneous upward recursion

Un = un�1 + T1(Un�1 � un�1; Vn�1 � vn�1);(1.8)

Vn = vn�1 + T2(Un�1 � un�1; Vn�1 � vn�1);(1.9)

where Ti(u; v); i = 1; 2; are de�ned by (1:4).

Proof. The following assertion [A] commonly holds true for the beginning part in the

proofs of Theorems 2,3,5 and 6.

Assertion A For p = 1, an eq. strategy-pair in state [x; y; n] is :

I chooses A (R), if x > (�) Un�1 � un�1,

II always chooses R, either until the earliest A by I happens, or until I rejects all applicants

except the last two.

The rest of the proof is for 1
2
� p < 1. It is easy to �nd that if 1

2
� p < 1, then the

bimatrix game (1.7), for each (x; y) 2 [0; 1]2 has the unique pure-strategy eq. such that

If y � Vn�1 � vn�1 y > Vn�1 � vn�1

If x � Un�1 � un�1

R{R R{A

U, V �p(x+u)+pU; �p(y+v)+pV

> Un�1 � un�1

A{R A{A

p(x+u)+�pU; p(y+v)+�pV x + u; y + v

(1.10)

Here the second row in each cell shows payo�s to I and II, where un�1; vn�1; Un�1; Vn�1

are abbreviated by those without subscripts.

The �rst component matrix in (1.10) is

U

�
1 1

1 1

�
+ (x � U + u)

�
0 �p

p 1

�
;

which, when E(x;y) is taken, becomes

U + E(x;y)[(x � U + u)fp I (x > U � u; y � V � v) + I (x > U � u; y > V � v)

+�p I (x � U � u; y > V � v)g]

= U + p(V � v)

Z 1

U�u

(x � U + u)dx + (�V + v)

Z 1

U�u

(x � U + u)dx

��p( �V + v)

Z U�u

0

(U � u� x)dx:

This is found, after some algebra, to be equal to U + T1(U � u; V � v) � (U � u) i.e., Eq.

(1.8). Eq. (1.9) is analogously derived by starting from the fact that second component

matrix in (1.10) is

V

�
1 1

1 1

�
+ (y � V + v)

�
0 �p

p 1

�
;
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and proceeding in the same way. 2

1b. Maximizing the Minimum Value of Two Accepted Applicants.

We here consider the case where each player aims to maximize the expected value of the

minimum of two r.v.s he accepts.

(Un; Vn) be the eq. values of the game �
(2b)
n , say. The Optimality Equation is

(Un; Vn) = E[eq.val. Mn(X;Y )];(1.11)

where

Mn(x; y) =

R A

R Un�1; Vn�1

�p(x ^ un�1) + pUn�1,

�p(y ^ vn�1) + pVn�1

A
p(x ^ un�1) + �pUn�1,

x ^ un�1; y ^ vn�1p(y ^ vn�1) + �pVn�1

(1.12)

�
n � 3; U2 = V2 = E(X1 ^X2) =

1

3
; u2 =

1

8
p+

1

2
; v2 =

1

8
�p+

1

2

�

and (un; vn) is the values of the game �
(1)
n discussed in Section 1.

De�ne state [x; y; n] to mean that n applicants remain to be observed in the game �
(2b)
n

and the �rst one has just been observed with values x and y.

Theorem 3 The eq. strategy-pair is : In state [x; y; n]

I chooses A (R), if x > (�)Un�1; indep.of y

II chooses A (R), if y > (�)Vn�1; indep.of x.

The values (Un; Vn) of the game �
(2b)
n satisfy the simultaneous upward recursion

Un = R1(Un�1; Vn�1); Vn = R2(Un�1; Vn�1)(1.13)

where

R1(U; V ) =
1

2
pU

2 + �pUV + (un�1 �
1

2
u
2
n�1)(1 � �pV );(1.14)

R2(U; V ) =
1

2
�pV 2 + pUV + (vn�1 �

1

2
v
2
n�1)(1 � pU);(1.15)

Proof. Assertion [A] is true with Un�1 � un�1 replaced by Un�1 (see proof of Theorem

2). It is easy to �nd that the bimatrix game (1.12) with 1
2
� p < 1, for each (x; y) 2 [0; 1]2

has the unique pure-strategy eq. such that

If y � Vn�1 y > Vn�1

If x � Un�1

R{R R{A

U, V �p(x^u)+pU; �p(y^v)+pV

x > Un�1

A{R A{A

p(x^u)+�pU; p(y^v)+�pV x ^ u; y ^ v

(1.16)
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The �rst component matrix in (1.16) is

U

�
1 1

1 1

�
+ (x ^ u�U)

�
0 �p

p 1

�
;

which, when E(x;y) is taken, become

U + E(x;y)[(x ^ u� U)fp I (x > U) + �p I (y > V )g]

= U + (p+ �p �V )

Z 1

U

(x ^ u� U)dx � �p �V

Z U

0

(U � x)dx

and �nally this becomes R1(U; V ) de�ned by (1.14).

The second component matrix in (1.16) is

V

�
1 1

1 1

�
+ (y ^ v � V )

�
0 �p

p 1

�
;

which, when E(x;y) is taken, turns out to be equal to R2(U; V ) de�ned by (1.15). Thus the

proof is complete. 2

In Remark 3 in Section 3 a numerical example is presented.

2. A Non-zero-sum Best-choice Game Related to Secretary
Problem.

Suppose that player I (Vice-president) and II (another Vice-president) want to jointly em-

ploy one secretary from a set of n applicants. The nice ability of management (foreign

language) is wanted by I (II). We assume that these two kinds of abilities are mutually

independent for each applicant. Players observe an independent sequence f(Yi; Zi)g
n
i=1 of

bivariate r.v.s., one-by-one sequentially, which obeys probability distribution

Pr(Yi = y; Zi = z) = i
�2
; 8y; z 2 f1; 2; � � � ; ig:

For a case where Yi and Zi are dependent, see Section 3 in Ref. [4].

After observing (Yi; Zi) = (y; z) jointly by I and II, for the i-th applicant, each player

chooses either A or R for this applicant. The game is played as described in Section 1, but

with a di�erence that the \losses" to the players are Q(i; y); Q(i; z), when the choice-pair is

A{A for the i-th applicant. [Notice that for each kind of applicant's ability Q(i; y) � n+1
i+1

y

is the expected absolute rank for the i-th among n, under the condition that her (or his)

relative rank relative to those who have already seen is y.] If all applicants except the last

have been rejected, then A{A should be chosen for the last applicant. Each player aims to

minimize the expected loss he can get. [c.f. The best(worst) among n has rank 1(n)]

De�ne state (i; y; z) to mean that (1) the �rst i � 1 applicants have been rejected and

players face the i-th applicant, and (2) players jointly observe Yi = y and Zi = z.

Let ui; vi be the equilibrium values for the n-stage game G
(1)
n , say, after the �rst i

applicants have been rejected. The game horizon n is at present omitted in our notation

for simplicity. Then it is clear that the Optimality Equation is given by

(ui�1; vi�1) = i
�2

iX
y;z=1

eq.val. Mi(y; z)(2.1)
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where

Mi(y; z) =

R A

R ui; vi �pQ(i; y) + pui; �pQ(i; z) + pvi

A pQ(i; y) + �pui; pQ(i; z) + �pvi Q(i; y); Q(i; z)

(2.2)

 
i = n� 1; � � � ; 2; 1 ; un�1 = vn�1 = n

�1

nX
y=1

y =
n+ 1

2

!

Theorem 4 The eq. strategy-pair is : In state (i; y; z),

I chooses A (R), if Q(i; y) � (>) ui indep. of z,

II chooses A (R), if Q(i; z) � (>) vi indep. of y.

The values ui and vi satisfy the simultaneous downward recursion

ui�1 = pE[Q(i; Yi) ^ ui] + �pE

�
n+ 1

2
I(Q(i; Zi) � vi) + uiI(Q(i; Zi) > vi)

�
(2.3)

vi�1 = �pE[Q(i; Zi) ^ vi] + pE

�
n+ 1

2
I(Q(i; Yi) � ui) + viI(Q(i; Yi) > ui)

�
:(2.4)

The eq. values of the game G
(1)
n are u0; v0(� u

(n)
; v

(n), say).

For the proof and a numerical example see Ref. [4].

2a. Minimizing the Sum of Losses for Two Accepted Applicants.

Now suppose that players want to employ two secretaries from a set of n applicants.

If n� 2 applicants are rejected except the last two, then players must accept these two.

Each player aims to minimize the sum of the expected losses by the two r.v.s he accepts.

De�ne state [i; y; z] to mean that (1) the �rst i � 1 applicants have been rejected and

players face the i-th applicant, and (2) players jointly observe Yi = y and Zi = z. Let Ui; Vi

be the eq. values for the game (denoted by G
(2a)
n ) after the �rst i applicants have been

rejected. Optimality Equation is evidently

(Ui�1; Vi�1) = i
�2

iX
y;z=1

eq.val. M(y; z);(2.5)

Mi(y; z) =

R A

R Ui; Vi

pUi + �p(Q(i; y) + ui),

pVi + �p(Q(i; z) + vi)

A
p(Q(i; y) + ui) + �pUi,

Q(i; y) + ui; Q(i; z) + vip(Q(i; z) + vi) + �pVi

(2.6)

(i = n� 2; � � � ; 2; 1;Un�2 = Vn�2 = n+ 1)

and ui and vi are the conditional values of the game G
(1)
n , given that the �rst i applicants

have been rejected. Here notice that

Un�2 = E[Q(n� 1; Yn�1) +Q(n; Yn)] =
n+ 1

2
+
n+ 1

2
= n+ 1:
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Theorem 5 The equilibrium strategy-pair is : In state [i; y; z],

I chooses A (R), if Q(i; y) � (>) Ui � ui indep. of z,

II chooses A (R), i� Q(i; z) � (>) Vi � vi indep. of y.

The values Ui and Vi satisfy the simultaneous downward recursion

Ui�1 = pE[(Q(i; Yi) + ui) ^ Ui](2.7)

+ �pE

��
n+ 1

2
+ ui

�
I(Q(i; Zi) + vi � Vi) + UiI(Q(i; Zi) + vi > Vi)

�

Vi�1 = �pE[(Q(i; Zi) + vi) ^ Vi](2.8)

+ pE

��
n+ 1

2
+ vi

�
I(Q(i; Yi) + ui � Ui) + ViI(Q(i; Yi) + ui > Ui)

�

The equilibrium values of the game G
(2a)
n are U0; V0(= U

(n)
; V

(n), say).

Proof. Assertion [A] (in the proof of Theorem 2) is true, if the condition x > (�)Un�1�un�1

is replaced by Q(i; y) � (>)Ui � ui and the state [x; y; n] replaced by [i; y; z].

It is easy to �nd that, for 1
2
� p < 1 the bimatrix game (2.6) for each (y; z) 2

f1; � � � ; ig � f1; 2; � � � ; ig has the unique pure-strategy eq. such that

If Q(i; z) � Vi � vi Q(i; z) > Vi � vi

A{A A{R

If Q(i; y) � Ui � ui
Q(i; y) + u;Q(i; z) + x

p(Q(i; y) + u) + �pU ,

p(Q(i; z) + v) + �pV

R{A R{R

> Ui � ui pU + �p(Q(i; y) + u),
U; V

pV + �p(Q(i; z) + v)

(2.9)

Here the second row in each cell shows the losses to I and II, where subscripts in ui; vi; Ui; Vi

are omitted for simplicity.

The �rst component matrix in (2.9) is

(Q(i; y) + u)

�
1 p

�p 0

�
+ U

�
0 �p

p 1

�
;

which, when i
�2
Pi

y;z=1 is taken, becomes

i
�2

iX
y;z=1

(Q(i; y) + u)fp I(Q(i; y) + u � U) + �p I(Q(i; z) + v � V )g(2.10)

+i�2U

iX
y;z=1

fp I(Q(i; y) + u > U) �p I(Q(i; z) + v > V )g

The �rst sum is equal to

p i
�1

iX
y=1

(Q(i; y) + u) I(Q(i; y) + u � U) + �p

�
n+ 1

2
+ u

�
i
�1

iX
z=1

I(Q(i; z) + v � V )

(2.11)
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since i�1
Pi

y=1Q(i; y) =
n+1
2
: The second sum in (2.10) is equal to

i
�1
U

"
p

iX
y=1

I(Q(i; y) + u > U) + �p

iX
z=1

I(Q(i; z) + v > V )

#
:(2.12)

Substituting (2.11) and (2.12) into (2.10), we obtain (2.7).

By starting from the fact that the second component matrix in (2.9) is

(Q(i; z) + v)

�
1 p

�p 0

�
+ V

�
0 �p

p 1

�
;

and proceeding in the same way as above, we obtain (2.8).

This completes the proof of the theorem. 2

2b. Minimizing Maximum Loss of Two Accepted Applicants.

Let us consider the case where each player aims to minimize the maximum loss of

two r.v.s he accepts. Let state [i; y; z] and values ui; vi are de�ned as the same as in Section

2.

Let Ui; Vi be the eq. values for the game(denoted by G
(2b)
n , say) after the �rst i applicants

have been rejected. Then

(Ui�1; Vi�1) = i
�2

iX
y;z=1

eq. val. Mi(y; z)(2.13)

where

Mi(y; z) =

R A

R Ui; Vi

pUi + �p(Q(i; y) _ ui),

pVi + �p(Q(i; z) _ vi)

A
p(Q(i; y) _ ui) + �pUi,

Q(i; y) _ ui; Q(i; z) _ vip(Q(i; z) _ vi) + �pVi

(2.14)

(i = n� 2; � � � ; 2; 1;Un�2 = Vn�2)

instead of (2.6), and

Un�2 = E[Q(n� 1; Yn�1) _Q(n; Yn)] = E

��
n+ 1

n
Yn�1

�
_ Yn

�
(2.15)

=
1

n(n� 1)

(
nX

y=1

y

�
ny

n+ 1

�
+
n+ 1

n

n�1X
z=1

z

�
n+ 1

n
z

�)
:

We shall prove

Theorem 6 The eq. strategy-pair is : In state [i; y; z]

I chooses A (R), if Q(i; y) � (>) Ui, indep. of z

II chooses A (R), if Q(i; z) � (>) Vi, indep. of y.

The values Ui and Vi satisfy the simultaneous downward recursion

Ui�1 = pE[(Q(i; Yi) ^ Ui) + (ui �Q(i; Yi)) I(Q(i; Yi) � ui)](2.16)

+ �pE[E(Q(i; Yi) _ ui) I(Q(i; Zi) � Vi) + UiI(Q(i; Zi) > Vi)];



NON-ZERO-SUM BEST-CHOICE GAMES 173

Vi�1 = �pE[(Q(i; Zi) ^ Vi) + (vi �Q(i; Zi)) I(Q(i; Zi) � vi)](2.17)

+ pE[E(Q(i; Zi) _ vi) I(Q(i; Yi) � Ui) + ViI(Q(i; Yi) > Ui)]:

The eq. values for the game G
(2b)
n are equal to U0; V0(� U

(n)
; V

(n), say)

Proof. Assertion [A] is true, if the condition x � (<)Un�1�un�1 is replaced by Q(i; y) � (>

)Ui, and the state [x; y; n] replaced by [i; y; z]. Notice that 1 � ui < Ui and 1 � vi < Vi;8i.

The rest of the proof is for the case 1
2
� p < 1. It is easy to �nd that the bimatrix game

(2.14) for each (y; z), has the unique pure-strategy eq. such that

If Q(i; z) � Vi Q(i; z) > Vi

A{A A{R

If Q(i; y) � Ui
Q(i; y) _ u;Q(i; z) _ v

p(Q(i; y) _ u) + �pU ,

p(Q(i; z) _ v) + �pV

R{A R{R

Q(i; y) > Ui pU + �p(Q(i; y) _ u),
U; VpV + �p(Q(i; z) _ v)

(2.18)

(c.f. Subscripts in ui; vi; Ui; Viare omitted)

The �rst component matrix in (2.19) is

(Q(i; y) _ u)

�
1 p

�p 0

�
+U

�
0 �p

p 1

�
;

which, when i
�2
Pi

y;z=1 is taken, becomes

i
�2

iX
y;z=1

(Q(i; y) _ u)fI(Q(i; y) � U;Q(i; z) � V )

+p I(Q(i; y) � U;Q(i; z) > V ) + �p I(Q(i; y) > U;Q(i; z) � V )g

+ i
�2

iX
y;z=1

Uf�p I(Q(i; y) � U;Q(i; z) > V )

+pI(Q(i; y) > U;Q(i; z) � V ) + I(Q(i; y) > U;Q(i; z) > V )g:

The �rst and second double sums become

i
�1

iX
y=1

(Q(i; y) _ u)

(
p I(Q(i; y) � U) + �pi�1

iX
z=1

I(Q(i; z) � V )

)

and

i
�1
U

(
p

iX
y=1

I(Q(i; y) > U) + �p

iX
z=1

I(Q(i; z) > V )

)
;

respectively. Therefore the above equations and (2.5) give

Ui�1 = pi
�1

iX
y=1

f(Q(i; y) _ u) I(Q(i; y) � U) + UI(Q(i; y) > U)g

+ �pi�1
iX

y=1

(
i
�1

iX
y=1

(Q(i; y) _ u) I(Q(i; z) � V ) +UI(Q(i; z) > V )

)
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The inside of f� � � g in the �rst sum in the r.h.s. is

fQ(i; y) + (u�Q(i; y))+gI[Q(i; y) � U) + UI(Q(i; y) > U)

= Q(i; y) ^ U + (u�Q(i; y))+fI(Q(i; y) � u) + I(u < Q(i; y) � U)g

= Q(i; y) ^ U + (u�Q(i; y))I(Q(i; y) � u)

and thus we �nally have Eq. (2.16).

By starting from the fact the second component matrix in (2.18) is

(Q(i; z) _ v)

�
1 p

�p 0

�
+ V

�
0 �p

p 1

�
;

and proceeding in the same way as above we can obtain (2.17). This completes the proof

of the theorem. 2

A computational result is given in Remark 4 in Section 3.

3. Remarks.

Remark 1 The problem in this paper is a model of the secretary problem com-

bined with the best-choice sequential game. One of the earliest and fundamental literature

on secretary problem is Ref. [1]. In Ref. [2; 3] the full-information best-choice games are

investigated.

Remark 2 Theorems 1 and 4 are fundamental to the arguments in Section 1 and Section

2, respectively.

�
Eq. (1.8) in Theorem 2

Eq. (1.13)-(1.14) in Theorem 3

�
goes back to (1.3)-(1.4) in Theorem

1, if we take

�
un = vn = 0

un = vn = 1

�
; an easy-to-understand result.

Also

�
Eq. (2.8)-(2.9) in Theorem 5

Eq. (2.16)-(2.17) in theorem 6

�
reduces to (2.3)-(2.4) in Theorem 4, if we take�

ui = vi = 0

ui = vi = 1

�
:

Remark 3 We present some numerical results related to Theorem 3 in Section 1b, and

Theorem 6 in Section 2b. Tables 1 and 2 are computed from Eq. (1.3)-(1.4) in Theorem 1,

and Eq. (1.13)-(1.14) in Theorem 3, respectively.

Table 1. Eq. values of the game �
(1)
n for various p and n

p = 0:5 0.6 1

n un = vn un vn un(vn = 1

2
)

1 0.5 0.5 0.5 0.5

2 0.5625 0.575 0.55 0.625

3 0.5967 0.6157 0.5778 0.6953

4 0.6179 0.6405 0.5955 0.7417

5 0.6319 0.6565 0.6076 0.7751

6 0.6415 0.6673 0.6162 0.8004

7 0.6483 0.6748 0.6225 0.8203

8 0.6531 0.6801 0.6271 0.8365

9 0.6566 0.6839 0.6305 0,8498

10 0.6592 0.6867 0.6331 0.8611

Limit 2

3
0.6946 06408 1

(Reproduced from Table 3 in Ref. [2])
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Table 2. Eq. values of the game �
(2b)
n in Theorem 3.

p = 0:5 p = 0:6 p = 1

n Un = Vn Un Vn Un Vn

2 1
3

1
3

1
3

1
3

1
3

3 0.4203 0.4328 0.4079 0.4852 0.3611

4 0.4632 0.4835 0.4434 0.5713 0.3683

5 0.4890 0.5140 0.4648 0.6298 0.3712

6 0.5059 0.5338 0.4791 0.6731 0.3726

7 0.5175 0.5472 0.4892 0.7066 0.3734

8 0.5256 0.5566 0.4964 0.7335 0.3739

9 0.5315 0.5631 0.5018 0,7556 0.3742

10 0.5357 0.5679 0.5058 0.7742 0.3744

Limit 0:5477�� 1 3
8
(= 0:375)

** Smaller root of the equation 27
4
U
2
� 11U + 4 = 0.

From Table 2, the eq. play when n = 10 and p = 0:6 is : In state [x; y; 10]

I chooses A (R), if x > (�) U9 = 0:5631

II chooses A (R), if y > (�) V9 = 0:5018

If A{A (R{R) happens in state [x; y; 10] either by their choice-pair itself, or by the out-

come of arbitration, then players follow the eq. strategies in state (x0; y0; 9) ([x0; y0; 9]) if the

next r.v is x0; y0. The eq. values are U10 = 0:5679; V10 = 0:5058:

Remark 4 A numerical result is presented related with Theorems 4 and 6. Table

3 gives solutions to the 7-stage game G
(1)

7 for various p computed from (2.3)-(2.4) in Theo-

rem 4. Table 4 shows solutions to G
(2b)

7 for various p, where computation is based on Eq.

(2.17)-(2.18) in Theorem 6.

Table 3 Solutions to the 7-stage game G
(1)

7 for various p.

p = 0:5 p = 0:75 p = 1

u
(7)
; v

(7) 3.257 2.874 3.608 2.276 4

stage
Each player accepts I accepts II accepts II always rejects.

i� Yi; Zi = i� Yi = i� Zi = I accepts i� Yi =

i = 1 none none none none

2 1 1 1 none

3 1 1 1 1

4 1, 2 1 1, 2 1

5 1, 2 1, 2 1, 2 1, 2

6 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

(Reproduced from Table in Ref. [4])
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Table 4. Solutions to the 7-stage game G
(2b)

7 for various p.

p=0:5 p=0:75

U
(7)

;V
(7)

3:907 3:537 4:243

i+1

8
ui �i

i+1

8
Ui

i+1

8
ui

i+1

8
vi �i �i

i+1

8
Ui

i+1

8
Vi

i =6 3:5 4:86 3:5 3.5 4.86 4.86

5 2.68 4.63 3.88 2.52 2.84 4.54 4.72 3.857 3.857

4 2.09 4.47 2.85 1.88 2.29 4.35 4.63 2.717 2.974

3 1.69 4.43 2.12 1.44 1.79 4.29 4.53 1.941 2.287

2 1.19 4.25 1.54 1.03 1.33 4.04 4.44 1.385 1.662

1 0.81 4 0.98 0.72 0.90 4 4 0.846 1.081

Each player accepts I accepts II accepts

iff Y
i
; Z

i
= iff Y

i
= iff Z

i
=

i =1 none none 1

2 1 1 1

3 1, 2 1 1, 2

4 1, 2 1, 2 1, 2

5 1, 2, 3 1, 2, 3 1, 2, 3

p=1

2:913 4:734

i+1

8
u
i

i+1

8
v
i �

i

i+1

8
U
i

i+1

8
V
i

i =6 3.5 3.5 4.857

5 2.36 3 4.8 3.857 3.857

4 1.68 2.5 4.8 2.572 3.086

3 1.21 2 4.667 1.765 2.434

2 0.85 1.5 4.667 1.185 1.801

1 0.57 1 4 0.728 1.184

II always rejects.

I accepts iff Yi =

i =1 none

2 1

3 1

4 1, 2

5 1, 2, 3

Here �i � E[Q(i; Yi) _ ui]; �i � E[Q(i; Zi) _ vi] and U5 = V5 = 5:143 by computing
(2.15) for n = 7. ui and vi are computed from (2.3)-(2.4).

From Table 4 we observe the following. The eq. play in G
(2b)

7 for p = 0:75 is :
In state [1; 1; 1] i.e., at the beginning, I rejects and II accepts, and so arbitration forces
players either to go to the second stage with prob. 0.75, facing the next state [2; Y2; Z2], or
to accept Y1 = Z1 = 1, with prob. 0.25, continuing to the next state (2; Y2; Z2). The eq.
values of the game are 3.537, 4.243.

Remark 5 The order relations and asymptotic behavior (as are mentioned in part (ii) of

Theorem 1) of 1 Un; Vn in Theorems 2 and 3, and 2 u
(n)
; v

(n)
; U

(n)
; V

(n) in Theorems
4, 5 and 6 remain to be investigated. It is not easy especially for 2.
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