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Abstract. By introducing a speci�ed de�nition of the equilibrium values of two-

person two-choice games, a non-zero-sum multistage arbitration game is formulated

and solved. At each random o�er Xi; i = 1; 2; � � � ; n, comes up, two players must

decide either to accept it terminating the game, or to reject it expecting that a larger

random value may come up in the near future. Arbitration comes in when they choose

di�erent choices. Each player aims to maximize the expected reward he can get. It is

shown that if Xi is unifomly distributed in [0; 1], then even when arbitration stands

100 percent in favor of the accepting side, the advantage for the players is only one

percent. It is also shown that players are more advantageous when arbitration favors

the rejecting side than when it favors the accepting side.

1 Problem. Let Xi; i = 1; 2; � � � ; n; be i.i.d. random variables each with uniform dis-

tribution on [0; 1]. As each Xi comes up, each player I and II must choose simultaneously

and independently of other player's choice, either to accept (A) or to reject (R) it. If the

choice-pair is A-A, they get 1
2
Xi each, and the game terminates. If the choice-pair is R-R,

Xi is rejected and the next Xi+1 is presented and the game continues. If the players choices

are di�erent, arbitration comes in and forces players to divide at 100p (�p) percent in favor

of the accepting (rejecting) side, and the game terminates. If all of the �rst n � 1 ran-

dom values are rejected, both players must accept the n-th. Each player aims to maximize

the expected reward he can get, and the problem is to �nd a reasonable solution to this

two-person competitive n-stage game.

Let un be the CEV(common equilibrium value) of the game(c.f., the game is symmetric

for the players). The Optimality Equation is

(un; un) = E[eq.val. Mn(X)]

�
n � 1; u1 =

1

4

�
(1.1)

where the payo� matrix is

Mn(x) =

R A

R un�1; un�1 �px; px

A px; �px x
2
; x
2

(1.2)

As is well-known in the Nash theory of competitive games, the equilibrium is often

undetermined even in the two-person two-choice games, which we investigate in the present

article. So we present the following assumption.

Assumption A If equilibrium consists of some corner and/or edge and a unique inner

point, then the latter is adopted for the equilibrium. If eq. consists of a single point, either

corner or inner point, this is adopted for the equilibrium.
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When players choose di�erent choices, and arbitration comes in, there are two scenes :

(1) Arbitrator recognizes which player (I or II) chooses which (R or A), and, (2) arbitrator

only knows that one player chooses R and the other player A. A remarkable feature involved

in the game discussed in the present paper is the fact that arbitration comes in by (2) not

by (1). The literatures [1, 2, 3, 4] in arbitration games in the past discusses about the

arbitration by (1). Three-person arbitration games of \odd-man-wins" and \odd-man-out"

[5] by the present author, is also by (2).

In Sections [2�4] of the present paper, the solution of the problem under the Assumption

A is derived. We discuss in Section 3 the case where arbitration stands in favor of the

accepting side, i.e., 1
2
< p � 1, and in Section 4, it stands in favor of the rejecting side, i.e.,

0 � p < 1
2
.

2 Related Bimatrix Games. Rewriting (1.2) we have, if p 6= 1
2
,

Mn(x) =
x

2
E+

�
p�

1

2

�
x

�
M(c)

�
c=(x�1un�1�1=2)=(p�1=2)

;(2.1)

where

M(c) =

R A

R c; c �1; 1
A 1;�1 0; 0

and E = 1; 1 1; 1

1; 1 1; 1

(2.2)

Therefore, if we de�ne

V (c) = CEV of M(c); eV (c) = CEV of �M(c)(2.3)

then from (1.1) and (2.1) we have

un =
1

4
+

�
p�

1

2

�Z 1

0

xV

�
x�1un�1 � 1=2

p� 1=2

�
dx; if

1

2
< p � 1;(2.4)

un =
1

4
+

�
1

2
� p

�Z 1

0

xeV �
x�1un�1 � 1=2

p� 1=2

�
dx; if 0 � p <

1

2
:(2.5)

We have, analogously, if p = 1
2
,

un =
1

4
+

Z 1

0

x
n
CEV of

�
M0(b)

�
b=x�1un�1�1=2

o
dx(2.6)

where

M0(b) =

R A

R b; b 0; 0

A 0; 0 0; 0

(2.7)

In (2.4)�(2.6) un � 1=4 represents players' merit which comes from our n-stage game

(n > 1).

Lemma 1 The eq.val. of the bimatrix game M(c) :

If c < 1, A-A is a unique eq. point (EP), and CEV is zero ;

If c > 1, there are two EPs, R-R, and A-A and a unique common mixed strategy (R, A ;

c�1; 1� c�1). The value corresponding to the mixed-strategy is c�1. :

If c = 1, there are two EPs R-R and A-A, and no mixed-strategy eq. The game is a

coordination game, i.e., both players get pro�t by coordinating their choices to choose R-R

not A-A.
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Lemma 2 The eq. val. of the bimatrix game �M(c) :

If c < 1, R-R is a unique eq. point, and eV (c) = �c. ;

If c > 1, A-R, R-A and the common mixed strategy (R, A ;c�1; 1 � c�1) are in eq. The

value corresponding to the mixed strategy is �c�1 ;

If c = 1, R-R, R-A and A-R are in eq. and no mixed-strategy eq. exists. The game is

a coordination game, that is, one player gets pro�t by coordinating their choices to choose

either R-A or A-R.

Lemma 3 The equilibrium of the matrix game M0(b) given by (2:6) :

If b < 0, there are three EPs R-A, A-R and A-A, all giving (0; 0), and no mixed-strategy eq.

;

If b > 0, two EPs R-R and A-A, no mixed-strategy eq. The game is a coordination game,

in which both players get pro�t by coordinating their choices to choose R-R not A-A.

Proofs of these lemmas are easy and so omitted. By our Assumption A there is no eq.

for M(c) if c = 1, and no eq. for M0(b) if b > 0. Note that V (c) is decreasing for c > 1.

3 n-Stage Game where 1

2
< p � 1. De�ne state (n; x) to mean that the �rst random

variable X1 in the n-stage game turns out to be x.

Theorem 1 Let 1
2
< p � 1. The CES (common eq. strategy) in state (n; x) is :

Employ the mixed strategy

�
R, A ;

(p� 1=2) x

un�1 � x=2
;
un�1 � px

un�1 � x=2

�
, if x < p�1un�1 :

and choose A, if x > p�1un�1.

The sequence fung is determined by the recursion

un = k(p)u2n�1 +
1

4

�
n � 2;u1 =

1

4

�
;(3.1)

where

k(p) =

�
p�

1

2

�2 �
�8 log

�
1�

1

2p

�
�

4p+ 1

p2

�
:(3.2)

k(p); 1
2
< p � 1, is increasing with values k

�
1
2

�
= 0 and k(1) = 2 log 2 � 5

4
�= 0:1363.

Moreover, as n!1; un " u1(p) = 1
2

�
1 +

p
1� k(p)

�
�1

.

Proof. First we have

c �
x�1un�1 � 1=2

p� 1=2

�
<

>

�
1; if x

�
>

<

�
p�1un�1

Hence, from (2.4) and Lemma 1, the second term in the r.h.s. of (2.4) is�
p�

1

2

�Z 1

0

x
�
c�1I

�
x < p�1un�1

�
+ 0 � I

�
x > p�1un�1

�	
dx

=

8>>>>>>><>>>>>>>:

�
p�

1

2

�2 Z p�1un�1

0

x2

un�1 � x=2
dx =

�
p �

1

2

�2�
�8 log

�
1�

1

2p

�
�

4p+ 1

p2

�
u2n�1;

if un�1 < p;�
p�

1

2

�2 Z 1

0

x2

un�1 � x=2
dx =

�
p �

1

2

�2�
�8 log

�
1�

1

2un�1

�
�

4un�1 + 1

u2n�1

�
u2n�1;

if un�1 > p:
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That is, if we de�ne

T (u) =

8>><>>:
k(p)u2 + 1

4
; if u < p�

p� 1=2

u� 1=2

�2

k(u)u2 +
1

4
; if u > p;

(3.3)

where k(p) is given by (3.2), then un = T (un�1).

Next we show that k(p) is positive and increasing in p 2 (1
2
; 1 ]. We have k

�
1
2
+ 0

�
=

0; (c:f : 0 log 0 = 0): K(1) = 2 log 2� 5
4
�= 0:15 and di�erentiation gives�

p�
1

2

�
�1

k0(p) = 2

�
�8 log

�
1�

1

2p

�
�

4p+ 1

p2

�
� p�3

> 16

�
1

2
p�1 +

1

8
p�2 +

1

24
p�3 +

1

64
p�4 +

1

160
p�5

�
�

8p+ 2

p2
� p�3

=
1

60
p�5

�
6 + 15p� 20p2

�
> 0; 8p 2 (1

2
; 1 ]:

implying that k(p) > 0, for 1
2
< p � 1.

So, T (u), de�ned by (3.1), is increasing for u < p.

Since

un�1 <
1

2
< p) un = k(p)u2n�1 +

1

4
<

1

4
(k(p) + 1) <

1

4
(k(1) + 1) <

1

2
;

and u1 =
1
4
< 1

2
, we have un < 1

2
;8n � 1.

Therefore, by (3.3),

un = T (un�1) = k(p)u2n�1 +
1

4
; 8n � 1;

1

2
< 8p � 1;

which is (3.1)-(3.2).

Then it follows that

un > un�1 ) un+1 = T (un) > T (un�1) = un;

which, together with u2 =
1
4
+ 1

16
k(p) > u1, gives convergence un " u1 2

�
0; 1

2

�
: Evidently

u1 2
�
0; 1

2

�
satis�es T (u) = u, that is, u1(p) = 1

2

�
1�

p
1� k(p)

�
�1

. Here the larger root

is 1
2

�
1�

p
1� k(p)

�
�1

> 1
2
and the smaller root is 1

2

�
1 +

p
1� k(p)

�
�1

< 1
2
(see Figure

1 in Section 5).

This completes the proof of the theorem. 2

Computation gives

Case k(p) u1(p)

p = 1 2 log 2� 5=4 �= 0:1363
�
2 +

p
9� 8 log 2

�
�1 �= 0:2592

3/4 0.1049 0.2569

0.6 0.0489 0.2531

Convergence of fung is very fast. Even for p = 1,

un = 0:25852; 0:25911; 0:25915; 0:259154; � � � ; for p = 2; 3; 4; 5; � � � ; resp:
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We observe from Theorem 1 that even if arbitration stands perfectly in favor of the

accepting side i.e., p = 1, players' merit is only one percent. It is shown in the next section

that players are more advantageous when arbitration mildly favors the rejection side. For

example if p = 0:3, players' merit is �ve percent (See Theorem 2).

4 n-Stage Game where 0 � p < 1

2
.

Theorem 2 (i) Let 1
4
� p < 1

2
. The CES in state (n; x) is :

Choose R, if x < p�1un�1 < 1 ;

employ the mixed strategy

�
R, A;

(1=2� p)x

x=2� un�1
;
px � un�1

x=2� un�1

�
, if p�1un�1 < x ;

and choose R, for 8x 2 (0; 1), if p�1un�1 > 1.

The sequence fung is determined by the recursion un = f(un�1jp); (n � 1; u1 = 1=4),

where

f(ujp) = p�p� (1� 2p)2u(4.1)

+

�
4p� 3 + p�1 � 2(1� 2p)2 log

�
2p

1� 2p

. 2u

1� 2u

��
u2; for u < p:

As n!1; un " p; 8p 2 [1=4; 1=2).

(ii). Let 0 � p < 1
4
. The CES in state (n; x) is : Choose R n� 1 times repeatedly, and A

at the n-th, independently of 8x 2 (0; 1). The CEV is 1=4.

Proof. We have

c �
1=2� x�1un�1

1=2� p

�
<

>

�
1; if x

�
<

>

�
p�1un�1:

Therefore from (2.5) and Lemma 2, the second term in the r.h.s. of (2.5), except the

minus sign is�
1

2
� p

�Z 1

0

x
�
cI
�
x < p�1un�1

�
+ c�1I

�
x > p�1un�1

�	
dx

=

8>>>>><>>>>>:

�
1

2
� p

�"Z p�1un�1

0

x=2� un�1

1=2� p
dx +

Z 1

p�1un�1

(1=2� p) x2

x=2 � un�1
dx

#
; if p�1un�1 < 1;

Z 1

0

�x
2
� un�1

�
dx; if p�1un�1 > 1

=

8>>>><>>>>:
1� 4p

4p2
u2n�1 +

�
1

2
� p

�2 Z 1

p�1un�1

x2

x=2� un�1
dx; if p�1un�1 < 1;

1

4
� un�1; if p�1un�1 > 1:

Since Z 1

p�1un�1

x2

x=2� un�1
dx = 1 + 4u+

�
8 log

�
2p

1� 2p

. 2u

1� 2u

�
�

4p+ 1

p2

�
u2;

we obtain

un =

�
f(un�1jp); if un�1 < p

un�1; if un�1 > p;
(4.2)



182 MINORU SAKAGUCHI

where f(ujp) is given by (4.1).

(i) : Let 1
4
< p < 1

2
. After some elementary and tedious calculations we �nd that f(ujp)

satis�es

f(0jp) = p�p <
1

4

� f

�
1

4

��� p� =
1

16

�
p�1 + (4p� 1)(7� 8p) + 2(1 � 2p)2 log

1� 2p

2p

�
� f(pjp) = p;

and furthermore f 0(0 + 0jp) = �(1� 2p)2; f 0
�
1
4
jp
�
= 2p � 3

2
+ 1

2p
+ (1 � 2p)2 log 1�2p

2p
> 0,

and f 0(pjp) = 1. Therefore it follows that

un > un�1 ) un+1 = f(unjp) > f(un�1jp) = un;

which, together with

u2 = f(u1jp) = f

�
1

4

��� p� >
1

4
(See Figure 2 in Section 5)

gives the convergence of fung. The limit is u1 = p.

(ii): Let 0 � p < 1
4
. Then un > p;8n � 1. Because, by (4.2),

un�1 > p) un = un�1 > p; and u1 =
1

4
> p:

Hence un � 1
4
;8n � 1, follows.

This completes the proof of Theorem 2. 2

Some computed values of un s are shown below.

un n = 2 3 4 5 6 7 � � �
p = 0:3 0.25722 0.26329 0.26754 0.27088 0.27355 0.27578 � � �
p = 0:4 0.29182 0.31486 0.32968 0.34006 0.34776 0.35367 � � �

5 Remarks. 1. Figures 1 and 2 show the functions T (u) = k(p)u2+ 1
4
, with p 2

�
1
2
; 1
�

and f(ujp) with p 2
�
1
4
; 1
2

�
, respectively. The two graphs approach the di�erent ones, that

is,

u �
1

4
in Fig. 1, as p!

1

2
+ 0; and u2 +

1

4
in Fig. 2, as p!

1

2
� 0:

0
u

1/4 1/2

1/4

1/2

1/4

u1

1
4
(1 + k(p))

Figure 1. T (u) = k(p)u2 + 1
4
with p 2

�
1
2
; 1
�
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0
u

1/4 1/2

1/4

1/2

1/4

p

p�p

Figure 2. f(ujp), with p 2
�
1
4
; 1
2

�
.

2. Our n-stage game has no equilibrium by our Assumption A for p = 1
2
. However if players

are admitted to coordinate, we have

Theorem 3 Let p = 1
2
, and suppose that players are admitted to coordinate. Then CES in

state (n; x) is :

If x < 2un�1, players coordinate to choose R, not A ;

If x > 2un�1, choose A.

The sequence fung is determined by the recursion

un = u2n�1 +
1

4

�
un � 1; u1 =

1

4

�
:

and un " 1=2 as n!1.

Proof. We have b = x�1un�1� 1
2
< (>)0; if x > (<)2un�1 and hence from (2.6)-(2.7) and

Lemma 3,

un �
1

4
=

Z 1

0

x fbI(x < 2un�1) + 0 � I(x > 2un�1)g dx =

Z 2un�1

0

�
un�1 �

x

2

�
dx:

Hence the result follows. 2

3. Our n-stage game (1.1)-(1.2) has quite di�erent solutions for the two extreme cases p = 1

and p = 0 as seen in Theorems 1 and 2, although they seemingly look similar. Furthermore

the two particular cases p = 1=2 and p = 1=4 give somewhat abnormal phases to the solution

of the problem.
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