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Abstract. We consider an extension of Komiya's inverse of the Berge maximum theo-

rem in convex metric spaces.

1. Introduction

The following theorem is called the Berge maximum theorem and is often used in the

general equilibrium theory of mathematical economics([1, 2]).

Theorem 1.1 (Berge). Let X and Y be topological spaces. Let F : X ( Y be a nonempty

compact-valued continuous multi-valued mapping and f : X�Y ! R a continuous function.

Then the function f̂ : X ! R de�ned by f̂ (x) = maxff(x; y) : y 2 F (x)g is continuous.

Moreover, the multi-valued mapping � : X ( Y de�ned by �(x) = fy 2 F (x) : f(x; y) =

f̂ (x)g is compact-valued and upper semicontinuous.

Komiya studied an inverse problem in the case where X and Y are Euclidean spaces and

he obtained the following theorem([4, Theorem 2.1]):

Theorem 1.2. Let X be a subset of Rl and let K : X ( R
m be a nonempty compact

convex-valued upper semicontinuous multi-valued mapping. Then there exists a continuous

function v : X �Rm! [0; 1] such that for any x 2 X,

(i) K(x) = fy 2 Rm : v(x; y) = maxz2Rm v(x; z)g;

(ii) v(x; �) is quasi-concave.

Recently, Komiya and Park studied this problem in the case where X is a topological

space and Y is a metric topological vector space whose balls are convex([5]). In this paper,

we investigate this inverse problem in a convex metric space with some conditions.

2. Preliminaries

Let (X;d) be a metric space. We denote by B(x; r) the open ball whose center is x 2 X

and radius is r > 0. For each C � X and r > 0, subsets of X de�ned by fx 2 X : d(x;C) <

rg, fx 2 X : d(x;C) � rg are denoted by Cr, Cr, respectively. If X is a normed space,

then Cr = Cr. But Cr � Cr in general metric spaces.

Let X and (Y; d) be metric spaces. A mapping F from X into 2Y is called a multi-

valued mapping and is denoted by F : X ( Y . A multi-valued mapping is said to be

nonempty compact-valued, if, for each x 2 X, F (x) 6= ; and F (x) is compact. The graph

of F : X ( Y is denoted by Gr(F ), i.e., Gr(F ) = f(x; y) 2 X � Y : y 2 F (x)g: For each
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multi-valued mapping F : X ( Y and t > 0, we de�ne multi-valued mappings F t : X ( Y

and F t : X ( Y by

F t(x) = fy 2 Y : d(y; F (x)) < tg;

F t(x) = fy 2 Y : d(y; F (x)) � tg

for each x 2 X, respectively. A multi-valued mapping F : X ( Y is said to be lower

semicontinuous in X, if, for each x 2 X and open set G with F (x) \ G 6= ;, there is a

neighborhood Ux of x such that F (x0) \ G 6= ; for each x0 2 Ux. A multi-valued mapping

F : X ( Y is said to be upper semicontinuous in X, if, for each x 2 X and open set G

with F (x) � G, there is a neighborhood Ux of x such that F (x0) � G for each x0 2 Ux.

A multi-valued mapping F : X ( Y is called continuous, if F is both lower and upper

semicontinuous in X.

The concept of a convex metric space was introduced by Takahashi([6]). We say that a

metric space (Y; d) has a convex structure, if there exists a mappingW : Y �Y � [0; 1]! Y

such that for each (x; y; �) 2 Y � Y � [0; 1] and z 2 Y ,

d(z;W (x; y; �)) � �d(z; x) + (1� �)d(z; y):

A metric space (Y; d) having a convex structure is called a convex metric space and de-

noted by (Y; d;W ). A subset K of a convex metric space (Y; d;W ) is said to be convex if

W (x; y; �) 2 K for each x, y 2 K and � 2 [0; 1]. Convex sets of a convex metric space have

the following property([6, Proposition 1]):

Lemma 2.1. Let fK�g�2A be a sequence of convex sets of a convex metric space (Y; d;W ).

Then
T
�2AK� is convex.

A function f : K ! R is said to be quasi-concave, if, for each s 2 R, fy 2 K : f(y) � sg

is convex in Y . A function f : K ! R is said to be quasi-convex, if, for each s 2 R,

fy 2 K : f(y) � sg is convex in Y .

Let X be a metric space and Y a convex metric space. We say that a multi-valued

mapping F : X ( Y has Property (�), if there is a sequence fAngn2N of multi-valued

mappings satisfying the following conditions:

(i) for each n 2 N, An : X ( Y is nonempty compact convex-valued continuous multi-

valued mapping;

(ii) for each x 2 X and n, n0 2 N with n > n0, F (x) � An(x) � An0(x);

(iii) for each x 2 X, F (x) =
T
1

n=1An(x).

If X is a subset of Rn, a nonempty compact convex-valued upper semicontinuous multi-

valued mapping F : X ( R
m has Property (�)([4, Lemma 2.1]).

We say that a convex metric space (Y; d;W ) has Property (K), if, for each x, y, x0, y0 2 Y

and � 2 [0; 1],

d(W (x; y; �);W (x0 ; y0; �)) � �d(x; x0) + (1 � �)d(y; y0):

To prove our result, we need the following; see [3, Lemma 4.2, Lemma 4.3].

Lemma 2.2. Let X be a topological space and D a dense subset of positive real numbers.

Let fFtgt2D be a sequence of open sets of X and satisfy the following conditions:

(i) if t < s, then Ft � Fs;

(ii)
S
t2D Ft = X.

Then a real-valued function f de�ned by f(x) = infft : x 2 Ftg is continuous. Moreover,

for each non-negative real number s,

fx 2 X : f(x) � sg =
\
t2D
t>s

Ft:
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3. Main results

To prove our theorem, we show some lemmas. We extend [4, Lemma 2.2] to the following:

Lemma 3.1. Let X and (Y; d) be metric spaces. Let A : X ( Y be a nonempty compact-

valued lower semicontinuous multi-valued mapping. Then, for each x 2 X and � > 0, there

exists Æ > 0 such that

A(x) � A�(x0) for each x0 2 B(x; Æ):

Proof. Let x 2 X and � > 0. Since A is lower semicontinuous, for each y 2 A(x), there

exists Æ(y) > 0 such that

A(x0) \ B(y; �=2) 6= ; for each x0 2 B(x; Æ(y)):

Since A(x) �
S
y2A(x)B(y; �=2) and A(x) is compact, we can �nd a �nite set fyig � A(x)

such that A(x) �
S
iB(yi; �=2). Setting Æ = mini Æ(yi), we shall show that

A(x) � A�(x0) for each x0 2 B(x; Æ):

Let x0 2 B(x; Æ) and y0 2 A(x). By A(x) �
S
iB(yi; �=2), there exists yi such that

y0 2 B(yi; �=2). Since x0 2 B(x; Æ) � B(x; Æ(yi)) and A is lower semicontinuous, A(x0) \

B(yi; �=2) 6= ;. Therefore, for z 2 A(x0) \B(yi; �=2),

d(y0; z) � d(y0; yi) + d(yi; z) <
�

2
+

�

2
= �;

and then d(y0; A(x0)) = infw2A(x0) d(y
0; w) � d(y0; z) < �. Hence, y0 2 A�(x0). Consequently,

we obtain A(x) � A�(x0).

Using Lemma 3.1, we can immediately extend [4, Lemma 2.3] to the case of metric spaces

as follows.

Lemma 3.2. Let X and (Y; d) be metric spaces. Let A : X ( Y be a nonempty compact-

valued lower semicontinuous multi-valued mapping. Then the graph of A� : X ( Y is open

in X � Y for each � > 0.

Proof. Let (x; y) 2 Gr(A�), i.e., x 2 X and y 2 A�(x). Let �0 = 1
3
(� � d(A(x); y)). By

Lemma 3.1, for �0 > 0, there exists Æ > 0 such that

A(x) � A�0(x0) for each x0 2 B(x; Æ):

We shall show that B(x; Æ)�B(y; �0) � Gr(A�). If (x0; y0) 2 B(x; Æ)�B(y; �0), then we can

easily prove the following.

y0 2 B(y; �0) � A���0(x) � A�(x0):

Therefore, (x0; y0) 2 Gr(A�). Hence, Gr(A�) is open in X � Y .

Furthermore, some propositions in convex metric spaces are described.

Lemma 3.3. Let C be a nonempty subset of a convex metric space (Y; d;W ). Then Cr =

Cr for each r > 0.

Proof. First we show Cr
� Cr. Let x 2 Cr. If d(x;C) < r, it is clear that x 2 Cr.

Supposing d(x;C) = r, we can choose a sequence fang such that

an 2 C and d(x; an) < r +
r

n
=

r(n + 1)

n

for each n 2 N. We de�ne a sequence fxng by

xn =W

�
an; x;

1

n+ 1

�
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for each n 2 N. Since

d(C; xn) � d(an; xn) �
1

n+ 1
d(an; an) +

n

n+ 1
d(an; x) =

n

n+ 1
d(an; x) < r;

xn 2 Cr for each n 2 N. Furthermore,

d(x; xn) �
1

n+ 1
d(x; an) +

n

n+ 1
d(x; x) =

1

n+ 1
d(x; an) <

r

n

yields xn ! x. Hence, x 2 Cr

On the other hand, Cr
� Cr is trivial. Consequently, we conclude Cr = Cr.

Lemma 3.4. Let X and (Y; d) be metric spaces. Let A : X ( Y be a nonempty compact-

valued upper semicontinuous multi-valued mapping. Then the graph of At : X ( Y is

closed in X � Y for each t > 0.

Proof. Let x 2 X and fxng be a sequence of X that converges x. Let fyng be a sequence

of Y such that y ! yn and yn 2 At(xn) for each n 2 N. Then we shall show y 2 At(x), i.e.,

d(A(x); y) � t. Since yn 2 At(xn) and A(xn) is compact for each n 2 N, there is a sequence

fzng such that

d(zn; yn) = d(A(xn); yn) � t and zn 2 A(xn) for each n 2 N:

Because A is upper semicontinuous and xn ! x, it is easy to show that d(A(x); zn) ! 0.

Similarly, by the compactness of A(x), there exists a sequence fwng such that

d(wn; zn) = d(A(x); zn) and wn 2 A(x) for each n 2 N;

and fwng has a convergent subsequence fwn0g. Let w be the limit of fwn0g. Let fzn0g and

fyn0g be the corresponding subsequences of fzng and fyng, respectively. It is clear that

d(w; zn0) � d(w;wn0) + d(wn0 ; zn0) = d(w;wn0) + d(A(x); zn0 )

and hence zn0 ! w. Furthermore, we get

d(A(x); y) � d(w; y) � d(w; zn0) + d(zn0 ; yn0) + d(yn0 ; y)

= d(w; zn0) + d(A(xn0 ); yn0 ) + d(yn0 ; y)

� d(w; zn0) + t+ d(yn0 ; y):

It is follows from zn0 ! w and yn0 ! y that d(A(x); y) � t. This completes the proof.

A convex metric space with Property (K) has the following property:

Lemma 3.5. Let (Y; d;W ) be a convex metric space with Property (K) and let C be a

nonempty convex subset of Y . Then Cr is convex for each r > 0.

Proof. Let x, y 2 Cr and � 2 [0; 1]. There exist x0, y0 2 C such that d(x0; x) < r and

d(y0; y) < r. Since Y has Property (K),

d(W (x; y; �);W (x0 ; y0; �)) � �d(x; x0) + (1� �)d(y; y0)

< �r + (1� �)r = r:

By assumption,W (x0; y0; �) 2 C. Therefore,

d(W (x; y; �); C) � d(W (x; y; �);W (x0 ; y0; �)) < r:

Hence, W (x; y; �) 2 Cr. Consequently, Cr is convex.

Using lemmas above, we can obtain the following theorem, which is our main result of

this paper. This theorem is an extension of Theorem 1.2 to a convex metric space. We shall

use the techniques developed in [4]; however, we modify them so as to apply to the convex

metric space case.
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Theorem 3.6. Let X be a metric space and (Y; d;W ) a convex metric space with Property

(K). Let � : X ( Y be a nonempty multi-valued mapping that has Property (�). Then

there exists a continuous function f : X � Y ! [0; 1] such that for any x 2 X,

(i) �(x) = fy 2 Y : f(x; y) = maxz2Y f(x; z)g;

(ii) f(x; �) is quasi-concave.

Proof. We de�ne D = fn=2n
0

: n; n0 2 Ng. Then D is a dense subset of the positive real

numbers. Now, for t 2 D \ (0; 1), we consider its binary expansion, i.e.,

t =

nX
i=1

ti

2i
(ti = 0 or ti = 1);

and we de�ne a function ` : D \ (0; 1)! N by

`(t) = minfi : ti = 1g for each t 2 D \ (0; 1):

Since � has Property (�), there is a sequence of continuous multi-valued mappings fAng

such that An has the conditions of Property (�) for each n 2 N. Using fAng, for each

t 2 D, we de�ne a multi-valued mapping Gt : X ( Y by

Gt(x) =

(
At
`(t)

(x) = fy 2 Y : d(A`(t)(x); y) < tg; if 0 < t < 1;

Y; if t � 1:

Then, for each x 2 X and s; t 2 D with s < t, it is easy to show that

Gs(x) � Gt(x):

Moreover, for each t 2 D, we de�ne a multi-valued mapping Gt : X ( Y by

Gt(x) = Gt(x) for each x 2 X:

It is follows from Lemma 3.3 and Lemma 3.4 that its graph Gr(Gt) is closed in X � Y for

each t 2 D. That is, for each t 2 D, Gr(Gt) = Gr(Gt). Thus, for each s; t 2 D, if s < t,

then we can prove

Gr(Gs) � Gr(Gt):

In fact, we get

Gr(Gs) � Gr(Gs) = Gr(Gs) � Gr(Gt):

On the other hand, by Lemma 3.2, Gr(Gt) is open in X � Y for each t 2 D. Furthermore,S
t2DGr(Gt) = X � Y by the de�nition of Gt.

With the help of Lemma 2.2, the function g : X � Y ! [0; 1] de�ned by

g(x; y) = infft : (x; y) 2 Gr(Gt)g

is continuous and for each s � 0,\
t2D
t>s

Gr(Gt) = f(x; y) 2 X � Y : g(x; y) � sg:

Therefore, for each x 2 X and s � 0,\
t2D
t>s

Gt(x) = fy 2 Y : g(x; y) � sg:
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It is follows from Lemma 2.1 and Lemma 3.5 that the left side of the equation above is

convex and hence g is quasi-convex in its second variable. Moreover, for each x 2 X, we

have

�(x) =

1\
n=1

An(x) =
\
t2D

Gt(x)

= fy 2 Y : g(x; y) = 0g = fy 2 Y : g(x; y) = min
z2Y

g(x; z)g:

Hence, f = �g + 1 is the required function.
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