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NON-ABSOLUTE MULTIPLE INTEGRAL DEFINED CONSTRUCTIVELY
ON THE EUCLIDEAN SPACE AND ITERATED INTEGRAL

Shizu Nakanishi
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Abstract. In this paper, we propose a hon-absolute multiple integration in Euclidean
spaces defined constructively, and show that the integral is obtained as the iterated
integral of one-dimensional integral. The integral is defined as an extension of the
special Denjoy integral to higher dimensions.

In [1], 1955, we have published a few constructive definitions which characterize the spe-
cial Denjoy integral to investigate multidimensional generalizations of the special Denjoy
integral (cf. [2]). In this paper, we propose a non-absolute multiple integration in mul-
tidimensional Euclidean spaces. The integral is defined as an extension of one definition
chosen from among some other definitions for the spacial Denjoy integral shown in [1]([1,
Theorems 3 and 4]) to higher dimensions. In this paper, we shall show that the multiple
integral is obtained as the iterated integral of one dimensional integral which is equivalent
to the special Denjoy integral.

Let F, be the n-dimensional Euclidean space. Given a system of 2n real numbers
ai, b1; ag, be; ...; an, by witha; <b; fori =1, 2, ..., n,theset {(x1, 2, ..., Tpn):
a;<z; < byfori=1, 2, ..., n}iscalled an interval in E,,. A finite system of intervals
I (1t =1, 2, ..., ip) in E, is called an elementary system if I; N [, = @ for i # ¢/,
sometimes it is denoted by S : {I;(i =1, 2, ..., ig)}. un denoted the Lebesgue measure
on E,. Sometimes, the Lebesgue measure of an interval I in E,, is denoted by |I| and for
an elementarg system S : {I;(i = 1, 2, ..., ig)}, S denotes the set U I, |S| denotes
the measure 20:1 |I;|, and when F(I) is a finitely additive ipterval function on an interval
in E, containing S : {L;(: =1, 2, ..., i)}, F(S) denotes iozl F(I;). N denotes the set
{1, 2, ...}. Measure means Lebeggue measure. The Lepesgue integral of a function f (p)
on aset E in E, is denoted by (L) , f(p)dpor (L) ... pf(z1, ..., zn)d(z1, ..., Tp).

We refer to S.Saks [4] for the terminology and the propositions concerning points of
density for a set etc.

For a set A C E,, A denotes the closure of A in E,, and A° the interior of A in E,,.
Sometimes, for an elementary S : {I;(i =1, 2, ..., i)}, the interior of the set Uif’:lIi is
denoted by S°.

Definition 1. Let Ry be an interval in the ng-dimensional Euclidean space E,, and f(p)
a measureable function defined on Ry. The function f(p) is said to be (Dyp) integrable on
Ry if there exist a finitely additive interval function F(I) defined on Ry, a nondecreasing
sequence of measureable sets M,, (n =1, 2, ...) such that M,, C Ry and U2 ;M,, = Ry,
and a nondecreasing sequence of closed sets F,, (n =1, 2, ...) such that F,, C M, and
tne (Ro — U2, F,) = 0, satisfying the following conditions (1) and (2):
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(1) f(p) is Lebesgue integrable on F,, for each n € N;
(2) Given any n € N and a number & > 0, there exists a number d(n,e) > 0 for which
the following holds: if I; (n =1, 2, ..., ip) is an elementary system in Ry such that

Q1) LNM,#0 fori=1, 2, ..., ip;
(22) ,u'no(uéozl-[i - Mn) < 5(”75)7
then the following inequality holds:

T3¢ > Z z
- F)- (D) flp)dp-<e.
i=1 i=1 Linky R
In this case, F&Ro) is called the (Do) integral of f(p) on Ry, and it is denoted by (Do) 5 f(p)dp
or (Do) ... Ro flz1, ..., Tpy)d(x1, ..., Tpy). Further, the sequence M,(n =1, 2, ...)
is called a characteristic sequence of the (Dy) integral and the sequence F,, (n =1, 2, ...)

is called a fundamental sequence of the (Dy) integral.
We remark that in Definition 1 we can suppose that d(n, <) has the following property:

d(n,e) > d(m,e) for m > n and §(n,e) > §(n,e’) for e > &'
The following Propositions 1-3 follow immediately from the definition of (Dy) integral.

Proposition 1. If a function f(p) is (Dy) integrable on an interval Ry in E,,, then
f(p) is (Dyp) integrable on any sub-interval R of Ry, and if F(I) is the interval function
indicated in the definition of (Dy) integral of f(p), F(R) is the (Dy) integral of f(p) on R.

Proposition 2. When f(p) and f*(p) are functions defined on an interval Ry in E,,
such that f(p) = f*(p) almost everywhere on Ry, f(p) is (Do) integrable on Ry if and only
if f*(p) is (Do) integrable on Ry, and the (Dy) integrals of f(p) and f*(p) on Ry coincide.

Proposition 3. If f(p) and g(p) are (Dy) integrable functions on an interval Ry in E,,,
then ghe function af(p) +Bg(p), whage o, § are real nungpers, is (Dp) integrable on Rq and
(Do) g, (af(p) +Bg(p))dp = a(Do) g, f(p)dp+ B(Do) g, 9(p)dp.

Proposition 4. When f(p) is a function defined on an interval Ij in the one-dimensional
Euclidean space, the function f(p) is (Dg) integrable on Iy if and only if it is special Denjoy
integrable on Iy, and both integrals on I coincide.

Proof. This follows from Theorems 3 and 4 in [1, pp. 82-83].

Propositiory 5. Let f(p) be a (Do) integrable function on an interval Ry in E,,, and
let F(I) = (Do) ; f(p)dp for an interval I in Ry. Then, if I;(j =1, 2, ...) is a decreasing
sequence of intervals in Ry such that lim;_,o0 ftny (Z;) = 0, then lim;_,o F(I;) = 0.

This follows from that there exist a point p € N32,I; and an n € N such that p € M,,
as an immediate consequence of the definition of (Dy) integral.

Throughout this paper, Ry denotes an interval in the ng-dimensional Euclidean space
E,,- When f(p) is a (Dy) integrable function on Ry, F(I) denotes the interval function
indicated in the definition of (Dy) integral of f(p) in Ry, M,, (n=1, 2, ...) and F,, (n =
1, 2, ...) denote the characteristic and fundamental sequences of (Dy)-integral for f(p)
in Ry, respectively, and d(n,e) denotes the positive number indicated in the definition of
(Dy)-integral of f(p) in Ry, corresponding to n € N and € > 0.

Lemma 1. Let Ry be an interval in E,, and f(p) a (Dg) integrable function on Ry.
Then, given any n € N and a number ¢ > 0, if I; (i = 1, 2, ..., 4p) is an elementary
system in Ry such that
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1) LNM,#0 fori=1,2, ..., io;
(2'2*) Mno(Ui:O:lIi) < 6(”? 5)7

then the following inequality holds:

I3¢ S Z -
- Fl)- (D) F(p)dp= < Ange,
i=1 i=1 Linkn
where \,, is a positive number depending only on the dimension of the space E,,. In
particular Ay = 4.
The proof follows easily from the definition of (Dy) integral.

For sets A and B such that A C E,,, and B C E,,, A x B denotes the product set of
A and B. When the space F,, is the product space E,, = E,, x E,, of E,, and E,, and A
is a sub-set of E,, proj;(A) denotes the projection of the set A on E,, and proj,(A) the
n1 Eng
projection of the set A on E,,. In particular, when n = 2 and ny = ny = 1, proj,(A) is
n1
denoted by proj,(A), and proj,(A) is denoted by proj,(A). When A C E,,, we denote: for
no

a point p € E,,, the set {(p,q) : (p,q) € A, q € E,,} by AP; for a point q € E,,, the set
{(p,a): (p,a) € A, p€ Ey,} by A%

An elementary system S: I; (i =1, 2, ..., ip) in E, is called a (*)-elementary system
if
proj y(I1) = proj y(I2) = ... = proj (I, ).
En71 En71 Enfl

An elementary system S is called a (**)-elementary system if it is composed of finite (*)-
elementary systems S; (I =1, 2, ..., lp) such that

proj 4(S;) N proj 4(Sy) =0 for I #1'.

n—1 n—1

Let f(p) be a (Dy) integrable function on an interval Ry in E,,. For n € N and € > 0,
let n(n, &) be a positive number such that
z
if pino (E) <m(n,e), then (L) |f(p)ldp <e. (1°)
ENF,

Without loss of generality, we can suppose that

n(n,e) > n(m,e) for m > n and n(n,e) > n(n,e’) for e > €'

Throughout this paper, let ¢, (n =1, 2, ...) be a sequence of positive numbers such
that
X
en 4 0 and Em < &p for each n € N, (2°)
m=n+1

and let € (n =1, 2, ...) be the nonincreasing sequence defined by
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ef =min(d(n,e,/2""), n(n,e,/2""°)) for each n € N. (3°)

Without loss of generality, we can suppose that €, | 0.

Let J be an interval in the one-dimensional Eucidean space E; and A, (n=1, 2, ...)
a nondecreasing sequence of closed sets in E; such that US2, A, = J. Then, we say that
a non-empty closed set F,,,, in Ey, where n < m, has the property (B;) for n < m in J
associated with A, (n=1, 2, ...)and e} (n=1, 2, ...) if it has the following property
(B1):

(B1): (1) Fr C J and F,p, C Ay

(2) Denote the sequence of intervals contiguous to the set consisting of the set F,,,, and
the both end-points of J by J; (j =1, 2, ...). Then, J; (j =1, 2, ...) are classified
into m — n + 1 parts written Jy; (j = 1, 2, ...)(possibly empty or finite), where k =
n,n+1, n+2, ..., m,so that

P

1) 32 kgl < ek

2) (Jrj)°NAp =10 for every je€ N;

3) one at least of the end-points of the interval Ji; belongs to Ay for each j € N.

In this case, the point taken as one at least of the end-points of Ji; in 3) is called the
characteristic point of Jj; and the number k is called the characteristic number of J;.

First let us apply Lemma 2 in [1, p. 72; 3, p. 2] for the interval Ry in E,, (no > 1),
the sequence of closed sets M,, (n = 1, 2, ...) and the sequence of positive numbers
el (n=1, 2, ...). Then, the following statement (I) holds.

(I) There exist two increasing sequences of positive integers

n; and m; (i =1, 2, ...) such that i < n; and n; < m; < n;4q (4°)
and a nondecreasing sequence of non-empty closed sets
Fom, 1=1,2, ...)

having the following properties (1) and (2):
(1) Fy;m;, C Ry and F,,,,,, C M,, for every i € N;
(2) Let us put

Y = U?il proj y(Fnlml) and Z = proj y(RO) -Y. (50)

Eno -1 Eno -1
Then

(a) ping-1(2) = 0;

(b) for each ¢ € Y and i € N, if (Fy,;m,)? # 0, then the closed set (F),,,,)? has the
property (B1) for n; < m; in (Ry)? associated with (M,,)? (n =1, 2, ...) and &} (n =
1, 2, ...); and

(c) U2 (Fn;m;)? = (Ro)? holds for each g € Y.

Next, corresponding to each point
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q € Z(= proj y(RO) — U2, proj y(mei))a
Eno—l Eno—l

let us apply Lemma 1 in [1, p. 72; 3, p. 2] for the interval (Ry)?, the sequence of closed sets
(M,)? (n=1, 2, ...) and the sequence € (n =1, 2, ...). Then, the following statement
(IT) holds.

(IT) There exist two increasing sequences of positive integers

n;(q) and m;(¢)(i =1, 2, ...) such that i < n;(q) and n;(q) < m;(q) < ni+1(q)
and a nondecreasing sequence of non-empty closed sets

Fm(q)mi(q) (l =1, 2, .. )

such that:
(1) Each F,,,(g)m,(q) has the property (B1) for n;(q) < m;i(q) in (Ro)? associated with

i

(Mp,)? (n=1,2, ...)and e’ (n=1, 2, ...); and
(2) U2 Fr, (q)mi(q) = (Ro)? holds.

We remark that, in what follows, an empty set is considered as a closed set.

Lemma 2. If f(p) is a (Do) integrable function on an interval Ry in E,, (no > 1), then
there exists a nondecreasing sequence of measureable sets By, (h =1, 2, ...)(the first finite
sets may be empty) such that

(1) Br 1 Rp; and
(2) for every h € N, the set (Bp,)? is a closed set for each g € proj ,(Bp),

Enofl
in such a way that the following statement holds:

Corresponding to h, € with h € N and £ > 0, there exists a number p(h,e) > 0 such
that:

Given a number € > 0, suppose that, for some h € N, a (**)-elementary system S
consisting of (*)-elementary systems S; (I =1, 2, ..., ly), where for each [

Sy is a (*)-elementary system consisting of intervals written

Ilj (] = ]-7 27 ceey ]O(Z))a

satisfies the following conditions:

(a) Foreach { € {1, 2, ..., lp}, there exists a ¢; € proj ,(S;) N proj ,(By) such that
Enofl Eno—l
(L)@ 1 (B # 0 for every j € {1, 2, ..., jo()};
(b) | proj ()| < p(h,é).
no—1

Then, the following inequality holds:
|F(9)| <e.

Proof. For simplicity, we prove only for the case of ng = 2 and Rg = [0, 1;0, 1]. Denote
q; taken in the assumption (a) of the lemma by y;.

Let
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ng, m; and Fp, . (=1, 2, ...)
be the two sequences of positive integers and the sequence of non-empty closed sets indicated
in (I) above.

Corresponding to each h € N, if there exists an m; with m; < h, denote
by i(h) the greatest integer ¢ for which m; < h. (6°)
Given k € N, since m; < my, for i < k, we have i(my) = k by (4°). So
Frimi = Frinyymigmg - (7°)
Put, as in (I)
Z = proj ,(Ro) — U2, proj o (Frm,)-

For every y € Z, let n:(y), mi(y) and F,,(yym.(y) (¢ =1, 2, ...) be the two sequences
of positive integers and the sequence of non-empty closed sets indicated in (II) above.
Corresponding to h € N, if there exists an m;(y) with m;(y) < h, denote

by i(y, h) the greatest integer ¢ for which m;(y) < h. (8°)

As easily seen, i(h) <i(h + 1) and i(y, h) < i(y,h + 1).
Given an h € N, put
B = Fp,ymim Y (Uye 2 Fn, 0 @)macyn () When i(h) is definable;

By = Uyez Py, ) (wymaiiym(y) for the other case, (9°)
where the union Uy, is over all y € Z for which i(y, h) is definable. Then, By (h =
1, 2, ...) is a nondecreasing sequence of measurable sets (the first finite sets may be

empty) whose union is Ry and (By)Y is a closed set for every y € proj, (Bp).

Now, put for h € N and € > 0
p(h,e) = min(§(h,e/2%), n(h,e/2)). (10°)
Then
p(h,e) > p(k,e) if k> h and p(h,e) > p(k,e’) if € > €.

Given an € > 0, for some h € N let S be a (**)-elementary system satisfying the
conditions (a) and (b) of the lemma for B, and p(h,c) defined above. For each pair I, j
withle {1, 2, ..., lo}andje{l, 2, ..., jo()}, by (a) we have I;; N By, # 0. Further, by
(1) of (I) and (1II), M”ni(h) U Umei<y,h)(y) D By,. Hence, by m;(,y < h and my, n)(y) < h,

we have M}, D By,. Therefore, Ij; N My, # ). Further, since | proj, (S)| < p(h,€) by (b)

S DY
\I;| < p(h,e) < 6(h,e/2%), and
1=1 j=1
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il
|Ilj| < p(h,E) < U(h7 5/2)
=1 j=1
Therefore, by Lemma 1
T3 DR DY L - ,
- F(L;) - (L) f(p)dpz < 4(e/2°) =¢/2,
=1 j=1 =1 j=1 1i;NFn
and so, by (1°)
DR :
|F(S) =z F(I;)
~i=1 j=1 -
IHY L -
<- (L) flp)dp-+e/2<e/24+¢e/2=c¢.
=1 j=1 IiNFy
For an interval I = [a1, b1 ; a2, ba; ... ; an,by] in E,, we denote by R,,(I) the family
of intervals [a; + (k1(b1 — a1))/m, a1 + ((k1 + 1)(b1 — a1))/m; a2 + (k2(b2 — a2))/m, a2z +
(ke + 1)(ba — a2))/m; ... 5 an+ (kn(by — an))/m, an + ((ky + 1)(b, — an))/m], where k;
is an integer with 0 < k; <m —1fori=1, 2, ..., n; by H,,(I) the family of intervals
[a1, b1 ; ag+ (ka(ba —a2))/m, as+ ((ka+1)(ba—a2))/m; ... ; an+ (kn(bn—an))/m, an+
((kn + 1)(by, — ap))/m], where k; is an integer with 0 < k; <m—1fori=2, ..., n. We

call an interval belonging to R,,,(I) a cell.

Lemma 3. Let f(p) be a (Dg) integrable function on an interval Ry in the ng-
demensional Euclidean space Enp(no > 1). Given a sequence of positive numbers ¢,, (n =
1, 2, ...) such that &, | 0 and ;O:nﬂ Em < &p for every n € N, there exist:

nondecreasing sequences of closed sets A; (i =1, 2, ...)and D; (i =1, 2, ...) such
that

(1) ,U'm)(RO - Uz@ilAi) =0 and :L"TL()(RO - Uz@ilDi) =0;

(2) A; D D, for every i € N;

(3) f(p) is Lebesgue integrable on D; for every i € N,

and a nonincreasing sequence of positive numbers k} (i =1, 2, ...),
in such a way that the following statement (4) holds:

(4) For each ¢ € N the following holds. If S is a (**)-elementary system in Ry consisting
of (*)-elementary systems S; (=1, 2, ..., lp), where for each [

S; is a (*)-elementary system consisting of intervals written

Ilj (j = 17 27 sy jO(l))a

for which there exists a non-empty measurable set Y in proj ,(Rp) such that:
ng—1

(41) ¥ C proj 4(S°) 11 proj y(Aq):
R Frooy
(4.2) png—1  proj 4(S)—-Y <k}

ng—1
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(4.3) Y N proj 4,((S)°) # 0 for every I € {1, 2, ..., lo};
Enofl
(4.4) foreach 1 € {1, 2, ..., lp},if ¢ € Y N proj 4((Si)°), then
Eng-1
(11)7 1 (A7 £ 0 for every j € {1, 2, .., jo(D},
then the following inequality holds:
- z -
FS) - (L) o)y <en
SND;

We remark that, by the assumption (1), we have
A '

Hno—1  Proj y(RO) — U2, proj y(Di) =0 (110)

ng—1 Enofl

Proof of Lemma 3. For simplicity, we prove only for the case of ng = 2 and Ry =
[0,1;0,1]. For the given sequence e,(n =1, 2, ...), we defineeX(n =1, 2, ...) as in (3°).
Let n;,m; and Fp,m, (i =1, 2, ...) be the sequences of integers and the sequence of closed

sets indicated in (I) above associated with Ry, M,, (n =1, 2, ...)and ei(n=1, 2, ...).
Put

ki = (1/2)p(my,e;/2*) for each i € N,

where p(h,€) is the number indicated in (10°). Then, k; (¢ =1, 2, ...) is a nonincreasing
sequence.

For each i € N, take an h(i) € N so that

h(i) >4, h(j) > h(i) for j > i and po(Fn,m; — Fin,,)) < ki (12°)
Put
A = Fopn, and D; = Fpin, 0 Py, for each i € N. (13°)
Then
A; D D; and pa(A; — D;) < k; for each ¢ € N.
Put
K} = (1/2) min(k;, n(mpg), engiy/2°)) for each i € N. (14°)
It is clear that D; (i =1, 2, ...) and A4; (i =1, 2, ...) are nondecreasing sequences of
closed sets satisfying (1), (2) and (3) of the lemma, and x} (¢ =1, 2, ...) is a nonincreasing

sequence. Next, we shall prove that the statement (4) holds for them. The proof requires
three steps.

Take an ¢ € N and fix. Under the assumption of (4) of the lemma:
(i) The case when py (Y N proj,((S:)°)) > 0 for I =1, 2, ..., lo; Since, by (4.3) and

(4.4), I;; N A; is a non-empty closed set for each pair [, j with [ € {1, 2, ..., lp} and
jeA{1, 2, ..., jo(I)}, there exists an mg(i) with
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mo (l) > my;

such that: for each pair I, j with I € {1, 2, ..., lp} and j € {1, 2, ..., jo(l)}, there
exists a non-empty family of cells belonging to R,,,(;)(li;), denoted by

les (S = 17 27 ey S()(l,j)),

such that:
1) RijsNA;#0fors=1, 2, ..., so(l,7);
2) RN A; = 0 for the other cells R belonging to R, ;) (I1;);
s j P .
3) p2(U2 ) Rijs — Ai) < kny/ 12y do(l);
and, further, when we denote the family of R;;, for which

RijsND; #0, where s € {1, 2, ..., so(l,5)},

by Rijs(s =1, 2, ..., s1(l,7))(possibly empty), where s1(l,5) < so(l,5) (without loss of
generality, such expression is possible), we have
s j P .
4) M?(Uslz(i’J)les —Dy) < knay/ 121 do().
In this case, U Ry, 5 I, N Ay and USR5 I, N D;.

Denote, by Ej;, the set U(proj,(R) — proj,(R°)), where the union U is over all cells

R belonging to Ry,,i) (). Then, Eyj; = Ey for j, 5 € {1, 2, ..., jo(l)}. Denote the
common set by Ej.

Fixanle{l, 2, ..., lo}:

(i,a) Let y € (Y — Ey) Nproj, ((S1)°) for which there exist a j € {1, 2, ..., jo(l)} and a

cell R € Ry,i)({1;) such that y € proj, (R) and (R)Y N (A4;)Y = (). For each such y, consider
the family of cells

{R: Re U VR (1), y € proj,(R) and (R)Y N (4, = 0},

and denote the family by Qu.(y)(k =1, 2, ..., ko(l,y)). In this case, proj, (Qix(v))(k =
1, 2, ,...,ko(l,y)) are equal. Next,consider the family of intervals, written G;(y)(t =
1,2, ..., to(l,y)), taken nuiquely to be that: they are mutually disjoint; the union is equal

to Uy Qui(y); and proj, (Gu(y)) = proj, (Giw () (which is equal to proj, Qix(y)) for ev-
ery pair ¢t,t' with ¢,¢' € {1, 2, ..., to(l,y)}. Put gu(y) = (Gu(y))¥ fort =1, 2, ... to(l,y).
Clearly we have g;;(y) N A; = 0. Since gj;(y) and A; are closed and y ¢ E;, there exist two
dimensional intervals Ky (y)(t =1, 2, ... ,%(l,y)) such that:

(K1:(v))? = gue(y) and K (y) N A; = 05
proj 4 (Ki:(y)) = proj , (K (y)) for every pair ¢,¢" with t,t' € {1, 2, ... ,to(l,9)};
y € proj 4 ((K1¢(y))°) C proj 4 (I°)(C proj,((S1)°)),

where I is an interval belonging to H.,,(;)([i;) such that y € proj,(I). Associsted with y,
take a one-dimensional interval J*(y) for which
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€ (J(y))® C projy((Ki(y))?) C projy(I°) for t € {1, 2, ... to(l,y)}- (15°)

(i, b) Let y € (Y — E;) Nproj,((S;)°) for which (R)Y N (A;)¥ # 0 for every cell R €
U;-‘):(i) R, (iy(11;) with y € proj, (R). For each such y, take a one-dimensional interval J*(y)
so that

€ (J7(y))° C proj,(I°)(C proj,((51)°)), (16°)

where I is an interval belonging to H.,,(;)([i;) such that y € proj, (I).
Now put ¥; = (Y — E;) N proj, ((S;)°). We remark that

YiNnYy=0forl,l'e{1, 2, ..., lg} with [ #£1';

U2, Yi C Y5 and (Y — U2, Y)) = 0.

For every point y of density for ¥; with y € Y], take a sequence Jy(y)(A =1, 2, ...)
of one-dimensional intervals tending to y such that J*(y) D Jx(y), y € (Ja(y))° and the
both end-points of Jy(y) belong to Y;. Then, the family of intervals {Jy(y) : y € YV}, y is
a point of density for ¥; and A =1, 2, ...} covers almost all points of ¥; in the sense of
Vitai. Hence, by virtue of Vitali’s covering theorem, for Y; there exists a finite sequence of
intervals in proj, (Ro) :

J)\(l,v)(yll))7 Slmply written J(?Ji)? U= 17 27 e ’Uo(l),

having the following properties:

1*)yfj €Y, and 3! is a point of density for Y7;

2%)y, € (J(y5))°;
39 U J(yl) € proj,((S))°);
1Yy (Y — U T (L)) < K2/l
59)J(yL) N J(yl) = 0 for v #v';

6*) the both end-points of J(y) belong to Y;.
(Refer to Remark 1, (1) below for the case of ng —1 > 2.)

Next, put
IL = proj.(Ro) x J(¥') forv =1, 2, ..., wo(l).
For each pair I, v with l € {1, 2, ... ,lp} and v € {1, 2, ... ,vo(l)}, consider the family
of intervals:
{Ill) n les : (les)yi n (Az)yi 7& (2)7 where j =12, ... 7.70(l) and s = 1,2 ... S()(l,j)},

(17°)

which is a non-empty family. Then, by (15°) and (16°) for each I! N Ry;s belonging to the
family, we have proj, (I} N Ry;s) = J(y!). Put
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I; = proj o (L) x J(y,) for j =1, 2, ..., jo(l).

Next, for i=1, 2, ... ,lp, v=1,2, ..., vy(l)and j =1, 2, ...,50(l), denote by

Li}jz (Z =1,2, ..., ZO(lﬂ},j))
the family of two-dimensional intervals contained in If)j, contiguous to the closed set con-
sisting of the set U(R;;s N I.), where the union U is over all R, s = 1, 2. ... ,s0(l,5),
with (les)yi N (Ai)yi # (), and the sides parallel to y-axis of two-dimensional interval If)j.
Denote, simply, for each pair I, with [ € {1, 2, ... ,lp} and v € {1, 2, ... ,vo(I)} the
family

L. (G=1,2 ..., 40, 2=1,2, ..., z(,v,j))

by

L, (w=1,2, ..., w(l,v)).

By considering the definition of J*(y) in (15°) and (16°) and the definition of J(y/!), we
have

LL,NnA;=0forw=1,2, ..., wo(l,v). (18°)

And LI, (1=1,2, ..., lp, v=1,2, ..., vo(),w=1, 2, ..., we(l,v)) are mutually
disjoint.

Next, for each I € {1, 2, ..., Iy}, denote the family of intervals contiguous to the closed

set consisting of Uz":(:ll)(] () and the both end-points of proj, (S;) by
T u=1, 2, ... uo(l)).

(Refer to Remark 1, (2) below for the case of ng — 1 > 2.)

Put
I'' = proj . (Ro) x Ji foru=1, 2, ..., ug(l),
and put, for =1, 2, ..., pandu=1, 2, ..., ug(l)
Lh=r'nn;forj=1,2 ..., 5(. (19°)
(i,1)For L}, (v=1,2, ...,v(), w=1,2, ..., wy(l,v)) : Corresponding to each two-

. . itery ; Y - interv -
dimensional interval L!  , consider the one-dimensional interval, named J!,, determined

uniquely by the following four conditions, in virtue of the assumption of (4,4) of the lemma:
1°) J!,, is contained in an interval, say J*, which is one of the intervals contiguous to
the closed set consisting of the set (Ai)yi, ie., (Fnimi)yi and the both end-points of the

interval (Ro)yi. In this case, an end-point of J* is the point called the characteristic point
of J* as in the property (B1);

2°) one end-point of J! is one of the end-points of (Liw)yi;
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3°) the other end-point of J!,, is the characteristic point of J*, named p/;

4°) Ty 2 (L)

In this case, J!, (w =1, 2, ..., wp(l,v)) are classified into two parts: J'. (w =
1, 2, ..., wi(l,v)) and J2 (w =1, 2, ..., wa(l,v)) so that each family consists of
mutually disjoint intervals. Denote the characteristic point and number associated with
JIL by plt and All | and the characteristic point and number associated with J'2 by p!2,

vw?

and h!2, respectively.
Put
HY =JL < gy forv=1,2, ..., v(l)andw=1, 2, ..., wi(l,v).

For each k € N with n; < k < m;, denote by
JUE w=1,2 ..., w (Lv,k)and H¥ (w=1, 2, ..., wy (I,v,k))

the families of all J!}, and H!! for which the characteristic number hl% of J'. is k, respec-
tively. Then, HX* (1=1,2, ... lp, v=1,2, ..., vw(l), w=1,2, ..., wi(l,v,k)) is
an elementary system in Ry such that:

(1) HOF 0 My # 0;

. i
P, P P
vo(l wi (L,v,k l vo (1 wi (Lv,k
mw%%&ﬁm=&gﬁgnmww
<epx 2y POLI@L) < ef x| projy(Ro)| = ef < d(k,e/25),

where the first inequality follows from the fact that, by (b) of (I), the set (mei)ylv has the
property (B1) for n; < m; associated with (M,)¥(n=1, 2, ...)and e’ (n=1, 2, ...).
Hence, by Lemma 1 we have:

“3C DY) w18 H) I ik ZZ
- F(HL) — (L) fz,y)d(z,y)-
=1 v=1 w=1 =1 v=1 w=1 HIRFNFy

< A(ep/2MTD) = g5, /283,

Further, since pp (U, UWW uvr vk fitky o ox < (kg /2K55) by (3°),

Exwwlk,k) 27
I (L) f(a,y)d(z,y)z < ex /2570

=1 v=1 w=1 HLSOF)

P, P, P -
Therefore = 12, 27 wilwk) pogliky™ o) /9k+2 and so

v=1 w=

-3 I D) wiek)

FHYY- < > o ok +2 }
vw /_ k:/2 SEnZ/SSEl/S

k=n; I=1 v=1 w=1 k=n;
Hence
23 DY) wsky) z
- F(HL, )~ < ei/8.

=1 v=1 w=1
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Similarly

3 DY) widky) -
- F(H}, — Li,)- <&i/8,

=1 v=1 w=1

where possibly the set H!l, — L!! 'is empty. Hence

3 D) W)

=1 v=1 w=1

F(Li}w)Z <ei/4

On the other hand, since L}, N A; = () by (18°) and so L}, N D; = ). Thus

3 D) widky) 2z -
- (F(Liw) — (L) f(z,y)d(z,y))z < &:/4.
I=1 v=1 w=1 LiwnDi
Similarly
3 D) we) 2z -
- (F(Lig,) — (L) fla,y)d(@,y))- < &:/4.
=1 v=1 w=1 Li%,ND;
Therefore
3 D) wkke) 2z -
- (F(Lyw) = (L) f(a,y)d(z,y))z < /2.
I=1 v=1 w=1 L,wND;
(i, 2) Denote the family of intervals
{I' A Ryjs : (Rije)? N (A% £0, 1€{1, 2, ..., L}, ve{l, 2, ... ,v(D)}
j€{17 27 7]0(l)} andse{l, 27 ey 50(17.7)}}
considered in (17°) by Rs(s =1, 2, ..., so). In this case, without loss of generality we can
suppose that
RsND;#0forse{l, 2, ..., s1}; and RsND;=0forse{s1+1, ..., so},

where 0 < 51 < s¢ (if 57 = 0, then the former is empty; if s; = s, then the latter is empty).

We remark that R,NA; #@ fors=1, 2, ..., sq.

First, consider for Rs(s =1, 2, ..., s1). Then, we have:

(1) Rs N My, # pfors=1, 2, ..., s1. Because, RsND; # (0, and so R, N Fyy 7 0
by (13°), and moreover My, ,, O Fin, )

(Q)I'LQ(U?:le_Mmh(i)) < 5(mh(z)7 eh(i)/27)' Because, H'Q(Uzlles_Mmh(i)) < ,u'2(U§1:1Rs_
me)) < p2(UiL Rs — D;). Since, further, U;L, R, is contained in the union of Ry; for
which we have R;;; N D; # 0, by 4) above
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A 1
p2(Usi R — D;) < mpy/  Go(1) % Go(l) = kngiy < 8(mugeys €n(iy/27)-

" < 2z -
~ F(R)- (L) f(z,y)d(z,y)-
RN Fymy,

< Eh(i)/27

On the other hand, we have

p2(USL Ro OV (B, — Di)) < pa (U3 R — Dy) < kpgiy < (Mg, €niy /2°)-

Hence
:X 7 -
- (L) = . f(xa y)d(l‘, y): < Eh(i)/25
s=1 Rsn th(i) D;
Therefore
"¢ > 2z -
- FRo)- (D) F(@,y)d(@,y)= < eney /27 + enwy /2° < /27 +ei/20.
s=1 s=1 R.ND;
Next, consider for Ry (s=s1+1, ..., s9). Then, we have: o
(1) RsNA; £ for s=s1+1, ..., so. Hence, Rs N Fy,m, # 0, and so Rs N M, # 0
fors=s1+1, ..., so.

(2)u2( s 1 Rs) = pa(Us s1+1R A;) + ,uz( el s1+1R N A;). On the other hand,
(U2, 1 R)ND; =0,and so U2 R,NA; = (U2, 1 R,)N(A;—D;) C Aj— D;. Hence

,uz( s= sl+1R ) < M?(U:O:sl-l-lRS - AZ) + /~L2(Al - Dl)

Further, since Ug% ;. | R, is contained in the union of Ry;, with RyjsNA; # 0, pa(U32,  Rs—
Aj;) < Kp(iy by 3) above, and pa(A; — D;) < k; by (12°) and (13°), and so

,u2( s— sl+1R ) < 2:‘% < (5(m“61/27)

Hence, by Lemma 1 we have

77 -
F(R;) — (L) f(@,y)d(z,y)- < 4;/2" = £;/2°.
s=s1+1 s=s1+1 RsNFp,

X
X

On the other hand, ,ug(Uz‘):le_rle) < 2K; g_n(mi,ei/QE’). So
- X -

z F(R,)-<&;/2° +¢;/2°.
s=s1+1
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Further, since R, N D; =0 for s=s1+1,...,59

- > > 2 -
- F(R;) - (L) f(x,y)d(z,y)- < €i/2° +€;/2°.
s=s1+1 s=s1+1 R.ND;
Consequently
“>< > % -
- F(Rs) - (L) f($7 y)d($7 y)— < 81'/27 + 381'/25'
s=1 s=1 RsND;
(i,3): For Gt (1 =1, 2, ..., lp, wu=1,2, ..., uw(l) and j = 1, 2, ..., jo(l))
indicated in (19°): For each pair l,u with [ € {1, 2, ..., lp} anduw e {1, 2, ..., up(D)},

denote by S. the (*)-elementary system:

Ljé (] = 17 27 e ]O(l))v

and consider the (**)-elementary system consisting of (*)-elementary systems
SL=1,2 ...,00, u=1,2, ..., up(l)).

(Refer to Remark 1, (3) below for the case of ng — 1 > 2.)

For each pair I, w with I € {1, 2, ..., lp} and w € {1, 2, ..., up(l)}, by 6*) above
and the definition of J;!, there exists a y;, € Y; N J:'. Since then y;, € Y; and so y, €
Y Nproj,((S;)°), by (4,4) (L1;)V"* N (Fpym, )Y # 0 for j =1, 2, ..., jo(l). Moreover, since
Yru € Jit, (L5)ve = (L)Y by (19°). Hence (I;L)Y N (Fp,m,)"" # 0, and so, since By,, D
Fni(mi)mi(mi) = Fnimi by (90) and (7O)v (Iaﬁ)yl” n (Bmi)yzu 7£ @ fOI‘j = ]-v 27 e ]O(Z)
Needless to say, Y, € proj,(S,) N proj,(Bm,). Further

3 o

| proj (S,
=1 u=1

= 1 (proj 4 (8) — Ui, U J(yl))

= m((proj ,(S) — Y)UY) —ule, U J(yl))

v

< p((proj () = V) U (Y — U2, U J(wh))
< 1 (proj y (8) =Y ) (U2, Vi—Ui U T (8) < w7447 < ks (by (4.2) and 47))

< p(mi, 81'/24).
Therefore, by Lemma 2

~3< ) D)

~3< )
F(Ih)-=- F(S,)-<ei/2%.

=1 u=1 j=1 =1 u=1
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P, P
On the other hand, since 2, " 30 o) k] <

u=1 -

P P, . .
2y woW proj, (S < 2w} <

n(mn) VERi )/2%) and D; C Fpp,, ), We have
S 22 -
- (L) fla,y)d(@,y)z < enq)/2° < €/2° by h(i) > i
=1 u=1 j=1 I3tND;
Hence
T3 DK D IPODY 22 -
- *1 _ 4 5
- P - @ Sy’ <2 a2
=1 u=1 j=1 =1 u=1 j=1 L;0D:
By (i,1), (,2) and (i,3)
- 2z -
-F(S) — (L) f(@,y)d(z,y)- < ei/2+ /27 +3e;/2° + £; /2" + £/2°.
SND;
(ii) The case when g1 (Y N proj,((S;)°)) = 0 for I =1, 2, ..., lp : For every | €
{1, 2, ..., lo}, by (4,3) and (4,4) there exists a y; such that
yi € Y Nprojy((S1)°) and (11)" N (Fm, )" # 0 for j =1, 2, ..., jo(l).
Therefore, since By,, D Fyim;, (11;)% N (Bp,)¥ # 0 for j =1, 2, ..., jo(l). Needless to
say, Y1 € proj4(Si) N proj 4(Bm, ). Further

3
| projy (S1)| = pa(projy(5))

=1
= p1(proj 4 (8) = Y) + (V)

D ¢

<wi+ (Y (projy((S)7) (by (42) and (4.1))
1=1

=K} < Ky < p(mg,e/2Y).

Hence, by Lemma 2

- (Sl) <eg;/2%
=1

Since ia(S) < p1(projy(S)) < wf < (M), en)/2°) and Dy C Fr, )

< (L) |f($7 y)|d($7y) < Eh(i)/25 < Ei/25'
=1 SiND; Sﬁth(i)

Therefore
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3¢ 3 77 -
- F(Sl) - (L) f($, y)d(%,y): < Ei/24 + Ei/25'
1=1 1=1 SinDi
(iii) The case when pq (Y N proj,((S;)°)) > 0 for some Il € {1, 2, ..., lp} and p1 (Y N
proj ,((S1)°)) = 0 for some | € {1, 2, ..., lo} : This case follows from the results for the

cases (i) and (ii).
By (i), (ii) and (iii), the proof is complete.

Remark 1. (1): In general, for the case when ng — 1 > 2, by the density theorem
there exists a sub-set X; of ¥} with p,,—1(X;) = 0 such that the set ¥; — X is all points
of density for Y; in Y;. Further, since a point p € ¥; — X; is a density point for Y;, there
exists a regular sequence of intervals I;(p) (j = 1, 2, ...) in proj ,(Rp) tending to p

ng—1
such that for every j € N, p € (I;)° and every vertex of the interval I;(p) belongs to
Y;. Since then the family {I;(p);p € ¥} — X; and j € N} covers the set ¥; — X; in the
sense of Vitali, there exists, by Vitali’s covering theorem, a finite sequence of intervals in
proj 4(Ro) : J(®))(v =1, 2, ..., vo(l)) satisfying the following condition 6**) in addition
ng—1

to the conditions 1*)- 5*) replaced y! with p:

6**) Every vertex of interval J(pl) belongs to Y; for v =1, 2, ..., vg(l).

(2): By virtue of 6**), for each ! € {1, 2, ..., lp} the complement of the set Uz‘):(?(](yfj)
for proj ,(S;) is covered by finite intervals Ji! (u =1, 2, ... ,ug(l)) such that

Enofl

1) JX'NY; # 0 for every u € {1, 2, ... ,uo()};

2) (J:He N (Jxhe = 0 for every pair u # v’ with u,u’ € {1, 2, ... ,uo()}.

(3): We can classify the intervals J' (I =1, 2, ..., lp, u =1, 2, ..., up(l)) into

270~1 parts at most to be that the intervals belonging to each part are mutually disjoint.

Lemma 4. Let Ij be an interval in the one-dimensional Euclidean space E; and D,, (n =
1, 2, ...) anondecreasing sequence of non-empty measurable sets contained in Iy such that
p1(lo —US2 1 D,,) = 0. Let f(x) be a function defined on Iy which is Lebesgue integrable on
D, for each n € N. Suppose that the function f(z) has the following property (*):

(*): there exists an interval I C Io for which the limit lim, oo (L) ;- f(2)dz does
not exist.
Then, there exist a number hy > 0 and a sub-sequence m; (i =1, 2, ...)of {1, 2, ...}
having the following property(**):

(**) Given a number n > 0, for each i € N there exist an elementary system I, (j =
1, 2, ..., jo) and an integer m} with m} > m; such that:

1) the both end-points of the interval I; are rational points for j =1, 2, ..., jo;

2) ;NDy,, #0for j=1, 2, ..., je;

P. R -

3= 1% (D) . —p,,) f@)da > ho;

P, R -
4)7 32, (D) I,ADy, f(z)dz <.

Proof. By the assumption of the lemma, there exists an interval I C Iy for which
lim, 00(L) ;p f(z)dr does not exist. Hence, there exist an hy > 0 and a positive
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integer mgo such that: I N D,,, # 0 and for every integer m > my there exists an integer
m* with m* > m such that

z -
(L) F(x)daz > ho.
IA(D,y s —Dim)

- R -
Put (L) 1Dy — D) f(z)dx™ = a(m). Take an € > 0 with £ < min(n, a(m) — hg), where
7 is the positive number given in (**). Since f(x) is Lebesgue integrable on D+, there
exists a number (e, m*) > 0 such that

YA

(L) |f(z)|dz < /3 for any set E C Iy with u1(E) < w(e,m™).
END,,»

In the interval I, by Vitali’s covering theorem there exist mutually disjoint intervals
Ji (j =1, 2, ...,jo — 1) such that J; C I°, the both end-points of J; belong to
Dy, (U251 = (10 Dyn)) < 7(e,m*) and pa (N D) — UL Tj) < (e, m*).

Let I} (j =1, 2, ..., jo) be the intervals contiguous to the closed set consisting of
the set Ug‘):_lle and the both end-points of I. Associated with these intervals I7, take an
elementary system I; (j = 1, 2, ..., jo) whose end-points are rational points and such
that:

IiDI; forj=1,2, ..., jo;
> 4
pi(I; = I7) < m(e,m*) and p1 (WL, I; — I) < m(e,m").
j=1
Then, I; (j =1, 2, ..., jo) has the properties desired in (**) for hy taken above and
m* > m. Indeed, we first have I; N D,, # 0 for j =1, 2, ..., jo. Next, since

Uy I = (1= (U5 Ty = Uy L) U (U, I = T);
(U931 J; = U2y 1) A Dy — D) © (U5 J)) N (I = D) = (U251 7)) = (10 D)

and so ,ul((Ug":_ll Jij— U;:"Zl I;) N (D — Dp)) < w(e,m*); and
(U I — 1) < (e, m),

we have
3¢ 2 -
- (D) f(@)da-
=1 LN (D — D)
- Z o2 Z Z
> (L) fl@)da—2L) f(w)da”
IN(D,yx — Do) (U3 T —U3% 1) (D — D)
-z -
—2(L) f(z)daZ

(U;()lej_I)ﬂ(Dm* —Dm)

> a(m) —e/3 —¢/3 > hy.
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Further, since
U2, I = (U, I U (UL Jyn Ui, L) U (Ule, I - I);
p (U I) N D) = i (T = U5 J5) N D) = pa (10 D) — U5 ;) and so
pr (U2 I7) N D) < (e, m”)
pr (U5 )NV, 1) < (U (I —17)) and so pg (U251 J;NUI, 1) < (e, m*);

pi (UL, Ij = I) < m(e,m*); and Dy, C Doy,

we have
E)'( VA E E Z E E z E
- (D) f(z)dz-<=(L) fle)de=+(L) . fla)da-
=1 I;ND, (U1, I5)NDym (U2 )N, 1)) D,
-z
+3(n) #(w)da=

(U2, 1;—1)ND.,

<e/3+¢e/3+¢c/3=€c<n.

Thus, we obtain the desired result by putting m; = mg + ¢ and m} = (mg + ¢)* for
i=1,2, ....

Lemma 5. Let Iy be an interval in the one-dimensional Euclidean space E1, 4, (n =
1, 2, ...) a nondecreasing sequence of non-empty measurable sets such that US2 ; A,, = Iy,
and D, (n = 1, 2, ...) a nondecreasing sequence of non-empty closed sets such that
D,, C A, for each n € N and p;(Ip — U2, D,) = 0. Let f(x) be a function defined on Iy
which is Lebesgue integrable on D,, for each n € N. Suppose that the function f(x) has the
following property (*):

(*):(1) im0 (L) ;p  f(z)dz exists for every interval I C Io;
but the following statemﬁznt (2) does not hold.

(2) Put F(I) =lim, ,oo(L) ;-p f(z)dz for every interval I C Iy. Then, given
en 4 0, for every n € N there exists an integer m > n such that if I; (j =1,

2,..., jo) is an elementary system in Iy such that I, N A4,, # 0 for j =1,
2, ..., Jjo, then
3¢ > 7 :
- F) - (D) f(z)da- < ep.
j=1 j=1 I]‘ﬂDm
Then, there exist a number hg > 0 and a sub-sequence m; (i =1, 2, ...)of {1, 2, ...}

having the following property (**):
(**) Given a number n > 0, for each i € N there exist an elementary system I; (j =
1, 2, ..., jo) and an integer m} with m} > m; such that:
1) the both end-points of the interval I; are rational points for j =1, 2, ..., jo;
) LNA,, #0for j=1,2, ..., jo
=3 R -
3) B ;‘0:1 (L) L;0(Dys — D) f(:li)dl‘_> ho;
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P, R -
DR (D) . S <,

Proof. By the assumption of the lemma there exists an ng such that for every integer

m > ng there exists an elementary system I; (j =1, 2, ..., jo) in Iy depending on m,
such that:
a) I; N A, #0 for every j =1, 2, ...,jo; but
P, P. R -
b) ?‘):1 F(I;) — ?0:1 (L) LD, flz)dz > ep,-

In this case, since F(I;) = lim, o0 (L) 1,0D, f(z)dz, for every m > mg there exists an
integer m* with m* > m such that ~
P, R z
c) ;‘3:1 (L) LDy — Do) fx)dz > ep,.

Put ho = €,,/2. We now remark that the intervals I; (j = 1, 2, ..., jo) obtained
above are classified into the two parts so that: one part is, for every interval I; belonging
to the part, we have I; N D,, = (J; and the other is, for every interval I; belonging to the
part, we have I; N D,, # 0. Then, for one part at least of these we have

P R z
c*) ; (L) L0(Doye — D) f(x)dx™ > ho,

where ; 1s over the part chosen.

Hence, without loss of generality we can suppose that one at least of the following
statements () and (1) holds.

(f) There exists a sub-sequence m; (i = 1, 2, ...) of the sequence {ng, ng+1, ...}
such that, for each ¢ € N, there exist an elementary system I; (j =1, 2, ..., jo) and an
integer m; with m; > m, such that

a*)[[NAy,, #0for j=1, 2, ..., jo

* :Pjo R -

c*)- oy (L) 10Dz ~Diny) f(z)da= > hg; and

)N D, =0for j=1,2, ..., jo.

(1) There exists a sub-sequence m; (i = 1, 2, ...) of the sequence {ng, ng +1, ...}
such that, for each i € N, there exist an elementary system I; (j =1, 2, ..., jo) and an

integer m; with m} > m; such that, in addition to a*) and ¢*) above, the following holds:
e )I; N Dy, #0for j=1,2, ..., jo.

For the case of (f): 2), 3) and 4) in (**) of the lemma clearly hold. In this case, as

easily seen, since Dy, is a closed set, we can choose I; (j =1, 2, ..., jo) so that the both
end-points of I; are rational for j =1, 2, ..., jo.
Next, for the case of (1) : Givenn > 0, foreachi € Nlet I; (=1, 2, ..., jo), m;
and m} be the elementary system and the integers indicated in (f1). Putting
> L -
- (D) f(@)dz- = a(m;),
j=1 130 (D =Dy )

take an € > 0 with ¢ < min(n, a(m;) — ho). This is possible by ¢*). Since f(z) is Lebesgue
integrable on D,,x, there exists a number 7(e,m}) > 0 such that
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z
(L) |f(z)|dz < e/3 for every set E with p1(E) < w(e,m]).
END,, =
Inl; (j €{1, 2, ..., jo}), by Vitali’s covering theorem there exist mutually disjoint
intervals J} (k =1, 2, ..., ko(j) — 1) such that: J] C (I;)°, the both end-ponts of J]

belong to D,y,,, N1(U§O:1 U],z(’:(f)_l J! - (U?‘;llj NDy,,)) < w(e,m?), and ul((Ugc’:le ND,,,)—

U U T < (e, my).

For each j € {1, 2, ..., jo}, let I,z* (k=1, 2, ..., ko(4)) be the intervals contiguous
to the closed set consisting of the set UZ‘):({)_IJZ and the both end-points of I;. Associated
with these intervals I,z* G=1,2, ..., jo, k=1, 2, ... ko(j)), take an elementary
system I,z (Gj=1,2, ..., jo, k=1, 2, ... ko(j)) whose end-points are rational points

and such that:

Do forj=1,2, ..., joand k=1, ,2,..., ko(j);
< o > bold)
p (Il = I*) < m(e,m]); and p (U I — 1) < w(e,m]).
J=1 k=1 j=1
Then, the family I,z (J=1,2, ..., jJo, k=1, 2, ..., ko(j)) has the properties desired in
(**) for ho taken above and m} > m,. Indeed :
IiﬁAmi #ZQforj=1,2, ..., joand k=1, 2, ..., ko(j), because IiﬁDmi # () and
D,,, C Ay,,; by the consideration similar to the case of Lemma 4, we have:
) L -
- (L) f(zx)da-
j=1 k=1 I;(Dypx =Dy )

[
N

[

[
N

> @) ()
U;()lejm(ij_Dmi) (U2, 02 ] 03 Uy Ii)ﬂ(ij_Dmi)
-z -
—-(L) _ _ f(z)dz= > a(m;) —e/3 —e/3 > ho;
(U (U = 1,))0(D = Dimy )

k) 2 -

- L) f(@)da:

j=1 k=1 1N D,

S - - 2 -
<Z(L) _ o f(z)dz=+ (L) _ _ o o f(z)daZ
(L, )N D, (L, U, U )N D,

-z -
+(L) flx)dzZ<e/3+¢e/3+¢e/3=c<n.

(U2 (U 1] ~1,))N Dy,
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Thus, J,z (G=1,2, ..., jo, k=1, 2, ,..., ko(j)) is an elementary system desired in

The proof is complete.

Remark 2. Let A, (n=1, 2, ...)and D, (n =1, 2, ...) be the sequences of sets
given in Lemma 5. In this case, for the function f(x) on Iy given in Lemma R, if the state-
ments (1) and (2) in Lemma 5 hold, then, when we put F(I) = lim, (L) ;~, f(z)dz
for every interval I C Iy, the function F'(I) is a finitely additive interval function on Iy, and
further:

Given €, | 0, there exists a sub-sequence m,, (n = 1, 2, ...) of {1, 2, ...} such
that if I; ( =1, 2, ..., jo) is an elementary system in Iy such that I; N A,,, # 0 for
j: ]., 2, ey jo, then

3¢ > 7 -
- FI) - (D) f(@)daz <ep.
i1 =1 I,NDy,,

Hence, by [1, Theorem 5, p. 84] (or [2, Main Theorem, p. 229]) if, for the function f(zx)
given in Lemma 5, the statements (1) and (2) in Lemma 5 are true, then the function f(z)
is special Denjoy integrable on Iy, and so by Proposition 4, it is (Dg) integrable on Iy. In
this case, F'(Ip) is the (Do) integral of f(z) on Iy.

Theorem 1. Let f(x1, x2, ..., Tn,) be a (Dg) integrable function on an interval
Ry = [a1, b1; a2, ba; ... Gng, bng] in the no-dimensional Euclidean space E,,. Then, the
following two statements hold.

(1) Givenany n € {1, 2, ..., ng}, for almost all (1, @2, ..., Tn_1, Tnti, ---, Tny)in
the (ng—1)-dimensional interval [a1, b1; ag, b2; ... Gn1, bn—1; Gnt1, bnt1; -5 Ang,s bngl
the function f(x1,22, ..., %n,) considered as a function of x,, in the one-dimensional in-
terval [an, b,] is (Do) integrable on [a,, by,)].

(2) Corresponding to each n € {1, 2, ..., no}, there exists a nondecreasing sequence
of closed sets D; (i =1, 2, ...) in Ry such that u,, (Ro — U2, D;) =0 and

zZ,
(Do) f(:l,‘l, L2y «vey Lpy «oey Z‘no)dilin
An 7
= lim (L) fz1, T2, ooy Tn,y oovy Tpg)day,
teo (Di)e
for almost all ¢ = (x1, x2, ..., Tpn-1, Tnt1, .., Tny) in the (ng—1)-dimensional interval
la1, bi; ag, ba; ... Gn—1, Dp—1; @ny1, Dng1; .5 Gngs bngl-

Proof. For simplicity, we prove only for the case of ngp = 2 and Ry = [0, 1; 0, 1]. Let

fo (n =1, 2, ...) be the sequence of positive numbers given in (2°) such that e, | 0 and
mr—n+1 Em < €n for every n € N. For the sequence, let

A; = Foym, and Di = Fyn, O Fpy ) (=1, 2, ..0)
be the nondecreasing sequences of closed sets defined as in (13°) and s} (s = 1, 2, ...)

the nonincreasing sequence of positive numbers defined as in (14°). Let Z = proj,(Ro) —
U2, proj y(Fr,m;) as in (I), defined in (5°).

Then, as seen in (c) of (I), for every y € proj,(Ry) — Z we have:
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(a) (4;)Y (i =1, 2, ...) is a nondecreasing sequence of closed sets whose union is (Rg)Y.

Since, further in the definition of (Dy) integral for f(z,y), F, T, p2(Ro —US2, F,) =0
and f(z,y) is Lebesgue integrable on F,, for every n € N, there exists a set

Xo C pI‘Oj y(Ro) (200)

such that Xo D Z, pu1(Xo) =0, and for every y € proj ,(Ro) — Xo

(b) (D;)¥(i =1, 2, ...) is a nondecreasing sequence of closed sets such that (D;)¥ C
(A))Y, p1((Ro)Y —UR(D;)Y) =0, and f(z,y) is Lebesgue integrable on (D;)Y as a function
of x for every i € N.

Hence, for every y € proj,(Ro) — Xo, (a) and (b) hold. Therefore, by Remark 2 above in
order that the function f(x,y) is (Do) integrable on [0, 1] as a function of x for almost all y €
proj ,(Ro) — Xo, it suffices to prove that: when we denote the set of all y € proj ,(Ro) — Xo
for which one at least of the statements (1) and (2) in Lemma 5 is not true by Y*, we have
p1(Y*) = 0. We have Y* C proj ,(Ro) — Xo. By Lemmas 4 and 5, we know that if y € Y*,
then the following statement (*) holds.

(*) There exist a number ho(y) > 0 and a sub-sequence i;(y)(j = 1, 2, ...) of
{1, 2, ...} for which the following statement (**) holds:

(**) Given a number n > 0, for each j € N there exist a one-dimensional elementary

gystem Jt(y)(: Jt(j,n?y))(t = 1, 2, e ,to(y)(=to(4,m,y))) on proj »(Ry) and an integer
i (y)(= 7 (1,9)) with 7}(y) > i,(s)(> j) such tha:
1) the both end-points of J;(y) are rational points for t =1, 2, ..., to(y);
2) (Je(y) x {y}) N (Ai;))? # O fort =1, 2, ..., to(y):
Piw R -
37 = (D) Gty )0 (1 T @ )42 > ho(y);
Puw o\ -
4)7 2 (D) (Je (1) < {yNN(Ds; (3))¥ f(z,y)dz” <n.

Suppose that the outer measure of Y* is positive, we shall lead a contradition. Take
an hy > 0 so that the one-dimensional outer measure of the set Y** consisting of all
y € Y* for which ho(y) > hg is 2k0Ffor some kg > 0. Take indices ig, i¢; and iy so that
€ip T €4 < (ho,ko)/g, €ip < Eig and € < Ejy-

i=ip
Let us consider the statement (**) above for n = ¢;,/2 and j = is. Then, for every

y € Y** there exist a one-dimensional elementary system Jy(y)(t =1, 2, ..., to(y)) and
i(y) and ¢'(y) with ¢'(y) > i(y) > 42 such that:

a) the both end-points of J;(y) are rational points for t =1, 2, ..., to(y);
o) -

M- s (D) (J,g(y)><{y})ﬁ((Di/(y))y—(Di(y))y)_f(xay)dx > ho;
P, R z

07 Y (D) ey S @) <2 /2

In this case, we suppose that there exists a subset Y’ of Y**whose outer measure is > kg
and such that for every y € Y’ we have

P R
/ to(y)
) (L) @ whn(Dar ) (D) § (@ ¥)dT > ho
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P
instead of 7). Because, for the opposite case: io:(iy) (L) (o)X DN((Dyr ()0~ (D)) flz,y)dz <
—hyg it is sufficient to consider the function —f(z,y) by Proposition 3.

Now, for every integer i* with ¢* > 2, denote by Y+ the set of all y € (proj4(Ro) — Xo)
for which there exist

a one-dimensional elementary system J; (t =1, 2, ..., tp) on proj4(Ry) and
i’ and ¢ with ¢* >4’ > i > 4o,

satisfying the following o*), §*), v*) and 6*) :
a*) the both end—points of J; are rational points for t =1, 2, ..., tg;
)gtx{y} (A #Dfort=1, 2, ..., to;
Y- 2 (D) xpnans-mayy F@y)de > ho;
_P -
%) to(y) (L) (Jex fyHn(Ds)» flz,y)de <& /2.

Then, we have
UpP_;, 41+ DY’, each Y;- is measurable and Y;- T as i* — oo.
Hence, there exists an integer ¢* > 45 such that

w1 (Yir) > (3/4)ko. (21°)

Fix such an 7*.

Next, we consider the set of all combinations (.9,#,4) such that S is a one-dimensional
elementary system on proj,(Rg) consisting of intervals whose end-points are rational; and
v/, € N with ¢* > ¢’ > i > i5. Then, the set is countable. Therefore, we can denote the set

by
Cs = (Ss,4'(s),i(s)) (s € N),
where S; is a one-dimensional elementary system on proj , (Rg) written

Se:{J; (1=1,2, ..., jo(s))} and

it >i'(s) > i(s) > ia.

In this case, needless to say
a**) the both end-points of J; are rational points for j =1, 2, ..., jo(s).
Associate with each Cs(s € N), denote by Y. the set of all y € Y;« satisfying the following :

B**) gs x{yH) N (Ays))? #0forj=1, 2, ..., jo(s);
*k (8) .
Y G L) it (@un) - (Duy) S @9}z > hos
) j=1 ( ) (I3 x{y)N(Di(s))¥ f(x,y) T < 5i1/ .
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Then, Y/ is measurable. Put
7y =Y, Z,=Y!—UiZ{Y/ (possible empty) for s =2, 3, ....

Clearly, Vi = U2, Zs and Zs(s =1, 2, ...) are measurable and mutually disjoint. Now,
we take an sg so that

>
p1(Zs) > (3/4)ko (22°)
s=1
and fix. In what follows, s €* {1, 2, ..., sg} means that s € {1, 2, ..., sg} and
u1(Zs) # 0. For each Z,, where s €* {1, 2, ..., so}, consider a one-dimensional elementary
system K7(I=1, 2, ..., lo(s)) on proj,(Rp) such that
(KP)Y°NZs£Dforl=1, 2, ..., lp(s); (23°)

p1(Zs — UL KY) < ko /250 and iy (U2 K — Z2) < (1/s0)(min(6, 55 ,))),  (24°)

RR
where ¢ is a positive number such that if uz(E) < 9, then (L) 5, . [f(z,y)ld(z,y) <
€i,/2. The existence of such elementary system { K} follows from Vitali’s covering theorem.

(See Remark 3 below.) As easily seen, we can choose K(s €* {1, 2, ..., so} and | €
{1, 2, ..., lh(s)}) tobe K NKy =0 fors #s,1¢e{l,2 ..., Ils)}and ' €
{1, 2, ..., lp(s")}. Put

I, = J; x K}
for s €* {1, 2, ..., soh,l € {1, 2, ..., lp(s)} and j € {1, 2, ..., jo(s)}. Consider,
for each pair s,l with s €* {1, 2, ..., so}and l € {1, 2, ..., lp(s)}, a two-dimensional

(*)-elemetary system

Sls : {Ilsj(] = ]-7 27 ceey ]0(5))}

In this case, proj,(S;) = K} and

proj , (U5 (S7)) N proj, (UL (S77)) = 0 for s # o', (25°)

For each s €* {1, 2, ..., sp}, put
* . lo(s S\0 lo(s s\0 o
Yy = proj, (U2 (89)°) N 2 = U (K7)° 0 Z,. (26°)

Then
YXCZsCYand Y NY, =0 for s # 5.

Now, we consider the two-dimensional (**)-elementary system S consisting of two-
dimensional (*)-elementary systems

{8 + s€"{1,2, ..., sotandl € {1, 2, ..., lp(s)}}.
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For the consideration,

(A) first, we consider an ¢ with ¢* > i > iy. Put
Ny={s:s€" {1, 2, ..., so} and i(s) =i},

and we consider the two-dimensional (**)-elementary system associated with A; :
{5/ : 1€{1, 2, ..., lo(s)}, where s is taken over A;}.

In this case

Uip<icit D ={s: s €™ {1, 2, ..., so}} and A; (42 < ¢ < 3") are mutually disjoint.

Put
YA*Z = UseAiYs*'

Then, for s €* {1, 2, ..., so} Y C Y], so by ")V C proj,(As)). Further, Y C
prOJy(UlO(S (S7)°) by (26°). Hence, Y* C projy(ulo(s)(Sf) ) N proj, (A;(s)). Therefore, for
each s € A\; we have Y C projy(Uﬁ‘;(ls)(Sls)") N proj, (4;), and so

(4.1) YZ, C proj, (Usea, U2} (57)°) N proj, (4:).
Further, by (26°) and (24°), for each s € A;

p(proj , (U2 S5) = Y2) = m (U2 K; — Z,) < (1/50) (min(8, k()
< (1/s0) (min(8, 53,)) = (1/50) (min(8, 7))
and so, by (25°) and (26°)
(4.2) i (projy (Usea, U2 87) = Y2,) < (1/50)(min(8, #7)) x so < k7.

By (25°), (26°) and (23°), we have:

(4.3) for 1 € {1, 2, ..., lo(s)}, where s € A;, YX Nproj,((S7)°) = Y N(K})® =
(UPS (KR 0 Z0) 0 (K7)® = 200 (K7)° # 0; and

(4.4) for 1 € {1, 2, ..., lo(s)}, where s € A;, if y € YX Nproj,((57)°), then y €
proj, ((S7)°), so (I;)Y = J; x {y} for j =1, 2, ..., jo(s). Further, by (25°) and (26°)
yeYr and soy €Y/ Hence, for l € {1, 2, ..., lp(s)}}, where s € A;, by 5**)

()" 0 (A = (5 %y} 0 (Aige)? £0 for j =1, ,2 ..., Jjos):

Consequently, by Lemma 3 for the (**)-elementary system {S7 : 1 € {1, 2, ..., lo(s)},
where s is taken over A\;}, the following inequality holds:
- < R 2z -
- F(S7) — (L) o) f(z,y)d(z,y)- < e
s€EN; 1=1 (Usen,; U2y S)ND;

Since the above inequality holds for every integer ¢ with i* > i > i
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T3 > 1K) > ) LL
- F(S7) — (L) f(z,y)d(z,y)-

i=iy s€A; 1=1 i=ig s€A; 1=1 SpND; i=is

%

Thus

X
3

“F(S) - (L) [z, y)d(z,y)- < &,
se*{1, 2, ..., so} I=1 SPND;(s)

and so

S x bk 22
- (L) f(z,y)d(z,y)-. (27°)

s€*{1,2,... .50} I=1 S7NDi(s)

[F(S)| <eip +

Further, since, for s €* {1, 2, ..., so},

Sp = Ul I8 x Kf and Y7 € U2 K by (22°),

> bk
se*{1,2,...,s0} =1 SPND;(s)

> 7z
(L) [l y)d(z,y)

io(s) *
s€*{1,2,...,s0} ((U;O:1 JE)XYF)ND;(s)

IN

+
[
N
N
[

(L) f(@,y)d(z,y)-.

jo(s) lo(s) *
s€*{1,2,... 50} (U2 T5)x (UL K =Y ))NDis)

Since Y C Y, and Y NY)S =0 for s # ', by §**)

> 7z
(L) f({E, y)d({E, y): < €iq /2

jo(s) *
s€*{1,2,...,50} ((U;():l JE)XY)ND;(s)

o o o P lo(s S * P . *
By (25 )7 (26 ) and (24 )7 s€%{1,2,... ,50} Ml(UlO:(l)Kl _Ys ) < se*{1,2,... ,so}(l/so)(mln((sv ’%i’(s))) <
9, and further, since i(s) < *, D;) C D;-. Hence, by the definition of §

77
(L) f(z,y)d(z,y)-

jo(s) lo(s) *
s€*{1,2,... 50} (UL T x (U2 K =Y ))NDy(s)

X

<E¢/2.

Thus
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>x bk ZZ
(L) f(@y)d(z,y)- <&, /2+ &, /2.
s€*{1,2,... .50} I=1 SPND;(s)

Consequently
|F(S)| < iy t Eiyy and so |F(S)| < (h() k())/8 (280)

(B) In a quite similar way as in the case of i(s), for the case of i'(s) we obtain

- >k ZZ -
“F(S) - (L) [z, y)d(z, y)- < &y
s=1 |=1 570D/ ()

Indeed, first consider an i with * > i > i5. Put
AN ={s:s€" {1, 2, ..., so} and 7'(s) = i}.

Fix an ¢ with i* > ¢ > 5. Next, consider the two-dimensional (**)-elementary system
associated with A; :

{57 :1e{1, 2, ..., lo(s)}, where s is taken over A;}.

Then, the (**)-elemetary system has the following properties as in the case (A), putting
Y/i = Usen, Y

First, for each s € A;, since i'(s) > i(s), Ay (s) DO Ai(s), and so, as in the case of (A),
Yy € proj, (U (S7)°) N proj, (A ) = proj, (U2 (57)°) 1 proj, (4;). Hence

(41) Y3, € proj, (Usea, U2 (57)°) N proj, (4:).
Since, for each s € A;, ul(projy(ué‘):(f)sls)—Ys*) < (1/s0)(min(6, &7, ,))) = (1/s0)(min(4, £7)),
we have

(4.2) pa (proj, (Usea, ULY S7) = Y5 < &7
Further, as in the case of (A), we obtain:

(4.3)Forl=1,,2, ..., lo(s), where s € A;, Y, Nproj,((S})°) = Z,N(K})° # 0; and,
since Ai’(s) D Ai(s)v

(44) for =1, ,2, ..., lo(s), where s € A;, if y € Yy Nproj,((S;)°), then

(I55)Y N (A = (J7 x {y}) N (Aw(s))? #0for j =1, 2, ..., jo(s).

Consequently, by Lemma 3 for the (**)-elementary system {S; : Il =1, 2, ..., lo(s),
where s is taken over A;}
= >< %) 22 -
- F(S7) = (L) f(@,y)d(z, y)- < e

l s
SEN; =1 (UsgAiUl():(ls)Sl )ND;
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Since the above inequality holds for every ¢ with ¢* > i > ig

e

- 3K XX bR 3 X bk ZZ 3

. F(S7) - (L) f(z,y)d(z,y)- < & < €ip-

i=ia+1s€A; =1 i=ia+1s€A; I=1 SpND; i=iat1
Therefore

> b #
F(8) - (L) f(@,y)d(z,y)- < &,
se*{1,2,...,s0} =1 S7ND;r(s)

From this inequality, it follows that

> Inie) 27
|F(S9)] > (L) f(z,y)d(z,y) — €i.

s€*{1,2,...,s0} I=1 SPNDyr ()
Furthermore
> b #
(L) flz,y)d(z,y)
s€*{1,2,... ,50} =1 SPNDyr ()
> 7
> (L) f(z,y)d(z,y)

s€*{1,2,...,80} ((U;O:(f)Jf)XYs*)”(Di’(s)—Di(s))

- X 27 -
-z (L) o fla,y)d(z, y)2
s€*{1,2,...,s0} ((U;O:1 J2)XY)ND;(s)
- X 27 -
—- (L) [z, y)d(z,y)-

ig(s lo(s
e {12, 50} (U2 72)x (U2 K =Y ))NDr )

> (ho kO)/4_5i1/2_5i1/2 = (ho ko)/4—€1‘1.

Because, we first have, by (24°)

> lo(s)
/Jl(ZS — Ulozl Kls) < (k0/2so) X 89 = k0/2

s€*{1,2,... ,s0}
Hence, by (26°) and (22°)
= = = lo(s)
pr(YS) = p1(Zs) — p1(Zs — ULy K7)

se*{1,2,...,s0} s=€*{1,2,...,s0} s=€*{1,2,...,50}

>
> p(Zs) —ko/2 > (3/4)ko — ko/2 = ko/4.

s=1
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Further, for every y € (s €* {1, 2, ..., so}), we have, by Y.* C Y/ and 7**),
z

(L) io(s) f($7 y)d$ > h07
(U3 I x{yHN((Dyr ()Y = (Di(s))¥)

and Y NY, =0 for s # s'. Hence

> 2z
(L) 0(5) f(xv y)d(l‘, y) > (h’Ov kO)/4
s€*{1,2,...,50} (U2 I XY )N(Dyr 5y —Dics))
Further, by §**)
- X ZZ -
. (L) f(z,y)d(z,y)- < e /2.

Jjo(s) 7s *
s€*{1,2,... ,50} (U327 JT5) XY )NDjs)

Finally, since, by (26°), ,ul(Uﬁ[):(ls)Kf -Y¥) = ul(Uéc’:(ls)KlS —Zs),
= lo(s) .
(U — Y7) < (1/50)(min8, 5 ) X 50 < .
se€*{1,2,...,s0}

And further ¢/(s) < i*. Hence, by the definition of §

> 77
(L) f(z,y)d(z,y)-

(U125 72) % (U2 K7 —Y2)NDyr o

< Eiy /2
s€*{1,2,... ,s0}

Consequently
|[F'(S)] > (ho ko)/4 — (e, +€iy) > (ho ko)/4 — (ho ko)/8 = (ho ko)/8,

which contradicts |F'(S)| < (ho ko)/8 shown in (28°).

Consequently, the outer measure of the set Y* must be zero.
Now, put

Wo = XoUY™. (29°)

Then, p1(Wo) = 0, and for every y € proj, (Ro)—Wo, f(z,y) is (Do) integrable as a function
of z and the limit
z
lim (L) f(z,y)dx

n— 00 (Dn)¥

exists, and the limit coincides with the (Dg) integral of f(x,y) considered as a function of
T on projy(Ro). Thus, the proof of Theorem 1 is complete.

Remark 3. The family of intervals in proj ,(Ro) covers the set Z, in the sense of
ng—1
Vitali. Hence, there exists an elementary system in proj ,(Ro) : Kj(I =1, 2, ..., lo(s))
Eng-1
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satisfying (24°) and such that K NZ, # 0 forl =1, 2, ..., lo(s). By a slight modification,
we can obtain K7(I=1, 2, ..., lo(s)) to satisfy (23°) and (24°).

The result of Theorem 1 leads us to the following theorem.

Theorem 2. Let f(x1, x2, ..., Zn,) be a (Dg) integrable function on an interval
Ry = [a1,b1;a2,b2; ... ;Gng, by in the no-dimensional Euclidean space E,,,. Then

R

(1) for each n € {1, 2, ..., no}, the function (Do) " f(z1, @2, ..., Tny)dz, defined
for almost all (1, z2, ..., Tn-1, Tnt1, --., Tpy) in the (ng — 1)-dimensional interval
Ruy—1 = [a1,b15a2,b25 ... 5Gn—1,b0—1;0n41,0n41;- -+ 5 Angs bng] 18 (Do) integrable on the

interval R,,_1,
and the following equalities hold:

RR R
(2) (DO% R f@l, L2y «vvy IEnO)d(LEl, L2y «v.y .Tno)
bn
=(Dg) ... Ry (Do) o f(x1, 2, ..., Tpg)de, d(x1, Tz, ..\ Tuo1, Tntls --- 5 Tng);
RR
(3) (Do - Rgf(xl, Toyg oy Tng)d(T1, T2, ...\ Tng) . L
by, by by
:(D()) an(? (D()) an; (DO) anll f(xla T, ..., xno)dxnl d$n2 d$nn0
for every sequence ni, na, ..., ng, consisting of 1, 2, ..., ng.

Proof. For simplicity, we prove only for the case when ng = 2 and Ry = [0,1;0,1]. We
first prove (1) and (2) for the case when x,, = z, putting 1 = z and z3 = y. We will omit
the proof of the other case, because the proof is similar. Put

z
fily) = (L) " f(@,y)dz for every y € projy(Ro) — Wo, and
D;)v

=0  for every y € Wy;

f(y) = (Do)  f(x,y)dx for every y € proj,(Ro) — Wpy, and

=0  for every y € Wy,

where D;(i =1, 2, ...) is the sequence of closed sets indicated in (2) of Theorem 1, and
Wy is the set of pui-measure zero defined in (29°).

Since then f(y) = lim; o fi(y) on proj,(Ro) by Theorem 1 and f;(y) is measurable for
each i € N, by the Egoroff’s theorem there exists a sequence of measurable sets M} (k =
0, 1, ...) on proj,(Rg) such that: U2 M} = proj,(Ro); p1(Mg) = 0; and for each
ke N, Mi;NMg=0, My, , D M;, M;isa closed set, and f;(y) converges uniformly to
f(y) on M. In this case, since f;(y) is Lebesgue integrable on proj, (Ry) for each i € N, f(y)
is Lebesgue integrable on M;;.

Let Bi(k =1, 2, ...) be the sequence of measurable sets indicated in Lemma 2, defined
in (9°). Put

Zy = proj, (Ro) — U2 proj, (Dy);

Ly = ((proj, (Bx) N Zp) Uproj, (D)) N (Mg U M) for k=1, 2, ...;

Ny = proj, (D) "My for k=1, 2, ....
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Then, u1(Zp) = 0by (11°), Lx(k = 1, 2, ...) is a nondecreasing sequence of measurable sets
whose union is proj,(Ro) and Ni(k =1, 2, ...) is a nondecreasing sequence of closed sets
such that Ly O Ny and p; (proj, (Ro) — UpZ Ni) = 0. Further, f(y) is Lebesgue integrable
on N for each k € N.

Let ;(¢ = 1, 2, ...) be the sequence of positive numbers given in (2°). Given a
k € N and a number € > 0, take an ig(k,e) so that ig(k,e) > k, €y, < /7 and
If(y) = fiote)W)| < €/F forReRvery y € M;. Let A(k,e) be a positive number such that

if p2(E) < A(k,¢), then (L) - p - flz,y)d(z,y)” < /1. Let \*(k,€) be a positive
ig(k,e _ _
number such that if p1(E) < A*(k,¢), then (L) gy f(y)dy <e. Put
5*(k7 5) = (1/2) min(’iz)(k,g)a ,O(k, 5/7)7 A(kv 5)7 A*(kv 5/7))

Put E* = proj,(Ro) x E for a set E C proj,(Ro)-

Now, in order to prove (1) and (2) of the theorem it suffices to prove that:

Let It(t =1, 2, ..., to) be an elementary system in proj, (Ro) such that Iy N Ly, # 0
fort =1, 2, ..., toand pu; (U2, I; — Li,) < §*(k,e). Then
3¢ > Z -
- G- (D) fy)dy-<e,
t=1 t=1 AN,

where G(I) = F(I*) for an interval I in proj, (Ry).

Denote by I14(t =1, 2, ..., t1) the family of all intervals I; for which I;Nproj, (D) # 0,
wheret =1, 2, ..., to; and by Io;(t = 1, 2, ..., t2) the others. Then, Iy; Nproj,(Dx) =0
fort=1, 2, ..., to.

(i) For I:(t = 1, 2, ..., t1) : By Proposition 5, there exists an elementary system
Hy(t=1,2, ..., t1)such that (Hy;)° D Iz fort =1, 2, ..., ty;puy (UL Hy— UL 1) <
0*(k,e); and

- GHu) - Gu)-=- F(Hu)")-  F((I)")-<e/T7
t=1 t=1 t=1 t=1
For Hyi:(t =1, 2, , t1), we have:
3 *x Z -
- GHu) - (D) fy)dy-
t=1 t=1 H1tON,
X x 2 - L -
<= GHwW) - (L) fiweWdy-+= (L) (f(¥) = fiotr.e) () dy-
t=1 t=1 Hiy t=1 H1:NNg
<L -
+- (D) Fiotk,e) () dy-
1 Hy— Ny

Since ig(k,e) > k and Ay O Dy, we have A;(x,c) DO Dg. Further, since (Hy;)° ﬂprojy(Dk) D
Ii; N proj, (Dy.) # 0, we have (H1:)® N proj, (A (k) # 0 for t =1, 2, ..., t1; and
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,ul(Uillelt — (U?:l(Hlt)o M proj y(Aio(kye))))
< gy (US Hyy — (Ut Iie N proj (Dy)))
< (Uit Hue — Uik i) + (Uit T — (Ugy Tie N proj o (Dy)))

< 8% (kye) + pa (UM Iy — Ly,) < 26%(k,e) < K70 (e)-

Hence, by Lemma 3

< > 2z -
T UFR(HWY) - (D) f@,y)d(z, y)- < €ig(ne) < /7.
=1 t=1 (Hlt)*mDiO(k,s)
And so
B »x Z -
- G(Hlt) — (L) fio(k,s) (y)dy— < 8/7
t=1 t=1 Hyy

Further, since |f(y) — fio(k,e)(¥)| < /7 for every y € Ny

¥ z _
- (D) (f(Y) = fioth,e) (W) dy- < /7.
t=1 Hy:NNg

Finally, since pio(UfLy (Hie)* — (Ni)*) = pa(Upy (H1e)* = (Li)*) < pa (Ufy Hy — Uity Iy +
pn(UfLy Iy — Li) < 26%(k,e) < A(k, €),

I Z Do Ix 42 -
- (D) fiote)()dy-== (L) flz,y)d(z,y)- <e/7.
=1 Hi;— Ny t=1 (Hlt_Nk)*ﬂDio(k,s)
Therefore
X »x 7 .
- G(Hu) - (L) f(y)dy- < 3(g/7).
t=1 t=1 H1¢NN,

Consequently, since (UL Hyy — UL Thy) < 8*(k,e) < A*(k,e/7),

“¥< »x £ - X < -
- GUw) - (D) fydy-<-  G(I)—  G(Hi)-
t=1 t=1 Lii NNy t=1 t=1
X x 2 - x ¢ -
+-  GHw)—- (L) fy)dy-+= (L) f(y)dy-
t=1 t=1 H1¢NN t=1 (H1t—I1¢)NNg,

<e/T+3(e/7)+¢€/T=5¢/7.
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(ii) For Ii(t = 1, 2, ..., t2): Since Iy N Ly # 0 and Iy N proj,(Dy) = 0, we
have Io; N proj,(Bx) # 0, and so (Iy)* N By # 0 for t = 1, 2, ..., ty. Further, since
p1((proj, (By) N Zo) N (Mg U M) = 0 and Iy, Nproj,(Dg) =0 fort =1, 2, ..., ta, we

have pi(proj, (U2 (T2¢)*)) = pa (Ui J2e) = s (UpZy o — (proj, (Bi) N Zo) N (Mg U M) =
p1 (U2 I, — L) < 8*(k,e) < p(k,e/7). Hence, by Lemma 2
S S
- G(IQt)_:_ (F(IQt)*)—< 5/7
t=1 t=1

Further, since u; (U2, Ia) < 6*(k,€) < A*(k,¢/7)

SR z
- (D) fly)dy-<e/7.
t=1 T2t NNk
Therefore
< »x £ -
G- W) S < 2e/T) = 27
t=1 t=1 LN N,
Thus, by (i) and (ii)
< »x £ -
- G- (D) fly)dy- <e.
t=1 t=1 IiNNg

(3) of the theorem is an immediate consequence of (1) and (2) of the theorem.
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