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Abstract. We are interested in the e�ects of 
uctuation which are observed in biolog-

ical phenomena. There is a big variety in the appearance of the e�ects, however many

of mathematical descriptions have much similarity. The most elemental and basic 
uc-

tuoation can be realized by white noise, either Gaussian or compound Poisson type.

This fact leads us to discuss functions of white noise, call them white noise functionals

of either Gaussian or Poisson type, which may well describe biological systems mathe-

matically. We then consider the analysis of those functionals. The analysis in question

will be the causal calculus, since the biological phenomena are to be evolutional in

many cases, that is, they are developing as the time goes by.

To be more concrete, some of the following topics in mathematical biology will be

discussed.

1) Applications of the Wiener expansion and of the Hellinger-Hahn theory,

2) Construction of innovations of biological, evolutional phenomena with 
uctua-

tion. It is often helped by a method of using the in�nite dimensional rotation group,

3) Creation and annihilation operators applied to random evolutional phenomena,

irreversibility and other properties,

4) Genralizations of the Lotka-Volterra equation with 
uctuation.

5) Functionals of Poisson noise with application to biology.

6) Others.

1 Introduction Our aim is the investigation of random evolutional complex systems by

using the white noise analysis, in particular we shall discuss those systems which are ob-

served in biological phenomena.

For the study the following steps are in order:

Reduction �! synthesis �! analysis

The idea is that �rst the innovation of the random system is constructed, then functionals

of the given innovation are given to express the random system in question, and �nally those

functionals are to be analysed.

The innovation can often be constructed by the variations of the given random evolu-

tional phenomena, and sometimes, like in the communication theory, it is given in advance.

Our attention will be focussed on the analysis of functionals of the innovations. Of course,

the cases where the innovation is actually constructed are more attractive. There are other

cases where the innovation is given in advance by some ways or others, and those are also

important and have been well investigated.
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The main part of the analysis comes from the white noise theory, which is the central

way of the analysis of functionals of the innovation. There naturally arises an in�nite

dimensional analysis.

The last step is the application of the analysis. Many applications to quantum dynamics

have been known; now we are sure that application to bioscience would be the most fruitful

area, although only part of it will be illustrated in what follows.

2 Background

2.1 Reduction To �x the idea let us observe the case where the random complex system

is taken to be a stochastic process X(t). L�evy's stochastic in�nitesima equation for a

stochastic process X(t) is expressed in the form

ÆX(t) = �(X(s); s � t; Y (t); t; dt);

where ÆX(t) stands for the variation of X(t) for the in�nitesimal time interval [t; t+dt), the

� is a sure functional and the Y (t) is the innovation. Intuitively speaking, the innovation

is a system such that the Y (t) contains the same information as that newly gained by the

X(t) during the in�nitesimal time interval [t; t+ dt), hence it is independent of X(s); s � t.

If such an equation is obtained, then the pair (�; Y (t)) can completely characterize the

probabilistic structure of the given process X(t).

A mathematically rigorous de�nition can be given in terms of the sigma-�elds of events

determined by the X(t) and Y (t). There a careful treatment is required, since Y (t) is not

an ordinary process, but a generalized stochastic process and can be vector valued. For

details we refer to the paper [1].

Under mild assumptions the innovation may be considered as the time dereivative of an

additive process Z(t). Further it may be assumed that the additive process has no �xed

discontinuity and has stationary independent increments. Tacitly, it is assumed there is no

non-random part. Then, the L�evy decomposition of such an additive process shows that

Z(t) = X0(t) +X1(t);

where X0(t) is Gaussian, in fact, a Brownian motion up to constant, and where X1(t) is a

compound Poisson process involving mutually independent Poisson processes with various

jumps.

Thus, the Brownian motion and Poisson processes with di�erent jumps are all elemental

additive processes.

As a generalization of the stochastic in�nitesimal equation for X(t), one can introduce

a stochastic variational equation for random �eld X(C) parameterized by an ovaloid C:

ÆX(C) = �(X(C 0); C 0 < C;Y (s); s 2 C;C; ÆC);

where C 0 < C means that C 0 is in the inside of C. The system fY (s); s 2 Cg is the

innovation which is understood in the similar sense to the case of X(t).

As for a rigorous de�nition of the innovation of X(C), again see the paper [1].

The two equations above have only a formal signi�cance, however we can give rigorous

meaning to the equations with some additional assumptions and the interpretations to the
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notations introduced there. The results obtained at present are, of course, far from the

general theory, however one is given a guideline of the approach to those random complex

evolutional systems in line with the innovation theory and hence, with the white noise

theory.

As in the case of X(t) we can consider elemental random �elds, or equivalently elemental

noises with multi-dimensional parameter.

2.2 Synthesis The second step, synthesis, is to form a function (or a functional) of the

innovation which has been obtained. Note that an innovation, say that of a stochastic

process, is basically thought of as a time derivative of an additive process which, formally

speaking, consists of in�nitely many independent in�nitesimal random variables. Since each

random variable has a one-dimensional probability distribution, the innovation should be

in�nite dimensional. The function in question has therefore an in�nite dimensional variable.

This is the reason why an in�nite dimensional calculus is required. Thus we come to the

next step which is the analysis.

2.3 Analysis The variables of our function are random variables, although each of them

is in�nitesimal. Hence, it is not so easy to establish a new concept of partial derivative

with respect to such a random variable. To overome this diÆculty, we can appeal to the

classical theory of functional analysis develped by Volterra, Hadamard, L�evy and others.

The derivative in the in�nitesimal random variable describes the variation of random func-

tions when the 
uctuation changes a little. Hence it is quite di�erent from the ordinary

derivatives like d
dt

or d
dx
.

Actually an in�nite dimensional harmonic analysis is carried out with help of the in�nite

dimensional rotation group. Only part of this analysis will be used in this note.

Needless to say, the �nal step is the application of our theory. In return, they give new

questions. We therefore should study applications of biology to mathematics. Indeed, they

are topics in theoretical applied mathematics.

3 Gaussian systems.

3.1 Gaussian processes First we discuss a Gaussian process X(t); t 2 T , where T is

an interval of R1, say [0;1). Assume that it is separable and has no remote past. Then,

the innovation(s) can be considered explicitly in this case. The original idea came from

P. L�evy (The third Berkeley Symposium paper; see [13]). Under the assumption that the

process has unit multiplicity and other mild conditions like EX(t) = 0; a Gaussian process

has innovation _B(t) which is a white noise such that

X(t) =

Z t

0

F (t; u) _B(u)du;(3.1)

This is the so-called canonical representation. It might seem to be rather elementary,

however such an easy understanding is, in a sense, not quite correct. The profound structure

sitting behind this formula would lead us to a deep insight that is applicable to a general

class of Gaussian processes and to non Gaussian case, too.

Take a Brownian motion B(t) and a kernel function G(t; u) of Volterra type. De�ne a

Gaussian process X(t) by

X(t) =

Z t

0

G(t; u) _B(u)du:

Now we assume that G(t; u) is a smooth function on the domain 0 � u � t <1 and G(t; t)

never vanishes. Then we have
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Theorem 3.1. The variation ÆX(t) of the process X(t) is de�ned and it is given by

ÆX(t) = G(t; t) _B(t)dt + dt

Z t

0

Gt(t; u) _B(u)du;

where Gt(t; u) =
@
@t
G(t; u). The _B(t) is the innovation of X(t) if and only if G(t,u) is the

canonical kernel.

Proof. The formula for the variation of X(t) is easily obtained. If G is not a canonical

kernel, then the sigma �eld Bt(X) is strictly smaller than B( _B), in particular the _B(t) is

not really a function of X(s); s � t+ 0:

Note that if, in particular, G(t; u) is of the form f(t)g(u), then X(t) is a Markov process

and there is always given a canonical representation. Hence _B(t) is the innovation.

Remark. In the variational equation, the two terms in the right hand side are of di�erent

order as dt tend to zero, so that two terms seem to be discrimiated. But in reality, the

problem like that is not so simple.

Having obtained the innovation, we can de�ne the partial derivative denoted by @t and

expressed in the form

@t =
@

@ _B(t)
;

which is hard to compare d
dt

or @
@x
.

Note that @t is de�nen by the knowledge of the original process X(s); s � t: Thus, the

canonical kernel is obtained by

F (t; u) = @uX(t); u < t:

The adjoint opereator @� is the creation operator.

3.2 Nonlinear white noise functionals The analysis of noninear functionals of white

noise _B(t); t 2 R; has been established. The collection of those functionals with �nite

variance forms a Hilbert space (L2), the direct sum decomposition of which into the spaces

Hn; n � 0; is obtained:

(L2) =
M
Hn:

The decomposition stands for the Fock space. The Hn is called the space of homogeneous

chaos of degree n.

The time propagation is particularly important. It is expressed as a one-parameter

unitary group Ut; t 2 R; acting on (L2) determined by

Ut _B(s) = _B(s+ t):

Appealing to the Hellinger-Hahn theorem, it is shown that Ut has

1) simple multiplicity on H1, and

2) countable multiplicity on Hn; n � 2.
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In addition we can associate a symmetric L2(Rn)-function with a functional ' in Hn:

'  ! F 2 dL2(Rn);

wherebmeans symmetric. Such an isomorphism can be obtained by the S-transform:

(S')(�) = exp[�
1

2
k�k2]

Z
(S)�

exp[< x; � >]'(x)d�(x); ' 2 (L2);

which is an in�nite dimensional analogue of the Laplace transform.

This property has been applied to biological problems, in particular

K. Naka's method of identifying the function of the retina.

White noise input �! retina �! 
 �! output

& "

known circuit �! Ut

In the above diagram Ut denotes the time shift and 
 is the multiplier.

We can compute the correlationfunction and hence the spectgrum. The same processs

is repeated for many di�erent known circuits to identify the retina. Actual data and his

interesting results can be seen in [9] and [23].

Such a method of analysis is called the Wiener expansion. In reality, the Hellinger-Hahn

theory is applied to identify the specral density function associated to each cyclic subspace

or to each circuit, since the spectrum can well determine the structure of a cyclic subspace.

Now one may think of its generalizations. If one wishes to carry on the so-called causal

analysis, where time propagation is expressed explicitly in terms of _B(t)'s (without smear-

ing), then he is led to get the kernel function by applying di�erential opereators @

@ _B(t)
as

well as their powers to the given random phenomena.

It is noted that, to realize this idea, enough tools fromn analysis are provided for this

purpose. Actually, the space (S)� of generalized white noise functionals in such a way that

(S) � (L2) � (S)�;

where (S) is like an in�nite dimensional analogue of the Schwartz space of test functions and

(S)� is the dual space. The canonical bilinear form that connects (S) and (S)� is denoted

by h; i.

The isomorphism between Hn and L2(Rn) can be generalized by the generalized S-

transform, which is well de�ned since exp[< x; � >] belongs to (S).

Functions of the di�erential operators including exponential functions, and their adjoint

operators play important roles in our analysis.

Having established the generalization of white noise analysis, we have the following

theorem which will be useful in applictions. Suppose a given random complex system is

expressed as a generalized white noise functional  . The question is to identify the system in
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terms of the kernel functions (generalized functions). A generalization of what was explained

in the last subsection to obtain the canonical kernel is given by the following theorem.

Theorem 3.2. The kernel function (generalized function) Fn of degree n associated with

 2 (S)� can be obtained by the formula

h@t1@t2 � � � @tn ; 1i = F (t1; t2; : : : ; tn):

Next application is obtained by a randomization of the Lotka-Volterra equation. The

attempt towards this direction is wide and numerous, however we take a particular case,

still giving us a suggestion. (see e.g. [18])

Consider a simple example and start with a Lagrangian form which is randomized. With

the notation established by Volterra, set Nr be the size of the population r;
R
Nrdt = Xr;

and

� =
X
r

�rX
0

r logX
0

r; 1 � r � n;

the demographic potential

P =
X
r

�r�rXr +
1

2

X
r;s

cr;sXrXs;

and a bilinear form

Z =
X
r;s

ar;sX
0

rXs:

Then, the Lagrangian form L, which is a functional of Xr's, is given by

L = �+
1

2
Z + P:

By the usual manner of the variational calculus to �nd the stationary point of the demo-

graphic action U :

U =

Z t

o

Ldt;

the Euler eaquation is given:
d

dt

@L

@X 0

r

�

@

@Xr
= 0:

Thus, we have
dNr

dt
= (�r +

1

�r

X
s

as;rNs)Nr:

Now we come to a random environment, namely the coeÆcients of the linear term of

the demographic potential is taken to be a random variable. A good example is introduced

by replacing �r with �r + _Br(t). Namely,

dNr

dt
= fr(N) + @�tNr
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where (�r +
1
�r

P
s as;rNs)Nr is simply written by fr(N).

The solution to this equation can be obtained as is done in [3], however we only note

the signi�cance of this direction, speci�cally noting the idea to randomize the Lagrangian

form.

Another direction of applying the f@t; @
�

t g calculus to biological science can be seen in

the study of 
uctuation in living cells, for example in the Oosawa equation ([12]): The

probability p(t) that molecules at some state sati�es

dp(t)

dt
= k+ exp[��E(t)]p(t) + k� exp[�E(t)](1� p(t));

where k+; k� > 0; � > 0 are constants.

Before coming to our understanding the equations of this kind, some operators are

prepared. Set

A(t)� =

Z t

F (t � u)@�udu;

where the kernel F is now taken to be a function only of t � u, since stationarity and

causality in time for the action is assumed in most interesting cases. Note that @�u is a

creation operator that stands for the action that coming from the 
uctuation involved in

the phenomena.

Note that there are many choices of the kernel function F . One extreme is the canonical

one F�, and another extreme is the backward canonical F+. The F� is concerned with

the past, while the F+ is related to the future. Asymmetry, in a sense, can be seen from

the relationship between F� and F+.

As in the representation of Gaussian processes, the kernel F may or may not be canon-

ical. This is seen when we form a Gaussian process

X(t) = A(t)�1:

When F is taken to be canonical, then the operator is �tting for the prediction. In contrast

with this case, there is a choice of the kernel F so as to be �tting for the backward operations,

that is future values will determine the innovation.

If the exponentials of A(t)� is introduced, it is interesting to see coherent families of

random variables parameterized by t :

fexp[A(s)� ] � 1; s � tg:

the family is �tting for the study of nonlinear predictions or symmetry (asymmetry) of the

evolution.

3.3 Gaussian random �elds. There are various Leitmotive to discuss random �elds,

among others [12] and [17] in our case.

To �x the idea we consider a Gaussian random �eld X(C) parameterized by a smooth

convex contour in R2 that runs through a certain class C which is topologized by the usual

method using the Euclidean metric. Denote byW (u); u 2 R2; a two dimensional parameter

white noise. Let (C) denote the domain enclosed by the contour C.

Assume that a Gaussian random �eld X(C) is exressed as a stochastic integral of the

form:

X(C) =

Z
(C)

F (C;u)W (u)du;
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where F (C;u) be a kernel function which is locally square integrable in u. For convenience

we assume that F (C;u) is smooth in (C;u). The integral is a causal representation of the

X(C). The canonical property can be de�ned as a generalization to a random �eld as in

the case of a Gaussian process.

The stochastic variational equation for this X(C) is of the form

ÆX(C) =

Z
C

F (C; s)Æn(s)W (s)ds +

Z
(C)

ÆF (C;u)W (u)du:

In a similar manner to the case of a process X(t), but somewhat complicated manner, we

can form the innovation fW (s); s 2 Cg, parameterized by a point s running through the

one-dimensional parameter set C.

Example. A variational equation of Langevin type.

Given a stochastic variational equation

ÆX(C) = �X(C)

Z
C

kÆn(s)ds +X0

Z
C

v(s)@�s Æn(s)ds;C 2 C;

where C is taken to be a class of concentric circles, v is a given continuous function and it

is reminded that @�s is the adjoint operator of the di�erential operator @s.

Applying the S-ransform to the equation, we can solve the transformed equation by

appealing to the classical theory of functional analysis. Then, applying the inverse transform

S�1, the solution is given:

X(C) = X0

Z
(C)

exp[�k�(C;u)]@�uv(u)du;

where � is the Euclidean distance.

Once the innovation is obtained, the above example suggests that one can think of

possibility of application of the theory to the biological systems, where X(C) is a mathe-

matical model of random phenomena that varies as C changes in a space-time region being

interfered with by 
uctuation that occurs at every point in (C). For example, the kernel

functions are obtained by the same idea used in Theorem 2.

As for the question on how to obtain the innovation from more general random �elds

may be discussed by refering to the papers [1] and [10].

4 Functionals of Poisson noise

4.1 Poisson noise Having been suggested by the L�evy decomposition of an additive

process, a Poisson process P (t) comes after Brownian motion. Poisson process is another

kind of elemental additive process. Taking its time derivative _P (t) we have a Poisson white

noise. It is a generalized stationary stochastic process with independent value at every

point. For convenience we may assume that t runs through the whole real line. In fact, it

is easy to de�ne such a noise. The characteristic functional of the Poisson white noise is of

the form

CP (�) = exp[�

Z
1

�1

(ei�(t) � 1)dt];

where � 2 E.
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There is the associated measure space (E�; �P ), and the Hilbert space L2(E�; �P ) =

(L2)P is de�ned.

We now pause to write some Leitmotive of the analysis of Poisson functionals. The �rst

one goes back to 1940's. N. Wiener and his collaborators discussed functionals of Poisson

process motivated by the research of Biological objects. See [19], [20], etc. The present

author has discussed with physicians, and he had opportunity to attend the colloquiem at

Nagoya in 1994, where L Ricciardi gave a stimulating talk on the functionals of noise (in

our terminology) under the title \On some computational problems for di�usion processes

in biological modeling"[15].

There have been, of course, many attempts in this area and we have found many inter-

esting applications of white noise analysis. Indeed, various results of the analysis on (L2)P
have been obtained, however most of them have been studied by analogy with the Gaussian

case or its modi�cations, so far as the construction of the space of generalized functionals

and their analysis are concerned. Here, we only note that the (L2)P admits the direct sum

decomposition of the form

(L2)P =
M
n

HP;n:

The subspace HP;n is formed by the Poisson Charlier polynomials of degree n which are

de�ned as follows.

Let p(k; �) = �k

k!
e��; k = 0; 1; 2; ::: be the Poisson distribution with intensity �. Then

pn(k; �) =
�n=2

n
(�1)n

�np(k; �)

p(k; �)
;

where �f(k) = f(k) � f(k � 1). Then, we haveX
k

pn(k; �)pm(k; �)p(k; �) = Æn;m

and the addition formular
(a + b)n

n!
pn(j + k + 1; a + b) =

nX
m=0

s
(�a)m(�b)n�m

m!(n�m)!
pm(j; a)pn�mk; b):

There might occur a misunderstanding regarding the functionals of Poisson noise, even

in the case of linear functional. The following example would illustrate this fact (see e.g.

[1]).

Let a stochastic process X(t) be given by an integral

X(t) =

Z t

0

F (t; u) _P (u)du:

It seems to be simply a linear functional of P (t), however there are two ways of understand-

ing the meaning of the integral; one is de�ned

i) taking _P (t)dt to be a random measure, the integral is de�ned in the Hilbert space, in

particular the topology is de�ned by Hilbert space norm.
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Another way is to de�ne the integral :

ii) for each sample function of P (t) (the path-wise integral). This can be done if the

kernel is a smooth function of u over the interval [0; t].

Assume that F (t; t) never vanishes and that it is not a canonical kernel, that is, it is

not a kernel function of an invertible integral operator. Then, we can claim that for the

integral in the �rst sense X(t) has less information compared to P (t). Because there is a

linear function of P (s); s � t which is orthogonal to X(s); s � t. On the other hand, if X(t)

is de�ned in the second sense, we can prove

Proposition. Under the assumptions stated above, if the X(t) above is de�ned sample

function-wise, we have the following equality for sigma-�elds:

Bt(X) = Bt(P ); t � 0:

Proof. By assumption it is eqasy to see that X(t) and P (t) share the jump points, which

means the information is fully transfered from P (t) to X(t).This proves the equality

The above argument tells us that we are led to introduce a space (P) of random variables

that come from separable stochastic processes for which existence of variance is not expected.

This sounds to be a vague statement, however we can rigorously de�ned by using a Lebesgue

space without atoms, and others. There the topology is de�ned by either the almost sure

convergent or the convergence in probability, and there is no need to think of mean square

topology. On the space (P) �ltering and prediction for strictly stationary process can

naturally be discussed. For further idea we may refer to the literatures [6] and [11], where

one can see profound idea of N. Wiener in his paper [20], \Generalized harmonic analysis",

although in a classical description.

4.2 Multi-dimensional parameter Poisson noise It is quite natural for us to come

to an introduction of a multi-parameter Poisson white noise, denoted by fV (u)g, which is

a generalization of f _P (t)g.

Start with the charcateristic functional CP (�) which is to be the expectation of exp[i <

V; � >]:

CP (�) = exp[�

Z
Rd

(ei�(t) � 1)dtd];

where � 2 E with a nuclear space E � L2(Rd). A probability measure �P de�ned on the

space E�.

It can be shown that a stochastic bilinear form < x; f > with x 2 E�; f 2 L2(Rd) can

be de�ned a.e. �P . In particular, if f is taken to be the indicator function ID of a domain

D, then the charcateristic functional shows that < x; ID > is a random variable on the

probability space (E�; �P ) and is subject to the Poisson distribution with intensity �jDj,

where jDj denotes the volume of D.

To �x the idea, consider the case d = 2. The paper [21] by Wiener and Roswnblueth

gave a Leitmotiv for the following observation.

Set X = X(x) =< x; ID >.

Theorem 4.1. 1) The X(x) expresses the number of the singular points each of which a

delta function is associated as a sample function of V .
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2) Under the condition that X(x) involves delta functions as many as n, then those

points are equally distributed over D.

Remark. More precise meaning of 2) can be given.

Proof. The characteristic functional '(z) of X(x) is given by

'(z) = exp[�jDj(eiz � 1)]:

The expression of the characteristic functional shows that disjoint domains are associated

to independent Poisson processes, and the intensity is additive with respect to the domain.

Thus the probability distribution is spacially homogeneous.

These observations prove the assertions.

We then come to a study of linear functionals of a Poisson noise. In view of the biological

applications alluded to in the Introduction, it is of fundamental importance to have a

functional of Poisson noise parameterized by a point on the surface describing the observed

results. The Wiener-Rosenblueth's paper (see [21]) is of historical interest. Namely, they

discussed the �brillation of heart and proposed a mathematical study of anastomosing �bers,

in connection with a cardiac muscle. There Poisson noise appeared and its functionals were

discussed. Quite recently, a doctor at medical school asked to study functionals of Poisson

noise which is a model of random impulse.

Thus, it becomes popular to know the signi�cance of the analysis of Poisson functionals.

Theorem 4. 2. Let a random �eld X(C) parameterized by a contour C be given by a

stochastic integral

X(C) =

Z
(C)

G(C;u)V (u)du;

where the kernel G(C;u) is continuous in (C;u). Assume that G(C; s) never vanishes on C

for every C. Then, the V (u) is the innovation.

Proof. The variation ÆX(C) exists and it involves the termZ
C

G(C; s)Æn(s)V (s)ds;

where fÆn(s)g determines the variation ÆC of C. Here is used the same technique as in the

case of [10], so that the values V (s); s 2 C; are determined by taking various ÆC's. This

shows that the V (s) is obtained by the X(C) according to the in�nitesimal change of C.

Hence V (s) is the innovation.

Here are two remarks worth to be noted.

Remark. 1) Suppose one is permitted to take single variation, then it is impossible to

form V (s), but one may use conformal transformations acting on C to have the values of

the innovation V (s).

2) One can see a signi�cant di�erence between Poisson �elds and Gaussian �elds when

we try to get the innovation. However, if one is permitted to use some operations acting on

the given process, it is possible to form the innovation from a non-canonical representation
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of a Gaussian process ([1], [17]), although the proof needs a profound property of a Brownian

motion.

4.3 Compound Poisson noise. As soon as we come to a compound Poisson process,

which is a more general innovation, the second order moment may not exist, so that we

have to come to the space (P). The L�evy decomposition of an additive process, with which

we are now concerned, is expressed in he form

Z(t) =

Z
(uPdu(t) �

tu

1 + u2
dn(u)) + �B(t);

where Pdu(t) is a random measure of the set of Poisson processes, and where dn(u) is the

L�evy measure such that Z
u2

1 + u2
dn(u) <1:

The decomposition of a Compound Poisson process into the individual elemental Poisson

processes with di�erent jumps can be carried out in the space (P) with the use of the

quasi-convergence (see [12, Chapt.V]). We are keen to discuss the analysis acting on sample

functions of a compound Poisson process, since we can see many applications in biology,

although mathematical theory of these problems is not so much developed.

A generalization of the assertions in the last two subsections to the case of compound

Poisson white noise is not diÆcult in a formal way without paying much attention. However,

we wish to pause at this moment to consider carefully about how to �nd a jump point of

Z(t) with the height u designated in adavance. This question is heavily depending on the

computability or measurement problem in quantum dynamics.

5 Concluding remarks A Brownian motion and each Poisson process which is one of

the the component of the compound Poisson process seem to be elemental. Indeed, this

is true in a sense. On the other hand, there is another aspect. Indeed, we know that

the inverse function of the Maximum of a Brownian motion is a stable process, which is a

compound Poisson process ( see. [12]). There the L2-technique is no more available.

There is another surprising result. A Poisson noise can eventually be derived from a

Browniann motion (Cochran-Kuo-Sengupta), certainly not by the L2 method. This may

be illustrated in the following manner. In terms of the probability distribution, it is shown

that a certain generalized (Gaussian) white noise functional has the same distribution as

that of a Poisson white noise. There arises a question on how to �nd concrete operations

(variational calculus may be involved there) acting on the sample functions of _B(t)'s to

have a Poisson white noise. We need some more examples to propose a problem to give a

good interpretation to such phenomena.
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6 Addenda 1. Between two kinds of noises Gaussian and Poisson type, there are many

similarities, but dissimilarities are important and interesting. Thus, it is worth mentioning

the signi�cance of the properties enjoyed by Poisson noise.

2. Measurement problem occurs in the case of compound Poisson process.
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