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Abstract. At the end of 50's, P.H. Leslie constructed and numerically analyzed a

kind of time-discrete two dimensional dynamical system derived from Lotka-Volterra

type of competing 2-species ordinary di�erential equations. Leslie's idea to derive

the time-discrete model is speci�c, di�erent from the usual discretization scheme for

ordinal di�erential equation (for instance, by Euler method), and is intuitive since it

signi�cantly depends on an idea of mathematical modelling concerning to the original

ODE system in part. His time-discrete system succeeds in qualitatively conserving well

the characteristics of solution for the original di�erential dynamical system. In this

paper, we consider some extensions of Leslie's idea to the more general single-species

population dynamics and derive the time-discrete system which can robustly maintain

the qualitative natures of original ODE system, especially focusing on the existence

and the local stability of equilibria. Further, we discuss the behaviour of solution near

equlibrium, too.

1 Introduction At the end of 50's, P.H. Leslie, who is well-known today from his pioneer

works with matrix model for structured population [5, 6], constructed and numerically

analyzed a kind of time-discrete two dimensional dynamical system derived from familiar

Lotka-Volterra type of competing 2-species ordinary di�erential equations (ODE) [7, 8, 9],

which is as follows: 8><
>:

dN1(t)

dt
= fr1 � b11N1(t)� b12N2(t)gN1(t)

dN2(t)

dt
= fr2 � b21N1(t)� b22N2(t)gN2(t);

(1)

where Ni(t) (i = 1; 2) is the population size of species i at time t. Parameters ri, bij
(i; j = 1; 2) are all positive. ri (i = 1; 2) is the intrinsic growth rate of species i, bii (i = 1; 2)

the intra-speci�c density e�ect of species i, and bij (i; j = 1; 2; i 6= j) the inter-speci�c

density e�ect, that is, the competition e�ect from species j to species i. For the ODE

system (1), Leslie [7] consider the following time-discrete two dimensional system:8>><
>>:

N1(t+ h) =
1

1 + �r1(h) fb11N1(t) + b12N2(t)g
� er1hN1(t)

N2(t+ h) =
1

1 + �r2(h) fb21N1(t) + b22N2(t)g
� er2hN2(t);

(2)

where

�ri(h) =
e
rih � 1

ri
(i = 1; 2);(3)

2000 Mathematics Subject Classi�cation. ?

Key words and phrases. population dynamics, mathematical model, di�erence equation, density e�ect.



308 H. SENO

and h is the size of time step.

Leslie's idea to derive (2) from (1) is speci�c, di�erent from the usual discretization

scheme for ODE (for instance, by Euler method), and is intuitive since it signi�cantly de-

pends on an idea of mathematical modelling concerning to the original ODE system in part.

However, the derived time-discrete system (2) qualitatively conserves the characteristics of

solution for the original di�erential dynamical system (1), as in case of Runge-Kutta method

for numerical calculations of (1). Moreover, numerical calculation of (2) seems to be rather

robust to give qualitatively same results as the original ODE system (1) does, even with

suÆciently large size of time step h. Therefore, Leslie's idea to construct the di�erence

equations from the ODEs might serve as an alternative and satisfactory numerical scheme

for numerical investigation about nonlinear ODE system.

On the other hand, as mentioned above, Leslie's idea was inspired by an idea of math-

ematical modelling concerning to the original ODE system. This means that the derived

time-discrete system could have a possibly appropriate form of mathematical model for

time-discrete variation of interacting populations. Except for few models including well-

known Nicholson-Bailey model [11], it have attracted so little mathematical attention what

mathematical description is appropriate to describe a speci�c density e�ect in time-discrete

model or how we should model a speci�c density e�ect in time-discrete model.

In this paper, we consider some extensions of Leslie's idea to the more general single-

species population dynamics, and derive the time-discrete system which can robustly main-

tain the qualitative natures of original ODE system, especially focusing on the existence

and the local stability of equilibria. Further, we discuss the behaviour of solution near

equlibrium, too.

2 From ODE to Time-Discrete Model

2.1 Some exact time-discrete model derived from ODE

LOGISTIC GROWTH For the logistic equation with positive coeÆcient � of intra-speci�c

density dependency in per capita growth rate:

dN(t)

dt
= fr � �N(t)gN(t);(4)

we can easily obtain the following exact solution with the initial population size N(0):

N(t) =
1

1 + �r(t)�N(0)
�N(0)ert;(5)

where �r(t) is de�ned same as (3). Making use of the exact solution (5), we can immediately

obtain the corresponding exact time-discrete model as follows:

N(t + h) =
1

1 + �r(h)�N(t)
�N(t)erh:(6)

This is sometimes called `Verhurst model' or `Beverton-Holt model'. Independently of the

sign of r, the time-discrete model (6) can exactly trace the solution (5).

The di�erence scheme derived from (4) by Euler method with positive r:

eN(t + h) =
n
1 + rh� �h eN(t)

o eN (t)(7)

is well-known as to show a pitch-fork bifurcation toward chaos as h gets larger. Only when

h < 2=r, eN asymptotically converges to the equilibrium value same with that for (4):
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eN (t) ! r=� as t ! 1. However, in case of 1=r < h < 2=r, eN asymptotically converges

to the equilibrium value with a dumping oscillation, although the solution N(t) of (4)

monotonically does. In this sense, only eN with h � 1=r realizes the qualitatively same

behaviour as the solution N(t) of (4) does. When h > 2=r, eN(t) asymptotically converges

to a periodic variation as t!1, or behaves chaotic.

TIME-INVERSED LOGISTIC EQUATION In this section, we consider the equation (4) sub-

stituted � = � < 0 and r = �� < 0:

dN(t)

dt
= fN(t) � �gN(t):(8)

This is mathematically equivalent to the equation (4) substituted �t for time t, that is,

with the inversion of time. The exact solution for (8) can be formally given by (5) with

parameters' substitutions of � = � and r = ��. As a mathematical model for population

dynamics, (8) can be regarded as a model to have the meaning such that the population

has per capita natural growth rate proportional to the population size N and a constant

natural death rate �.

According to (8), N(t) monotonically converges to zero as t ! 1 for N(0) � �=,

whereas it in�nitely diverges for N(0) > �= at a �nite time t = tc:

tc = �
1

r
ln

�
1�

�=

N(0)

�
:

The corresponding time-discrete model can be derived directly from the exact solution

for (8):

N(t + h) =
1

1� ���(h)N(t)
�N(t)e��h:(9)

Also for the time-discrete model (9) with N(0) � �=, N(t) monotonically converges to

zero as t ! 1, too. In contrast, with N(0) > �=, the behaviour of (9) is di�erent from

that of the solution for (8) even though (9) is derived from the exact solution without

any approximation. For N(0) > 1=(���(h)), N(1) is negative, and subsequent values of

N become all negative, which are monotonically and asymptotically converging to zero.

For �= < N(0) < 1=(���(h)), the value of N is positive and increasing in a �nite

number of time steps, and subsequently becomes 1=(���(h)) or beyond it. Once it becomes

1=(���(h)) at a time step, N then becomes inde�nite, because

lim
N(t)!1=(�

��(h))�0
N(t+ h) = +1

and

lim
N(t)!1=(�

��(h))+0
N(t + h) = �1:

These cases can be regarded as corresponding to the case of positive divergence for the ODE

model (8) at a �nite time t = tc given above. Once the value becomes beyond 1=(���(h))

at a time step,N becomes negative at any subsequent time step. The appearance of negative

value forN in (9) can be regardedmathematically as an overshoot of its trajectory compared

to the trajectory for (8), due to the temporal discretization.

From the viewpoint of mathematical model for population dynamics, any negative value

of N indicates its breakdown for the role of `model'. So the time-discrete model (9) can have

the role of `model' only when the value of N is well-de�ned and non-negative, which is for any

time step if N(0) � �= and for a �nite number of time steps if �= < N(0) < 1=(���(h)).
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For N(0) > 1=(���(h)), it is nonsense as a mathematical model for population dynam-

ics, whereas the original ODE model (8) has no dependence on the initial value N(0).

As for a speci�c case of N(0) = 1=(���(h)), the time-discrete model (9) cannot be

mathematically well-de�ned. Consequently, only with the con�nement for the initial value

N(0) < 1=(���(h)), the time-discrete model (9) can be regarded as a well-de�ned model

for population dynamics.

2.2 General self-density dependent per capita growth rate In this section, we

consider a general extension of Leslie's idea to construct a time-discrete model from ODE.

At the beginning, let us consider the following autonomous ODE model with per capita

growth rate f(N(t)):
dN(t)

dt
= f(N(t))N(t);(10)

where f(N) is a function of non-negative N . In this paper, we assume f(N) such as

� 0 < r = sup
N�0

f(N) < +1;

� having at least one positive N� such that f(N�) = 0;

� di�erentiable at N = 0 and N = N�;

� jf(0)j < +1;

� jf 0(0)j < +1.

Depending on the nonlinearity of f(N), the ODE model (10) may not be able to be

solved to give any explicit form of its exact solution, so that any exact time-discrete model

can be hardly derived in such case.

Now we construct and consider a time-discrete model from the ODE model (10), inspired

from (6) for the logistic equation (4), as P.H. Leslie and J.C. Gower did for two-species

competition or prey-predator system at the end of 50's [7, 8, 9]. For this purpose, we

rewrite (10) as follows:
dN(t)

dt
= fr �R(N(t))gN(t);(11)

where R(N) = r � f(N) = sup
z�0

f(z) � f(N); satisfying the following natures:

� non-negative;

� having at least one positive N� such that R(N�) = r;

� di�erentiable at N = 0 and N = N�;

� jR(0)j < +1;

� jR0(0)j < +1.

We can regard r as the intrinsic growth rate, and the function R(N) as a density dependent

self-regulation function for per capita growth rate. In case of logistic equation (4), R(N) =

�N .

According to (11), we consider the following time-discrete model:

N(t + h) = Fh(N(t)) =
1

1 + �r(h)R(N(t))
�N(t)erh;(12)

where �r(h) is de�ned as (3). As Leslie and Gower did, our intuition is from the fact that

the self-regulation term is introduced into the denominator of rational form in the exact

time-discrete model (6) corresponding to the logistic equation (4).
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EXISTENCE OF EQUILIBRIUM We can easily �nd that the time-discrete model (12) has

the equilibria same with those of ODE model (11), and does not have any other. Now we

focus the local stability of those equilibria for (12), compared to that for (11).

LOCAL STABILITY OF TRIVIAL EQUILIBRIUM At �rst, let us consider the local stability

of trivial equilibrium N = 0. As for the ODE model (10), the local stability of equilibrium

N = 0 is determined by the sign of f(0), because its linearized equation around N = 0 is

dn(t)

dt
= f(0)n(t);

where n(t) is the perturbation from N = 0. For the ODE model (10), the equilibrium

N = 0 is locally stable if f(0) < 0 and is unstable if f(0) > 0.

In contrast, as for the time-discrete model (12), the equilibrium N = 0 for (12) is locally

stable if jF 0

h(0)j < 1, where

F 0

h(0) =
e
rh

1 + �r(h)R(0)
:

Since R is non-negative and �r(h) > 0, always F 0

h(0) > 0. Therefore the local stability

condition for N = 0 of (12) is given by F 0

h(0) < 1, so that R(0) > r, that is, f(0) < 0. So

we conclude the following result:

� �

Theorem 1 Local stability of the trivial equilibrium N = 0 for the time-

discrete model (12) is always identical to that for the ODE model (10).

� �

LOCAL STABILITY OF NON-TRIVIAL EQUILIBRIUM Next, as for the non-trivial equilib-

rium N = N� > 0, it is locally stable if f 0(N�) < 0 and is unstable if f 0(N�) > 0 for the

ODE model (10). As for the time-discrete model (12), the local stability is determined by

jF 0

h(N
�)j where

F 0

h(N
�) = 1 + �r(�h)N

�R0(N�) = 1� �r(�h)N
�f 0(N�):

Since �r(�h) < 0, the non-trivial equilibrium is unstable if f 0(N�) > 0 because F 0

h(N
�) > 1.

This coincides with the stability condition of non-trivial equilibrium for the ODE model

(10).

In case of f 0(N�) < 0, it is clear that F 0

h(N
�) < 1. Inverse is true, too. Since the

non-trivial equilibrium N = N� for (12) is unstable if F 0

h(N
�) < �1, let us consider the

condition F 0

h(N
�) > �1 for the locally stable equilibrium N = N�, which is now

2� �r(�h)N
�f 0(N�) > 0;

that is,

e
�rh > 1 +

2r

N�f 0(N�)
:(13)

Since the lefthand side of (13) is positive and less than 1, the satisfaction of (13) is suÆcient

to satisfy f 0(N�) < 0. Besides, if f 0(N�) � 0, the condition (13) cannot be satis�ed. Lastly

we can get the following result:

� �

Theorem 2 If the condition (13) is satis�ed with the non-trivial equilib-

rium N = N� for the time-discrete model (12), it is locally stable, and

otherwise unstable.
� �
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Therefore, as for the dependency of local stability on the time step size h, we can get

the following result: If f 0(N�) < 0 and the following condition for the time step size h is

satis�ed, the non-trivial equilibrium N = N� for the time-discrete model (12) is locally

stable, and otherwise unstable:

h < �
1

r
ln

�
1 +

2r

N�f 0(N�)

�
:(14)

Moreover, since the lefthand side of (13) is positive, we can get the following corollary

about a suÆcient condition for the local stability of the non-trivial equilibrium N = N� for

the time-discrete model (12):

� �

Corollary 2.1 If the following condition is satis�ed for the non-trivial

equilibrium N = N� for the time-discrete model (12), it is locally stable

independently of time step size h:

�2r � N�f 0(N�) < 0:(15)

� �

BEHAVIOUR OF SOLUTION NEAR EQUILIBRIUM When the equilibriumN = N� is locally

stable for the ODE model (10), the trajectory with the initial value suÆciently near the

equilibrium monotonically converges to N� as t!1. In other words, the trajectory with

the initial value suÆciently near and less (or more) than the equilibrium N� monotonically

increases (or decreases) to converge to N� as t!1.

As for the trivial equilibrium N = 0, our analysis in the previous section shows that

the local stability for the time-discrete model (12) and for the ODE model (11) always

coincides with each other. Moreover, in locally stable case, the monotonicity of trajectory

approaching the equilibrium is always assured for the time-discrete model (12), too, because

always 0 < F 0

h(0) < 1 in this case. Consequently we get the following:

� �

Theorem 3 Behaviour of solution near the trivial equilibrium N = 0 for

the time-discrete model (12) always equivalent to that for the ODE model

(10).

� �

In contrast, even when the non-trivial equilibrium N = N� is locally stable for the time-

discrete model (12), that is, even when the condition (13) is satis�ed, such monotonicity of

trajectory approaching the equilibrium is not always assured. Indeed, if �1 < F 0

h(N
�) < 0,

the non-trivial equilibrium N = N� is locally stable, and the trajectory with the initial

value suÆciently near the equilibrium shows a dumping oscillation to converge to N� in

asymptotic manner as time steps go by. If 0 < F 0

h(N
�) < 1, the trajectory monotonically

converges to N� in asymptotic manner as time steps go by. Hence, only when 0 < F 0(N�) <

1, the behaviour of trajectory with the initial value suÆciently near the equilibriumN = N�

for the time-discrete model (12) qualitatively corresponds to that for the ODE model (11).

The condition 0 < F 0

h(N
�) < 1 leads to

e
�rh > 1 +

r

N�f 0(N�)
:(16)

Now we can obtain the following result:
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Figure 1: h-dependence of the local stability of non-trivial equilibrium N = N� (> 0) for the time-discrete

model (12) and for the Euler scheme (18), when the equilibrium N = N� for the ODE model (10) is locally stable.

z� = r=fN�f 0(N�)g. With h of the region I, it is unstable for both (12) and (18). With any h out of the region

I, it is locally stable for (12), whereas it is locally stable for (18) only in the regions VI, V and VI. With h of

the regions III, V and VI, the trajectory of (12) with the initial value suÆciently near the equilibrium N = N�

monotonically converges to N� in asymptotic manner as time steps go by, whereas, only with h of the region VI,

the trajectory of (18) does. Trajectory shows a dumping oscillation with h of the regions II and IV for (12) and

with h of the regions IV and V for (18).

� �

Theorem 4 If the condition (16) is satis�ed with the non-trivial equilib-

rium N = N� for the time-discrete model (12), it is locally stable, while the

trajectory with the initial value suÆciently near the equilibrium N = N�

monotonically converges to N� in asymptotic manner as time steps go by.

� �

Moreover, we can obtain the following corollary about a suÆcient condition for the be-

haviour of solution near the non-trivial equilibrium N = N�:

� �

Corollary 4.1 If the following condition is satis�ed with the non-trivial

equilibrium N = N� for the time-discrete model (12), it is locally stable

independently of time step size h, while the trajectory with the initial value

suÆciently near the equilibrium N = N� monotonically converges to N� in

asymptotic manner as time steps go by:

�r � N�f 0(N�) < 0:(17)

� �

COMPARISON TO THE EULER SCHEME Here we compare the time-discrete model (12)

with the Euler scheme for the ODE (10) given by

N(t + h) = N(t) + f(N(t))N(t)h:(18)

As for the existence of equilibria, (18) coincides with the ODE (10). Besides, the local

stability of trivial equilibrium N = 0 is common between them, as between (10) and (12),

whereas the local stability of non-trivial equilibrium N = N� > 0 for (18) requires the

following condition:

h < �
2

N�f 0(N�)
:(19)
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We can easily �nd that, for any function f satisfying our assumptions, the righthand side

of condition (14) is always greater than that of (19) when f 0(N�) < 0. This means that the

time-discrete model (12) can qualitatively approximate the solution of ODE (10) for wider

range of time step size h than the Euler scheme given by (18) can (see Fig.1).

IN CASE OF f(N) = r � �N� (� > 0): As a speci�c case, we consider the case of f(N) =

r � �N� (� > 0). Parameters r and � are positive. In this case, the unique and always

stable non-trivial positive equilibrium is N = N� = (r=�)1=�.

The ODE model (10) of this type has been studied by Gilpin and Ayala [3]. Moreover,

the time-discrete model (12) of this type has also been studied by Maynard Smith and

Slatkin [10] and by Bellows [1].

For the time-discrete model (12), from Theorem 2, the non-trivial equilibrium is locally

stable, if the following condition is satis�ed:

e
�rh > 1�

2

�
:

When � � 2, from Corollary 2.1, the non-trivial equilibrium is locally stable independently

of the time step size h. When � > 2, from (14), the non-trivial equilibrium is locally stable

if the time step size h satis�es the following condition:

h < �
1

r
ln

�
1�

2

�

�
:

Further, from Theorem 4, the non-trivial equilibrium is locally stable and the trajectory

with the initial value suÆciently near the equilibrium N = N� monotonically converges to

N� in asymptotic manner as time steps go by, if the following condition is satis�ed:

e
�rh > 1�

1

�
:

Then, from Corollary 4.1, if � � 1, such nature of the non-trivial equilibrium is independent

of the time step size h.

From these results, we can say that not only in the case of logistic equation, that is, of

� = 1, but also in any case of � � 1, the time-discrete model (12) has the qualitatively

equivalent local stability of equilibria to that for the ODE model (10).

Time-discrete model (12) is just a sort of time-discretized equation for the ODE model

(10). Indeed, in case of f(N) = r� �N� (� > 0), the ODE (11) is of so-to-called Bernoulli

type and can be solved directly:

N(t) =
1

[1 + ��r(t)��fN(0)g�]
1=�

�N(0)ert:

From this exact solution, the corresponding exact time-discrete model can be directly de-

rived as follows:

N(t + h) =
1

[1 + ��r(h)�fN(t)g�]
1=�

�N(t)erh:(20)

It is clear that the time-discrete model (12) cannot coincide with (20) for (11), except for

the case of � = 1. Hassell [4] has studied a mathematical model equivalent to (20).
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3 Conclusion In this paper, we constructed some time-discrete models of single-species

population dynamics, making use of Leslie's idea which was inspired fromwell-known logistic

equation of ODE and Verhurst model of di�erence equation. Our results indicate that, if

we consider the density e�ect in time-discrete population dynamics, which is corresponding

to the density e�ect in an ODE model of time-continuous population dynamics, the form

of density e�ect in time-discrete model is not trivial even in case of some simple form of

density e�ect function in the ODE model. Mathematical relationship of our constructed

time-discrete model (12) to the original ODE model (10), including why and to what extent

(12) could have the mathematically equivalent nature with (10), has not been yet revealed

well, and remained some mathematical open problems.

We know some well-known time-discrete models with di�erence equation(s) and time-

continuous ones with ODE(s). However, we have been paying little attention to the relation-

ship between them from the viewpoint of mathematical modelling for population dynamics,

instead of the sense of numerical approximation for continuous time to discrete time steps.

Indeed, especially in population dynamics of biological phenomena, lots of events occur in

discrete time. Moreover, usually, biological research could get the data only in time-discrete

manner, e.g. in year, in day, in one hour or in every few minutes. This means that we see

lots of natural biological events in time-discrete unit.

One way to study such data is to consider them as snap-shots of the observed event.

That is, the data is regarding as giving us an approximated view to the observed biological

event. In most popular mathematical modelling, this corresponds to the modelling with

time-continuous ODE(s). The ODE(s) can be regarded as a model for the observed time-

continuous event behind the obtained time-discrete data.

Alternative way is to consider the data as the observed event itself. In this sense,

the observed event is regarded as essentially time-discrete. In most popular mathematical

modelling, this corresponds to the modelling with time-discrete di�erence equation(s).

In history, for instance, in case of some insect population dynamics with non-overlapping

generations, the mathematical model has been constructed with time-discrete di�erence

equation(s), as Nicholson-Bailey model for host-parasite relationship [11]. On the other

hand, except for well-developed �eld of matrix model about plant population dynamics (for

instance, see [2]), most of mathematical models for population dynamics with overlapping

generations have been constructed with ODE(s), even if the reproduction is restricted within

a period of each year.

Time-continuous ODE models have been successful in explaining or describing the ob-

served biological phenomena, and in giving perspectives to a number of biological researches.

Since we know, as mentioned above, that any of time-continuous ODE models can be re-

garded as approximated modelling to time-discrete event in population dynamics, there

must be some relationship between ODE models and time-discrete di�erence equation mod-

els from the viewpoint of mathematical modelling. Studying such relationship is expected

to serve to give some practical or perspective insights to develop some new or more sophis-

ticated mathematical modellings in time-discrete population dynamics.
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