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Abstract.

The stability switch criteria proposed by Beretta and Kuang for delay di�erential

equations is applied to a bacteria-bacteriophage model in order to investigate the

e�ect of delay on stability of the equilibria. It is found that the stability region in the

parameters space increases by increasing the replication factor of the virus, but large

delay has always a stabilizing e�ect.

1 The model The �rst model for phage-bacteria interactions was proposed by Campbell

in 1961 [5], to give an answer to how a "virulent phages-susceptible bacteria" system in an

open growth system such as a chemostat can approach some stable steady state:

dB(t)

dt
= �B(t)

�
1�

B(t)

C

�
�DB(t) �KP (t)B(t)

dP (t)

dt
= bK [B(t� T )P (t � T )]�KP (t)B(t) � �pP (t) �DP (t)

(1)

where B(t) and P (t) are respectively the concentrations of bacteria and phages at time

t, D > 0 the wash-out rate constant of chemostat, � > 0 the logistic growth rate of bacteria

and C > 0 their carrying capacity, K > 0 the e�ective per bacteria phage absorption rate

constant and �p > 0 the rate constant of spontaneous inactivation of phages.

It is assumed that each infected bacterium yields b phage particles at time T after infection.

Recently Beretta and Kuang [2] considered the phage-host system in an open environment

(D=0), for example the thermoclinic layer of the sea in which the phage-bacteria system

assumes a relevant role. They assumed that: - B includes both susceptible S and phage

infected bacteria I, i.e. B = I + S. - The infected bacteria have a proper death rate

constant �i; (�i > 0): - The infected bacteria cannot reproduce themselves and encounter

death by lysis after a time T delivering b copies of the phage. The Campbell model was

then modi�ed:

dS(t)

dt
= �S(t)

�
1�

S(t)

C

�
�KS(t)P (t)

dP (t)

dt
= ��pP (t)�KS(t)P (t) + be��iTKS(t� T )P (t � T )

dI(t)

dt
= ��iI(t) +KS(t)P (t)� e��iTKS(t� T )P (t � T )

(2)
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For further biological motivations and for the ranges of parameters see [1] and [7]. For

basic theory on delay di�erential equations see [6].

It is convenient to put equations in dimensionless form, by introducing the dimensionless

time t0 = KCt and rescaling the variables on the carrying capacity C:

s = S=C; i = I=C; p = P=C

In dimensionless form the parameters �p; �i; � are:

a = �=KC; m = �p=KC; mi = �i=KC

and the bacteria carrying capacity C corresponds to the value s = 1.

The dimensionless latency time is � = KCT .

For sake of simplicity in the following we denote by t the dimensionless time t
0

.

The dimensionless equations become

ds(t)

dt
= as(t) (1� s(t)) � s(t)p(t)

dp(t)

dt
= �mp(t)� s(t)p(t) + be�mi� s(t � � )p(t� � )

di(t)

dt
= �mii(t) + s(t)p(t) � e�mi� s(t� � )p(t� � )

(3)

or equivalently

ds(t)

dt
= as(t) (1� s(t)) � s(t)p(t)

dp(t)

dt
= �mp(t)� s(t)p(t) + be�mi� s(t � � )p(t� � )

(4)

and

i(t) =

Z
t

t��

e�mi(t��)s(�)p(�)d�:(5)

We study the stability properties of the equilibria with respect to the average number

of delivered phages by bacteria undergoing lysis and to the latency time, i.e. with respect

to parameters space

P = f(b; � ) 2 (1;+1)�R+0g:

The stability properties of the model refer to suitable initial conditions:

8>><
>>:

s(�) = �1(�); p(�) = �2(�) � 2 [��; 0]

i(0) =

Z 0

��

emi�s(�)p(�)d�

�i(�) 2 C ([��; 0]) : �i(�) � 0 i = 1; 2

(6)

where by C ([��; 0]) we mean the set of real continuous functions on [��; 0].

The system admits three nonnegative equilibria. The equilibria

E0 = (0; 0; 0); Ef = (s� = 1; i� = 0; p� = 0)
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are feasible for all parameters values, whereas the positive or endemic equilibrium

E+ =

�
s� =

m

be�mi� � 1
; i� =

s�p� (1� e�mi� )

mi

; p� = a(1 � s�)

�
(7)

is feasible provided that b > b� and � < Tc where

b� :=m+ 1; Tc =m�1
i

log
b

b�
:

Note that when � = Tc then s� = 1 and p� = 0 thus implying i� = 0, i.e. E+ coincides with

Ef .

2 Global and local stability By suitable Liapunov functionals, we get the following

results concerning global asymptotic stability:

Theorem 1 For all values b 2 (1; b�) the free disease equilibrium Ef = (1; 0; 0) is globally

asymptotically stable in R3
+.

Theorem 2 Assume b � b�. Then the free disease equilibrium Ef = (1; 0; 0) is globally

asymptotically stable in R3
+ provided that

� > T1 =
1

mi

log

�
b � 1

b� � 1

�
:

Theorem 3 Assume the parameters satisfy

i) m > a+ 1;

ii) � is such that Tc > � > T �

1 where

T �

1 :=
1

mi

log

 
2b

m+
p
m2 + 4(2am+ 1)

!

then the endemic equilibrium E+ = (s�; i�; p�) is globally asymptotically stable in R3
+.

The proofs of these theorems can be found in [4].

To study local stability, it is suÆcient to consider the two equations in (4).The charac-

teristic equation at the equilibrium x� = (s�; p�) is:

���� a(1 � s�)� as� � p� � � �s�

�p�
�
1� be�(mi+�)�

�
�m� s�

�
1� be�(mi+�)�

�
� �

���� = 0(8)

It follows that

- E0 = (0; 0) is an unstable saddle point for all parameter values.

- The equilibriumEf = (1; 0) is locally asymptotically stable when T > Tc

�
Tc =m�1

i
log

b

b�

�
,

unstable if T < Tc and critically stable if T = Tc.
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Figure 1: This �gure summarizes the dynamical behaviour of model (4) in the parameter space P: Below

the curve T2 the stability of E+ can be investigated by the stability switch criterion.

From a mathematical point of view the interesting aspect is the study of the endemic

equilibrium stability, since the characteristic equation

�2 + (as� + s� +m)�� (m + s�)�e��� � a(m+ s�)(1 � 2s�) + am(1 � s�)

+ a(m+ s�)(1 � 2s�)e��� = 0(9)

has coeÆcients depending on delay (in fact s� is function of � ). In this case is not an easy

task the study of characteristic roots.

Note that at � = 0 the characteristic roots of (8) have negative real parts, i.e. the endemic

equilibrium E+ = (s�; p�) is locally asymptotically stable. Furthermore, for any delay

� = 0 cannot be a characteristic root of (9), i.e. for increasing � the equilibrium E+ may

lose stability only through a pair of conjugate and purely imaginary characteristic roots,

say � = �i!; ! > 0, which cross the imaginary axis from left to right.

Investigating the existence of characteristic roots � = �i!; ! > 0; of (9) we �nd that (see

[4] ) :

- A value bc, bc > b�, exists such that for all b 2 (b�; bc] the endemic equilibrium remains

locally asymptotically stable.

- When b > bc the positive equilibrium is locally asymptotically stable provided that

Tc > � � T2 =
1

mi

log
b

bc
:

The above results concerning local and global stability of Ef and E+ are summarized in

Fig.1. The parameter values have been �xed according to the paper by Beretta and Kuang

[1], i.e. a = 10;m = 14:925;mi = 0:1.

The behaviour of E+ in the parameters space region below the curve T2 will be studied in

Section 3.

3 Stability switches Now we study the occurence of stability switches in the region

P1 = f(b; � ) 2 (bc;+1)� (0; T2)g
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We use the geometric stability switch criterion proposed by Beretta and Kuang [3] for delay

di�erential equations with delay dependent parameters, with characteristic equation

D(�; � ) = Pn(�; � ) +Qm(�; � )e
��� = 0

where Pn; Qm; n > m, are two polynomials in �

Pn(�; � ) =

nX
k=0

pk(� )�
k; Qm(�; � ) =

mX
k=0

qk(� )�
k;

with coeÆcients pk(�); qk(�) which are continuous and di�erentiable functions in � for � 2

R+0.

In our case

D(�; � ) = �2 + a(� )�+ b(� )�e��� + c(� ) + d(� )e���

where, according to (9),

a(� ) = as� + s� +m

b(� ) = (m+ s�)

c(� ) = a(m + s�)(1 � 2s�) + am(1� s�)

d(� ) = a(m+ s�)(1 � 2s�)

with s� de�ned in (7). It is easy to check that

c(� ) + d(� ) 6= 0 for all � � 0.

Then no crossing of the imaginary axis can occur with a real �, i.e. a crossing of the

imaginary axis must occur with a pair of conjugate and purely imaginary roots of (9), say

� = �i!. Following [3] it is easy to check that ! must be a root of

(c(� )� !2(� ))2 + a2(� )!2(� ) = !2(� )b2(� ) + d2(� ):

Then !(� ) is given by

!2
�
(� ) =

1

2

n
(b2(� ) + 2c(� )� a2(� )) ��1=2(� )

o
(10)

where the nomenclature !+; !� in (10) is self-evident and

�(� ) :=
�
b2(� ) + 2c(� )� a2(� )

�2
� 4

�
c2(� ) � d2(� )

�
:(11)

The stability switches through the characteristic root � = i!(� ); !(� ) > 0, occur at �

values given by

�n(� ) =
�(� ) + n2�

!(� )
; n 2 N0 := N [ f0g;

where �(� ) 2 [0; 2�] is solution of:

sin �(� ) =
�b(� )!(� )

�
c(� )� !2(� )

�
+ !(� )a(� )d(� )

!2(� )b2(� ) + d2(� )

cos �(� ) = �

a(� )b(� )!2(� ) +
�
c(� )� !2(� )

�
d(� )

!2(� )b2(� ) + d2(� )

Since in our case only !+ is feasible, the theorem by Beretta and Kuang concerning the

existence of stability switches can be simplifying, as follows:

Theorem 4 The characteristic equation (9) has a pair of simple and conjugate roots

� = �i!(� ), !(� ) > 0 at the � values, say � = ��, for which
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i) �� � �n(�
�) = 0 for some n 2 N0.

Their crossing of imaginary axis occurs according to:

ii)

sign

(
d<�

d�

����
�=i!(��)

)
= sign

�
1�

d�n(� )

d�

����
�=��

�
:

Then from i) it follows that stability switches occur at � values which are zeros of the func-

tion Sn = � � �n(� ) and from ii) it follows that the sign of the derivative of Sn is the sign

of the derivative of the real part of � at � = i!.

These results provide a simple geometric method to �nd the values of � at which stability

switches occur in P1. We procede as follows: -we draw by Matlab (or other popular soft-

ware) the curves Sn = � � �n(� ) -we locate their zeros and see the sign of their derivative

at these zeros. For example for b = 50 (Fig.2) we see that only the equation S0 = 0 has two

roots �01; �02 and we have two stability switches. At �01 the derivative of S0 is positive then

a couple of complex and conjugate characteristic roots enters in the positive half plane, and

the positive equilibrium becomes unstable. E+ regains stability at �02, where the derivative

of S0 is negative. (Stability-Instability-Stability).

Fig.3 shows the curves Sn, n = 0; 1; 2; for b = 65. At �01 we have a swicth from stability to

instability; at �11, since the derivative of S1 is positive a new couple of complex and con-

jugate eigenvalues enter in the positive half plane; then the equilibrium remainas unstable,

and only the shape and amplitude of oscillations around it change. The same arguments

hold for �21. Stability will be regained only at �02.
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Figure 2:The maps of S0; S1, are drawn for � 2 [0; T2] Figure 3: Maps of S0; S1; S2,

and b = 50.The zeros of S0 determine the for � 2 [0; T2] and b = 65.

values at which stability switches occur.

If for each b we plot the stability switched delay values (�01,�02), by repeating this proce-

dure for increasing b, we can numerically de�ne the region of instability of E+ within the

parameters space P1. We see (Fig.4) that the instability region in P1 increases by increasing

b, but a large delay has always a stabilizing e�ect.

4 Conclusions We considered a model describing the dynamic of a phage-bacteria sys-

tem in an open environment, taking into account the incubation time of phages into infected

bacteria.

This delay di�erential system provides an interesting application of the general stability

switch criterion by Beretta and Kuang in the case of second order characteristic equations.

We found that, varying the incubation time and the virus replication factor, two stability
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Figure 4: The instability region of E+ is plotted in the parameters space P1; the dotted lines delimit the

regions determined by the zeros of S1; S2:

switches occur (from stability to instability and from instability to stability). The instabil-

ity region increases by increasing the replication factor of virus, but large delay always has

a stabilizing e�ect. Computer simulations con�rm these results.
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