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Abstract. A jump-di�usion process is used to model the interspike intervals dis-

tribution of neurons possessing some synapses separate from the main dendritic tree.

We recognize instances of multimodal interspike intervals distribution and we qualita-

tively explain the phenomenon and its consequences when the underlying di�usion is a

Wiener process and the jumps of constant positive or negative amplitude are Poisson

time distributed.

1 Introduction Simplifying hypotheses must be introduced to describe the membrane

potential behavior of a single neuron by means of di�usion processes (cf. [10]). In partic-

ular the assumptions on small sizes and high intensities of the post-synaptic contribution

to the membrane potential evolution prevent from considering the geometry of the neuron

but are necessary to perform di�usion limits. A possible approach to overcome this diÆ-

culty describes the membrane potential of neurons with synapses separate from the main

dendritic tree by means of jump-di�usion processes (cf. [9]). The sum of a large number

of synaptic inputs of high frequency coming from the dendritic area is still modelled via a

di�usion process but single contributions near the trigger zone are described by means of a

superimposed jump-process.

We consider here a very simple jump-di�usion model, i.e. a Wiener process with Poisson

time distributed positive and negative jumps of constant amplitude. This choice is moti-

vated by the wish to understand the role of the introduction of the jump component in the

model without the presence of further variables that could hide its e�ect. The main features

of the considered model are briey introduced in Section 2.

Following the literature, we describe the interspike intervals (ISIs) as the �rst entrance

times of the jump-di�usion process X(t), modelling the underthreshold evolution, into the

region [S;+1), where S is the �ring threshold. A �rst study in this direction was considered

in [8] where the �rst moments of the ISI distribution are estimated. Here we focus on the

distribution curves and we recognize some instances where they become multimodal. The

multimodality arises when upward and downward jumps of suÆciently great amplitude with

respect to the �ring threshold value and slow frequency are superimposed to the di�usion.

In Section 3 we investigate the e�ect of di�erent tunings of the parameter values. A

feature of the model arising from the examples illustrated therein is the presence of �xed

abscissae of the ISI distribution maxima for di�erent jump intensities. This fact suggests

the possibility to recognize characteristic spiking times for the neuron that could play a role

in the synchronization of single neuron units in a network.

Furthermore we compare distributions arising from di�erent models such as jump-

di�usion models, di�usion models with periodic input signal (cf. [1]) and di�usion models

with alternating drift (cf. [2]) showing that they can exhibit very similar shapes. To
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facilitate the interpretation of experimental data as resulting from the introduction of a

periodic forcing term or from the superposition of di�erent types of randomness we suggest

to investigate on the maxima behavior to recognize di�erent features in the two cases.

2 The model Disregarding the di�erent e�ect of synapses impinging on the trigger zone

and of the inputs coming from the dendritic tree the underthreshold membrane potential

behavior is often described via the classical model by Gerstein and Mandelbrot (cf. [6]).

The membrane potential is represented by means of a di�usion processX(t) = fX(t); t � 0g
verifying the stochastic di�erential equation:�

dX(t) = �D dt+ �D dW (t)

X(0) = x0;
(2.1)

where �D > 0. Here �D and �2
D

are the drift and the di�usion coeÆcient of the process

and W (t) is the standard Wiener process.

To consider the role of the activity in the trigger zone into the model, following Giraudo

et al. [8] we study the membrane potential by means of a jump-di�usion process X(t) =

fX(t); t � 0g verifying the stochastic di�erential equation:�
dX(t) = �D dt+ �D dW (t) + aJ dP

+

J
(t) + iJ dP

�

J
(t)

X(0) = x0;
(2.2)

where P+

J
and P�

J
are homogeneous Poisson processes of intensities � and !, accounting

for inputs in the trigger zone of sizes aJ � 0 and iJ � 0 respectively. They are mutually

independent from each other and from the standard Wiener process W (t). The parameters

�D and �D coincide with the analogous ones in model (2.1). The �rst in�nitesimal moments

can be easily computed:

M1 = lim
h!0

E[X(t + h)�X(t) j X(t) = x]

h
=(2.3)

= �D + aJ�+ iJ! = �D + �J ;

and

M2 = lim
h!0

E[(X(t + h)�X(t))2 j X(t) = x]

h
=(2.4)

= �2D + a2J�+ i2J! = �2D + �2J ;

where

�J = aJ�+ iJ!(2.5)

�2
J

= a2
J
�+ i2

J
!:

Here �D and �J can be interpreted as the process drift terms due to the di�usion and to

the jump components respectively. Similarly �2
D

and �2
J
are indexes of the instantaneous

variability of the process due to these components. Note that model (2.2) is the result of

a simpli�cation of the one obtained in [9] disregarding the membrane potential decay in

absence of inputs.

A further model that will be used in Section 3 is a variant of model (2.1) where an

external periodic force of frequency � > 0, intensity q > 0 and phase � is applied (cf. [1]):�
dX(t) = (�D + q cos(�t+ �)) dt+ �D dW (t)

X(0) = x0:
(2.6)
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Models (2.1), (2.2) and (2.6) describe the underthreshold potential dynamics. A spike

happens when the membrane potential attains or exceeds the threshold value S. The ISIs

are then modeled by means of the random variable �rst entrance time (FET) into the strip

[S;+1):

TS = inf f t � 0 : X(t) � S g:

After the occurrence of each spike the process X(t) is reset to its resting value and hence

the sequel of ISIs gives rise to a renewal process.

It is well known that in the case of model (2.1) the probability density function (p.d.f.)

g(S; t j x0) of the random variable TS is (cf. [4]):

g(S; t j x0) =
jS � x0jp
2�t3 �D

exp

�
� (S � x0 � �D t)2

2�2
D
t

�
:(2.7)

The mean of this distribution is:

E(TS ) =
S

�D
;(2.8)

while the mode is:

tm =

s
S2

�2
D

+
9�4
D

4�4
D

� 3�2
D

2�2
D

:(2.9)

The presence of jumps in model (2.2) introduces mathematical diÆculties and no closed

form expression for the FET p.d.f is available. To perform a systematic study of ISI distri-

bution arising from model (2.2), we follow here the method used to estimate the moments in

Giraudo et al. [8]. Indeed we generalize to jump-di�usion processes the reliable simulation

method for FETs of di�usion processes described in Giraudo et al. [7]. We choose to apply

this method in spite of the one recently proposed by Di Crescenzo and Di Nardo ( cf. [5])

because we plan to consider in the future alternative underlying di�usion processes. Indeed

the algorithm in [5], although much faster than the one we use, cannot be generalized to

di�usion processes di�erent from the Wiener process. As far as model (2.6) is concerned

we use the numerical method introduced in Buonocore et al. [3] for the computation of the

FET distribution.

3 Multimodality and parameter values As a �rst step in our study we have simulated

the ISI distributions (t) determined by means of model (2.2) for some choices of the

parameter values. In the sequel we �x S = 10 mV, x0 = 0 mV and t0 = 0 ms while

the other parameter values will be speci�ed in the di�erent instances. This choice of the

parameter values is motivated by our interest to determine di�erent FET p.d.f. shapes

and cannot be biologically motivated. We disregard this aspect because the model is not

realistic and to �t biologically interesting instances one has to switch to more complex

models. Furthermore for the sake of simplicity we choose aJ = �iJ .
In Fig. 1 we show that di�erent behaviors arise as one varies the parameter values

of model (2.2). Fig. 1a is in agreement with our intuition. Indeed the FET p.d.f. of

a pure di�usion model (2.7) is an unimodal function and unimodal shapes for the ISI

distribution arise when pure jump models are simulated. However in Fig. 1b an unexpected

phenomenon is illustrated: the distribution becomes multimodal despite the unimodality of

the ISI distributions corresponding to the two involved processes. In Fig. 2 we plot the ISI

distribution of the jump component of the mixed process illustrated in Fig. 1b.
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We focus here our attention on the causes of this phenomenon performing a systematic

study of the role of the parameters.

Fig. 3 shows that the multimodality disappears as the size of the jumps decreases. This

fact has an immediate interpretation by noting that small size jumps have an e�ect similar

to that of the di�usive component. Hence in the sequel we choose aJ = �iJ = 7:5 mV

since, when S = 10 mV, these values can make the ISI distribution sharply multimodal.

We express the other jump parameters through the values of �J and �2
J
(2.5). Di�erent

criteria can then be decided to investigate on the role of the superposition of jumps to the

di�usion process in the neuronal model. Here we consider the following choices:

a) we vary singularly each of the four parameters �J , �D, �
2
D

and �2
J
to throw light on

their individual role;

b) we consider pure inhibitory jumps superimposed to the di�usion process for di�erent

values of !.

Note that the choice of the values of �J and �D is constrained by the condition �J+�D > 0

to guarantee that TS is an honest random variable.

In Figg. 4-7 we illustrate the dependency of the ISI distribution shape (Part a-b-c of the

�gures) on the network input due to the jumps �J , on the drift and di�usion coeÆcients,

�D and �2
D
, and on the jump variability coeÆcient �2

J
respectively. To facilitate the un-

derstanding of the consequences on the position and value of the maxima of changing the

coeÆcients we complete these �gures with a plot of the dependency of the peak heights on

the di�erent parameters (Part d of the Figg. 4-7). A �rst remark, observing Figg. 4-7, deals

with the regularity of the position of the maxima. We recognize each of these abscissae as

the values of the modes (2.9) of the FET p.d.f. through the thresholds:

S + k aJ ; k = �1; 0; 1; 2; :::(3.10)

for the �rst peak and the subsequent respectively. To understand this result we can consider

the jump as a shift of the threshold instead of as a shift of the membrane potential. This

approach is mathematically correct because of the spatial homogeneity of the process. In this

way the decrease of the boundary value due to an incoming excitatory input determines the

�rst peaks in the �gures, while the second ones correspond to a null network contribution of

excitatory and inhibitory inputs that leaves the boundary unchanged. Similarly the other

peaks are determined by the resulting network input. This explanation on the position

of the peaks suggests that the regularity of the maxima abscissae is due to the hypothesis

aJ = �iJ . When di�erent relations between positive and negative jump sizes are introduced,

the ISI distribution keeps the multimodal shape but looses the regularity of the distances

between the maxima.

Note that, as evident from Fig. 4, the parameter �J does not play an important role on

the shape of the distribution. Note that the maxima arise at times t1 = 1:5083, t2 = 6:5021

and t3 = 11:5012 as (3.10) in (2.9) suggests.

The heights of the peaks increase as �D increases, coherently with our intuition on the

e�ect to increase the speed of the underlying di�usion process. Furthermore the peaks

become sharper and the probabilistic mass is concentrated on shorter time intervals (Fig.

5).

In Fig. 6 we observe that the heights of the peaks decrease and �2
D

increases. When

the di�usion coeÆcient enlarges the multimodality tends to disappear, dominated by the

di�usion contribution, and only the maximum corresponding to the pure di�usion survives.

Furthermore the phenomenon of multimodality becomes more relevant when �2
J
in-

creases (Fig. 7). As Fig. 7d shows, the relative importance of the �rst two peaks changes
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as �2
J
grows up. Hence the composition of the two noises, �2

D
and �2

J
, determines the

multimodality when the variability of the positive and negative jumps dominate the total

noise. This result suggests to explain the existence of characteristic times in single neurons

activity as caused by the presence of excitatory and inhibitory synapses in the trigger zone.

Synchronization phenomena in neural networks could then be related to the geometry of

the position of speci�c synapses.

Since synchronization is often explained with pure inhibitory activity we complete our

study of the ISI distribution considering the model (2.2) with � = 0, i.e. with a vanishing

excitatory contribution in the trigger zone. In Fig. 8 we show that also the pure-negative

jump process superimposed to the di�usion component generates multimodal shapes with

peaks arising at regular times that can be explained as in the former cases. The height of

the \di�usion" peak (the �rst one) decreases as ! increases causing the appearance of a

larger number of successive peaks.

We conclude our study comparing the jump-di�usion and periodically forced models.

Fig. 9 shows that it is possible to recognize parameter values for the models (2.6) and

(2.2) that make the two ISI distributions indistinguishable, although originated by di�erent

causes. However in the case of a forcing input the abscissae of the maxima depend only on

� (cf. [1]), i.e. the period of the force, while for the jump-di�usion model using (3.10) in

(2.9) these abscissae result from the composition of the di�usion parameters, �2
D

and �D,

and the jump-di�usion amplitude aJ . Furthermore a relevant feature of model (2.6) is the

so-called \anti-resonant" behavior (cf. [1]) which occurs when the height at the mode goes

through a minimum as a function of noise the �2
D
. A similar behavior can be recognized

in Fig. 7 in the jump-di�usion model, but in this case the phenomenon is related with the

increasing of the jump variability parameter �2
J
.

4 Conclusions A new cause of multimodality in the ISI distribution is identi�ed by con-

sidering the di�erent e�ect of synapses located in the trigger zone and in the dendritic tree.

The analysis performed on a very simple jump-di�usion model shows that characterizing

times, possible responsible of synchronization phenomena, arise not only in the presence

of periodical forcing input but also from the composition of di�erent type of noises. In a

forthcoming paper we will consider jumps with di�erent distributions in time and di�erent

underlying di�usions to check these results when more complex and realistic models are

studied. However our comprehension of the observed distributions seems to guarantee a

larger validity of the results.

A second step in this research will be the investigation on possible synchronization phe-

nomena appearing in networks composed of neurons described by means of jump-di�usion

models.

Acknowledgments The authors are grateful to doctor M. T. Giraudo for constructive

comments. Work supported by MIUR (PRIN 2000).

References

[1] A. R. Bulsara, T. Elston, C. Doering, S. B. Lowen, Cooperative behavior in the

periodically modulated Wiener process, Phys. Rev. E., 53 (1996), pp. 3958-3969.

[2] A. Buonocore, A. Di Crescenzo, E. Di Nardo, Input-output behavior of a model neuron

with alternating drift, BioSystems, 67 (2002), pp. 27-34.

[3] A. Buonocore, A. G. Nobile, L. M. Ricciardi, A new integral equation of �rt-passage-

time probability densities, Journal of Applied Probability, 19 (1987), pp.784-800.

[4] D. R. Cox - H. D. Miller, \The theory of stochastic processes", Chapman and Hall,

London 1965.



364 LAURA SACERDOTE AND ROBERTA SIROVICH

[5] A. Di Crescenzo and E. Di Nardo, On the evaluation of �rst-passage-time densities for

Wiener process perturbed by random jumps, (2002), Private Communication.

[6] G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a

single neuron, Biophys. J., 4 (1964), pp. 41-67.

[7] M. T. Giraudo, L. Sacerdote, An improved technique for the simulation of �rst passage

times for di�usion processes, Commun. Statist.-Simula., 28(4) (1999), pp. 1135-1163.

[8] M. T. Giraudo, L. Sacerdote and R. Sirovich, E�ects of random jumps on a very

simple neuronal di�usion model, BioSystems, 67 (2002), pp. 75-83.

[9] M. Musila and P. L�ansk�y, Generalized Stein's model for anatomically complex neurons,

BioSystems, 25 (1991), pp. 179-191.

[10] L. M. Ricciardi and S. Sato, Di�usion processes and related topics in biology, Lectures

in Applied Mathematics and Informatics, (1989), L. M. Ricciardi Ed., Manchester Univ.

Press.

[11] W. Strittmatter, Numerical simulation of the mean �rst passage time, Preprint, Univer-

sity Freiburg, (1987), THEP 87/12.

Laura Sacerdote

Dipartimento di Matematica, Universit�a di Torino,

via Carlo Alberto 10, 10123 Torino, Italia

laura.sacerdote@unito.it

Roberta Sirovich

Dipartimento di Matematica, Universit�a di Torino,

via Carlo Alberto 10, 10123 Torino, Italia

sirovich@dm.unito.it



MULTIMODALITY OF THE INTERSPIKE INTERVAL DISTRIBUTION 365

Figure Captions Fig. 1 Di�erent choices for the jump component parameters generate

di�erent shapes of the simulated ISI distribution (t) of the model (2.2). Here �D = 1:5

mVms�1 and �2
D
= 0:25 mV2ms�1. In (a) � = 0:1 ms�1, ! = 0:25 ms�1, aJ = 2 mV and

iJ = �1 mV. In (b) � = 0:3 ms�1, ! = 0:1 ms�1, aJ = �iJ = 7:5 mV.

Fig. 2 Simulated ISI distribution (t) for a pure jump process. The parameters of the

process coincide with the jump component parameters of Fig. 1b.

Fig. 3 Simulated ISI distribution (t) of the model (2.2) for di�erent jump amplitudes

aJ = �iJ . Here �D and �2
D

are as in Fig. 1 and � = ! = 0:01, aJ = 7:5 (a), aJ = 5:5 (b),

aJ = 4 (c) and aJ = 2:5 mV (d).

Fig. 4 Simulated ISI distribution (t) of the model (2.2) for di�erent values of �J .

Here �D and �2
D

are as in Fig. 1, aJ = �iJ = 7:5 mV and �2
J
= 11:25 mV2ms�1, �J = 0:2

(a), �J = 0:5 (b) and �J = 1 mVms�1 (c). In (d) the behavior of the �rst four peak height

versus �J is plotted. From the �rst to the fourth peak the lines are continuous, dotted,

dashed and dash-dotted respectively.

Fig. 5 Simulated ISI distribution (t) of the model (2.2) for di�erent values of �D. Here

�2
D
= 0:25 mV2ms�1, �2

J
= 11:25 mV2ms�1, �J = 0 mVms�1 and aJ = �iJ , �D = 1:4 (a),

�D = 2:4 (b) and �D = 3:0 mVms�1 (c). In (d) the behavior of the �rst four peak height

versus �D is plotted. From the �rst to the fourth peak the lines are dotted, continuous,

dashed and dash-dotted respectively.

Fig. 6 Simulated ISI distribution (t) of the model (2.2) for di�erent values of �2
D
.

Here �D = 1:5 mVms�1, �J = 0 mVms�1 and �2
J
= 11:25 mV2ms�1, �2

D
= 0:15 (a),

�2
D
= 0:5 (b) and �2

D
= 1:2 mV2ms�1 (c). In (d) the behavior of the �rst four peak height

versus �2
D

is plotted. From the �rst to the fourth peak the lines are continuous, dotted,

dashed and dash-dotted respectively.

Fig. 7 Simulated ISI distribution (t) of the model (2.2) for di�erent values of �2
J
.

Here �D = 1:5 mVms�1, �2
D
= 0:25 mV2ms�1, �J = 0 mVms�1, �2

J
= 1 (a), �2

J
= 8 (b)

and �2
J
= 16 mV2ms�1 (c) . In (d) the behavior of the �rst four peak height versus �2

J

is plotted. From the �rst to the fourth peak the lines are continuous, dotted, dashed and

dash-dotted respectively.

Fig. 8 Simulated ISI distribution (t) of the model (2.2) for di�erent values of !. Here

�D = 1:5 mVms�1, �2
D
= 0:25 mV2ms�1, � = 0, a = 0 mV and i = �7:5 mV, ! = 0:02

(a), ! = 0:08 (b) and ! = 0:18 ms�1 (c). In (d) the behavior of the �rst three peak height

versus ! is plotted. From the �rst to the third peak the lines are continuous, dotted and

dashed respectively.

Fig. 9 Comparison between ISI distribution of the models (2.2) and (2.6). In model

(2.2) �D = 1:5 mVms�1, �2
D
= 0:25 mV2ms�1, �J = 0 mVms�1 and �2

J
= 11:25 mV2ms�1

(continuous line) and in model (2.6) �D = 1:5 mVms�1, �2
D

= 8:25 mV2ms�1, S = 11,

q = �2:42, � = 1:1 and � = 2:7708 (dashed line).
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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