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Abstract. We introduce two numerical methods to determine the shape of a time de-

pendent boundary for the Ornstein-Uhlenbeck process that corresponds to an assigned

�rst passage time probability density function. The application of these methods to

the stochastic leaky integrate and �re neuronal model allows to check the reliability of

speci�ed densities as approximation of the interspike interval distribution. The cases

of the Gamma and of the inverse Gaussian densities are discussed.

1 Introduction Firing time distribution plays a key role in the neuronal description

and models devoted to mimic its behavior are of interest for coding comprehension. Its

mathematical counterpart, i.e. the �rst passage time (FPT) of a stochastic process through

a boundary, is the subject of investigations from analytical and numerical viewpoints (cf.

Ricciardi et al., 1999 and papers cited therein). However this distribution is not available in

closed form even for a simple model such as the stochastic leaky-integrate and �re one which

describes the underthreshold membrane potential evolution of a neuron via an Ornstein-

Uhlenbeck (OU) di�usion process. In this model a spike is generated when the membrane

potential attains a threshold S, eventually time-depending. After each spike a new process

starts making the interspike interval (ISI) a renewal process. The FPT distribution becomes

the quantity that describes the probabilistic properties of the code. When the interest on

the model focuses on single neuron behavior, the impossibility to determine closed form

expressions for the FPT distribution can be partially avoided. Indeed one can use numerical

methods or simulations (cf. Ricciardi and Sacerdote, 1979; Ricciardi et al., 1983; Buonocore

et al., 1987; Ricciardi and Sato, 1990) to study the statistical properties of the ISI.

However, experimental techniques allow the simultaneous observation of the spikes gen-

erated from an increasingly high number of neurons. Hence, the necessity arises to model

neuronal networks in order to interpret the spatio-temporal patterns of the observed spike

trains. The numerical methods or the simulation techniques considered for the ISI studies,

in the case of single neurons, become of diÆcult application and time consuming when one

deals with networks. In this context one wish to determine the analytical expression of dis-

tributions that can approximate the FPT distribution in order to facilitate the description

of the activity of single neurons of the network. This paper is motivated by this objective.

In fact, we compare the FPT distribution of an OU process through a constant boundary

with possible approximating distributions. These distributions are interpreted as FPT den-

sities for an OU process, but each one corresponds to a di�erent boundary shape. Hence

we attribute the di�erence between the distributions to di�erent shapes of the boundaries

and we recognize the reliability of the approximating distribution by means of the distance

between the boundaries. The main features of the OU model are briey sketched in Section
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2 to introduce the notations, while we refer to Ricciardi and Sacerdote (1979) for a more

detailed description of the model.

In Section 3 we propose two numerical methods that allow to understand the e�ect

on the boundary shape of the use of a candidate distribution to approximate the FPT

distribution. Indeed we generalize to the OU process recent results on the so called \inverse

FPT problem" for the Wiener process (cf. Zucca et al., 2002). The methods allow to

determine the boundary shape for which the FPT distribution of the OU process assumes a

particular analytical expression. The �rst method, based on a probabilistic approach, can

be viewed as a generalization of the Durbin work (cf. Durbin, 1971) for the direct problem

to the inverse FPT problem. Indeed, we determine a stepwise linear approximation of

the boundary making use of the results in Durbin for the FPT distribution of a Wiener

process constrained by a piecewise linear boundary. The second method uses the numerical

integration of a Volterra integral equation obtained from the Fortet equation (cf. Peskir,

2001). The comparison of the resulting boundary shape and a constant one allows to

interpret the considered approximation in the modeling perspective.

Various distributions could be candidate to approximate the �ring times probability

density function (p.d.f.) when an OU model describes the membrane potential behavior,

but their biological interpretation is unclear in the modeling context or it is limited to

asymptotic arguments. The Gamma distribution is of interest because it veri�es analytical

and asymptotic properties observed on experimental histograms and therefore it has been

considered in Giorno et al. (1997). A contribution towards the interpretation of this

distribution in the neuronal models as a FPT p.d.f. can help to understand advantages

and limits of its use.

In Section 4 the Gamma and the inverse Gaussian distribution are considered as pos-

sible candidates to approximate the unknown FPT of an OU process through a constant

boundary. We measure the reliability of these approximations by means of the distance

between the constant and the obtained boundary. Note that the methods presented in this

paper could also be employed to check the reliability of other distribution candidates such

as the generalized inverse Gaussian (cf. Iyengar and Liao, 1997).

2 The Ornstein-Uhlenbeck model The classical stochastic leaky integrate and �re

model proposed to describe the membrane potential originally considered discontinuous

trajectories (cf. Stein, 1965), but its mathematical analysis was diÆcult. Di�usion ap-

proximations have then been employed to simplify the study (cf. Capocelli and Ricciardi,

1971; Ricciardi and Sacerdote, 1979; Tuckwell and Cope, 1980; L�ansk�y, 1984; L�ansk�y and

Sacerdote, 2001). In this limit the membrane potential evolution is described via an OU

process obeying to the stochastic di�erential equation

dX (t) =

�
�

X

#
+ �

�
dt+ �dW (t) ; X (0) = x0;(1)

where # > 0 is the constant of spontaneous decay of the membrane potential to the resting

level, assumed to be zero, � and � > 0 are two constants accounting for the input signal

and its variability respectively. Here W (t) indicates a standard Wiener process. As is well

known (cf. Ricciardi, 1977) the transition p.d.f. of this process

f (x; t j y; � ) =
@

@x
IP (X (t) � x j X (� ) = y)(2)

veri�es the Kolmogorov equation
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With the initial condition

lim
t!t0

f (x; t j x0; t0) = Æ (x� x0) ;(4)

equation (3) admits a unique solution that is a normal density function with mean

E [X (t) j x0; t0] = �# � (�# � x0) e
�

t�t0
#(5)

and variance

V ar [X (t) j x0; t0] =
�2#

2

�
1� e�2

t�t0
#

�
:(6)

When the membrane potential X (t) attains an assigned value S > x0; eventually S (t),

a spike is generated and the process starts again from x0: The FPT

TS;x0 = inf ft : X (t) > S (t) ; X (t0) = x0; S(t) > x0g(7)

is the random variable modeling the ISI. When the passage through S is a sure event

(i.e. when the boundary is bounded by a constant) one is interested in determining the

probability density function

g (t j x0; t0) =
@

@t
IP (TS;x0 < t) :(8)

In the sequel we will use the simplest notation g (t) for g (t j x0; t0) when it does not generate

misunderstanding on the initial time and the starting point.

The function (8) is solution of the Fortet equation

f (S (t) ; t j x0; t0) =

Z t

t0

g (� j x0; t0) f (S (t) ; t j S (� ) ; � ) d�;(9)

that is a Volterra integral equation of the �rst type when g (� j x0; t0) is unknown. An

analytical solution of this equation can be achieved only in very special instances of scarce

interest for the model and various numerical methods have been employed in literature

to solve this equation or other equivalent but more manageable equations. Alternatively

simulations can be used to generate the random value of TS;x0 (cf. Giraudo et al., 2001).

Furthermore, the analytical expression of the moments of TS;x0 is available when the bound-

ary is constant (cf. Cerbone et al., 1981).

Other results on FPT distribution concern asymptotic instances for large times or bound-

aries (cf. Nobile et al., 1985; Giorno et al., 1997). When the time constant # is large, the

OU process tends to a Wiener one and the FPT distribution tends to the inverse Gaussian

distribution. Finally, we recall that an OU process can be transformed into a standard

Wiener process via a spatio-temporal transformation. The transformation8>><
>>:

x� = xe
t
# � �#

�
e
t
# � 1

�
t� = �

2
#

2

�
e2

t

# � 1
�

f� (x�; t� j x�0; t
�

0) = e�
t

# f (x; t j x0; t0)

(10)

changes the Kolmogorov equation (3) into the Kolmogorov equation for a standard Wiener

process. Furthermore, the FPT p.d.f. (8) of the OU process through a boundary S (t) is

related to the FPT g� (t�) of a standard Wiener process through the transformed boundary

S� (t�) = S (t) exp

�
t

#

�
� �#

�
exp

�
t

#

�
� 1

�����
t='�1(t�)

:(11)
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Indeed one has

g� (t�) = g (t)
exp

�
�2 t

#

�
�2

�����
t='�1(t�)

:(12)

Since the FPT p.d.f. of a Wiener process with di�usion coeÆcient �2, originated in x0
at time t0 through the linear boundary l = �+ �t; � > x0 is (cf. Ricciardi, 1977)

g(�;�) (t j x0; t0) =
�� x0q

2��2 (t� t0)
3
exp

"
�

(�+ � (t� t0)� x0)
2

2�2 (t� t0)

#
;(13)

via (10) one can obtain the FPT for the OU process through the transformed boundary

S� (t�).

3 Numerical methods for the inverse FPT problem Motivated by neurobiological

modeling problems, Capocelli and Ricciardi (1972) considered the problem of determining

under which conditions a p.d.f. is a FPT for a di�usion process through a constant boundary.

They proved that only a particular class of distributions plays the role of a FPT probability

density. However, one can enlarge this class by admitting time varying boundaries. In this

case the inverse FPT problem focuses on determining the boundary shape that makes an

assigned p.d.f. a FPT p.d.f. for a speci�ed di�usion process.

Two constructive methods to determine such shape have been proposed for the Wiener

process in Zucca et al. (2002). The use of the transformation (10) allows the application of

the �rst of these methods to the OU process, while the second one can be easily extended

to the OU process.

Here we briey sketch the two resulting algorithms to determine the shape of the bound-

ary S (t) ; t 2 [0; T ].

Let g (t) be the assigned FPT p.d.f. of the process through the unknown boundary S (t)

and let x0 = 0.

Method 1: Our objective is to determine a stepwise approximation ~S (t) of S (t) by

means of an algorithm that allows to compute a stepwise approximation ~S� (t�) of S� (t�)

for the corresponding transformed Wiener process.

Applying transformations (10) to g (t) we obtain g� (t�) ; the FPT p.d.f. of the trans-

formed Wiener process through the transformed boundary S� (t�).

When S (0) = �0 is known, we can schematize the algorithm through four main steps:

1. one transforms the OU time T into a time T � for the corresponding Wiener process,

making use of (10) and one considers a partition

t�i = ih; i = 0; :::;
T �

h
; h > 0:(14)

2. on the interval [t�0; t
�

1] one solves, with respect to the unknown �0; the equation

Z t
�

1

t�0

g� (� ) d� =

Z t
�

1

t�0

g�(�0;�0) (� j x
�

0; t
�

0) d�(15)

where g�
(�0;�0)

(� j x�0; t
�

0) is the FPT p.d.f. (13) of a Wiener process originated in x�0
at time t�0 through the linear boundary l = �0 + �0t

�:
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Note that, since (12) implies the conservation of the FPT probability mass for the

transformed process, one has

Z ti+1

ti

g (� ) d� =

Z t
�

i+1

t�
i

g� (� ) d�;(16)

where ti and ti+1 are obtained making use of (10).

3. for i = 1; :::; T
�

h
� 1, making use of (16), one solves with respect to �i successively the

equations

Z t
�

i+1

t�
i

g� (� ) d� =

Z t
�

i+1

t�
i

Z ci

�1

g(�i;�i) (� j x; t
�

i ) fa (x; t
�

i j x
�

0; t
�

0) d�dx(17)

where

ci = �i�1 + �i�1t
�

i(18)

�i = �i�1 + (�i�1 � �i) t
�

i�1

and fa (x; t
�

i j x
�

0; t
�

0) indicates (cf. Durbin, 1971) the transition p.d.f. of a Wiener

process originated at time t�0 in x�0 and constrained by the stepwise linear boundary

~S�i (t
�) = �k + �kt

�; t� 2
�
t�k; t

�

k+1

�
; k = 0; :::; i:(19)

The analytical expression of the transition p.d.f. fa (x; t
�

i j x
�

0; t
�

0) is known to be

fa (x; t
�

i j x
�

0; t
�

0) =
@

@x
IP
�
Wt�

i
� x jW0 = x0; Ws < ~S�i (s) 8s < t�i

�

=

k�1Y
i=1

�
1� e

�2
(ci�1�xi�1)(ci�xi)

�i��i�1

�
'
�
x; t�i � t�i�1

�
;(20)

where ' (x; u) is the probability density function of a random variable N (0; u) :

The computation of the multiple integral on the r.h.s. of (17) can be performed with

a Monte Carlo method.

4. Using the inverse of transformation (10) one determines the values of the boundary
~S (t) in the knots ti of the OU process corresponding to (19). A linear interpolation

on these values determines the shape of ~S (t) that approximates S (t).

Remark 1 Equations (15) and (17) express the equality between the crossing probabil-

ities of the approximating distribution and the exact one. Indeed, on each time interval we

determine the straight line for which the crossing probability of the Wiener process equals

the probability of the original process on the corresponding interval.

Remark 2 When S (t0) is not known one can apply this algorithm making use of an

arbitrary value for S (t0). Indeed the �rst value seriously inuences only the �rst steps of
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the computation, since the approximated boundary oscillates around S (t) (cf. Zucca et al.,

2002).

Method 2: In analogy with the method used in Zucca et al. (2002) for the Wiener

process we integrate the Fortet equation for the OU process through S (t) on (�1; S (T )) :

We obtain

1��

0
BB@S (T ) � �#+ �#e�

T

#r
#�2

2

�
1� e�

2T
#

�
1
CCA =(21)

=

Z T

0

g (� )

8>><
>>:1� �

0
BB@S (T )� �#+ (�#� S (� )) e�

T��

#r
#�2

2

�
1� e�

2(T��)

#

�
1
CCA
9>>=
>>; d�;

where � (�) is the standard normal distribution.

Equation (21) is a nonlinear homogeneous Volterra integral equation of the second type

with regular kernel with respect to the boundary S (t) when g is an assigned distribution.

A numerical procedure based on the Euler method can then be used to solve this equation

in analogy with Zucca et al. (2002). Indeed, discretizing t 2 [0; T ] with the partition

ti = ih; i = 0; :::;
T

h
;(22)

with h > 0, one obtains

1� �

0
BB@S (ti)� �# + �#e�

ti
#r

#�2

2

�
1� e�

2ti
#

�
1
CCA =(23)

=

iX
j=1

g (tj)

8>>>><
>>>>:
1��

0
BBBB@
S (ti)� �# + (�#� S (tj)) e

�

ti�tj

#s
#�2

2

�
1� e�

2(ti�tj)
#

�
1
CCCCA

9>>>>=
>>>>;
h

i = 1; :::; n

that is a triangular non linear system of n equations in the n unknowns S (t1) ; :::; S (tn) ;

that can be solved by means of an iterative method.

Note that the initial value S (t0) is not assigned in this method. This implies a scarce

reliability of our results only on the �rst steps when the involved integrals are computed

with a rough approximation due to the use of Euler method.

4 Examples Two natural candidates to approximate the OU FPT p.d.f. through a

constant boundary are the inverse Gaussian and the Gamma distribution. We consider

these two distributions by means of some numerical examples and we use the methods of

Section 3 to check the implications of these approximations on the boundary shape. The

OU FPT p.d.f. values are obtained with the numerical algorithm of Buonocore et al. (1987).
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a. Inverse Gaussian p.d.f.

Let us approximate the FPT p.d.f. of an OU process with # = 10 ms, �2 = 20 mV2

ms�1, � = 0 mV ms�1 through S = 10 mV with an inverse Gaussian p.d.f. (13). Hence, in

this case we have �IG = 10 mV and, to determine the values of �IG; �
2
IG > 0 in (13), we

equate the abscissae and the ordinates of the mode of the two p.d.f.s. We then determine

the boundary shape of an OU process with # = 10 ms, �2 = 20 mV2 ms�1, � = 0 mV

ms�1, producing the considered inverse Gaussian as FPT p.d.f.

In Figure 1a we plot the resulting p.d.f.s. In Figure 1b we compare the boundary corre-

sponding to the FPT p.d.f. (13), obtained by means of the methods of Section 3, with the

constant boundary S = 10 mV. The agreement of the results obtained by means of both

the methods of Section 3 guarantees the reliability of our results. Figure 1 con�rms the

well known fact that the inverse Gaussian approximation is reliable only in correspondence

of small times. The use of our algorithms allows to interpret this increasing discrepancy

of the p.d.f.s as caused by di�erent boundary shapes. Indeed, the di�erence between the

boundaries increases with the time. The use of the inverse Gaussian distribution in spite of

the exact FPT distribution seems to imply the introduction of a sort of a refractory phe-

nomenon that blocks the �ring as the time increases. However, there are not experimental

evidences that could validate a similar result. Hence, the use of the inverse Gaussian results

acceptable only when one is interested in the spiking activity happening in very short times.

b. Gamma p.d.f.

In Giorno et al. (1997) this p.d.f. was considered as a good approximation for large

times. With the aid of our methods we want to understand the e�ect of this approximation

on the boundary values on the entire range of the times. To determine the values of the

two parameters in the Gamma p.d.f

g (t) =
��

� (�)
t��1e�t� ; t � 0;(24)

following Giorno et al. (1997), we apply the moments method, making use of the tables in

Cerbone et al. (1981), and we equate the mean and the variance of the two distributions.

As �rst example we consider the OU process with # = 10 ms, �2 = 5 mV2 ms�1, � = 0

mV ms�1. When S = 10 mV one has E (Ts;x0) = 104:28 ms and V (Ts;x0) = 10527:52 ms2.

We determine the boundary corresponding to a Gamma density for this process. Figure 2

compares the FPT p.d.f.s (2a) and the corresponding boundaries (2b). As it is evident in

Figure 2b the boundary corresponding to the Gamma p.d.f. can be interpreted as generated

by an OU process crossing a boundary that converges very fast to a constant value. This

result is con�rmed in Figure 3 where the same example is considered for t 2 [0; 170] ms.

Note that this last control is suggested by the large value of the mean �ring time.

The approximating boundaries tend to the corresponding constants for t � 8 ms but the

probability P (Ts;x0 � 8) = 0:05. Hence, in this case, the use of the Gamma p.d.f. in spite

of the OU FPT p.d.f. through a constant boundary, results reliable since the only times

that give rise to a di�erent behavior are characterized by very low occurrence probability.

As a second example we consider the OU process with # = 10 ms, �2 = 20 mV2 ms�1,

� = 0 mV ms�1 and we determine the boundary corresponding to a Gamma density for

this process. When S = 10 mV one has E (Ts;x0) = 20:93 ms and V (Ts;x0) = 584:2 ms2.

Figure 4 compares the FPT p.d.f.s (4a) and the corresponding boundaries (4b). Also in

this case, after a �rst interval, the use of the Gamma p.d.f. in spite of the OU FPT p.d.f.

through a constant boundary, results reliable.

For short times the Gamma p.d.f. corresponds to a boundary which is lower of the

assumed constant, hence the use of the approximation implies a �ring facilitation immedi-
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ately after a spike that has not a biological motivation. However, since the approximated

boundary value converges rapidly to the constant, the use of the approximated FPT p.d.f.

cannot have important consequences when one wish to simulate neuronal networks.

5 Conclusions A new constructive approach to the inverse FPT problem is applied to

check the possibility to approximate a FPT p.d.f. with an assigned one. We show that

the Gamma p.d.f. is a good approximation of the �ring distribution in a leaky integrate

and �re stochastic model when the parameters of the Gamma distribution are �xed with

the moment method equating the mean and the variance of the considered distributions.

However, this approximation generates very short ISI with a probability higher than the

exact distribution. This fact has not important consequences since these ISI have still low

occurrence probability. Hence, the use of this distribution can be a reliable shortcut for the

description of the activity of single neurons in networks. The proposed numerical methods

can �nd applications in more general instances such as the search of approximated FPTs

p.d.f. of an OU process through time varying boundaries.

Furthermore, the introduction of suitable corrections into the �rst method of Section 3

allows its use for histograms obtained via experimental data and this will be the subject of

a future report.
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Figure 1. (a) Comparison between the FPT p.d.f. of an OU process with

# = 10 ms, �2 = 20 mV
2
ms
�1
, � = 0 mV ms

�1
with boundary value S = 10

mV (solid line) and the approximated inverse Gaussian p.d.f. (13) (dashed

line) with parameters �IG = 10 mV, �IG = 0:219 mV and �2IG = 1:828 mV
2

ms
�1

. (b) Comparison between the corresponding constant boundary and the

approximated boundaries obtained by the method 1 (oscillating boundary) and

method 2 (smooth boundary).
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Figure 2. (a) Comparison between the FPT p.d.f. of an OU process with # =

10 ms, �2 = 5 mV
2
ms
�1

, � = 0 mV ms
�1

with boundary value S = 10 mV

(solid line) and the approximated Gamma p.d.f. with parameters � = 1:033,

� = 0:099 ms
�1

(dashed line). (b) Comparison between the corresponding

constant boundary and the approximated boundaries obtained by the method 1

(oscillating boundary) and method 2 (smooth boundary).
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Figure 3. (a) Comparison between the FPT p.d.f. of an OU process with

# = 10 ms, �2 = 20 mV
2
ms
�1

, � = 0 mV ms
�1

with boundary value S = 10

mV (solid line) and the approximated Gamma p.d.f. � = 1:033, � = 0:099

ms
�1

(dashed line) in the time interval [0; 170]. (b) Comparison between the

corresponding constant boundary and the approximated boundaries obtained

by the method 2.
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Figure 4. (a) Comparison between the FPT p.d.f. of an OU process with

# = 10 ms, �2 = 20 mV
2
ms
�1

, � = 0 mV ms
�1

with boundary value

S = 10 mV (solid line) and the approximated Gamma p.d.f. � = 0:750,

� = 0:358 ms
�1

(dashed line). (b) Comparison between the corresponding

constant boundary and the approximated boundaries obtained by the method 1

(oscillating boundary) and method 2 (smooth boundary).


