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Abstract. A jump-di�usion process is proposed to describe the displacements per-

formed by single myosin heads along actin �laments during the rising phases. The

process consists of the superposition of a Wiener and a jump process, with jumps

originated by sequences of Poisson-distributed energy-supplying pulses. In a previous

paper [6], the amplitude of the jumps was described by a mixture of two Gaussian dis-

tributions. To embody the e�ects of ATP hydrolysis [1], we now re�ne such a model by

assuming that the jumps' amplitude is described by a mixture of three Gaussian dis-

tributions. This model has been inspired by the experimental data of T. Yanagida and

his co-workers concerning observations at single molecule processes level as described

in [10] and in the references therein.

1 Introduction Muscle �bers are composed by a great number of even smaller �bers,

called myo�brils, arranged parallel to the muscle �ber's major axis. The myo�brils consist of

two di�erent �laments: thick �laments, composed by myosin molecules, and thin �laments,

composed by actin molecules. Myosin molecules' extremity stick out from the �lament as

small heads. Muscle contraction occurs when myosin molecules slide along actin �laments,

fuelled by the chemical energy originating from ATP hydrolysis. The traditional model

explaining the mechanism of myosin movement is the so-called \lever-arm swinging model"

in which the neck region of the myosin head swings to generate displacement (see Cooke

[4]). The swing motion is coupled tightly to the ATP hydrolysis cycle i.e. the myosin

molecule moves in a single forward step during each ATPase reaction. The size of myosin

displacement is about 6nm.

Using new techniques for manipulating single actin �laments, Kitamura et al. [10]

have obtained highly precise and reliable measurements of the displacements performed by

single myosin heads along actin �laments during their rising phases. They have recorded

myosin displacements of 10nm�30nm. These values indicate that, during each biochemical

cycle of ATP hydrolysis, the myosin head may interact several times with an actin �lament,

undergoing multiple steps. The steps occur randomly in time, mainly in a forward direction,

roughly not more than 10% in the backward direction. The step-size is approximately 5:5nm,

that identi�es with the interval between adjacent monomers in one strand of the actin

�lament. These observations clearly contradict the traditional lever-arm model, suggesting

that a biased Brownian ratchet mechanism could be invoked: myosin head moves along the

actin �lament driven by the Brownian motion and the ATP hydrolysis biases the direction

of the movement.

In this paper we propose a stochastic model for the description of the displacements

performed by the myosin head durig a rising phase, on account of the experimental results

presented in Kitamura and Yanagida [9]. Our model is not exactly a ratchet-based model

but all the relevant basic ingredients are preserved: exploitation of Brownian motion, the
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assumption that energy released by ATP hydrolysis is responsible for the myosin displace-

ments and the intrinsic asymmetry of the actomyosin system. To achieve directional motion,

in addition to thermal noise and anisotropy, we consider an energy supply, resulting from

the hydrolysis of ATP (see Buonocore and Ricciardi [1]). We assume that this energy is

stored by the myosin head and a part of it is released by small quanta of constant mag-

nitudes. Usually not each energy release produces a step, but several releases are needed

to generate a single step. We further assume that myosin head is embedded in a viscous

uid in thermal equilibrium and denote by �v the viscous friction drag coeÆcient that in

the experimental conditions is estimated as 90 pN.

Aiming to a phenomenological model to account for the available data on the displace-

ments of the myosin head along an actin �lament, we take as starting point the articles by

Di Crescenzo et al. [6] and by Buonocore et al. [2], in which a stochastic process consisting

of the superposition of Wiener and jump processes is discussed. Myosin head's slide along

the actin �lament is viewed as a Brownian motion perturbed by jumps that occurr according

to a Poisson process. Their amplitude is described by a mixture of three Gaussian random

variables.

The transition density of the stochastic process describing the stepwise motion and some

of its moments are obtained in Section 2. In Section 3 we analyze the duration of the rising

phase U and the position V of the myosin at the end of the rising phase. For both variables

we obtain the density and some moments. In Section 4 the special case when the backward

jumps are not allowed is considered. Our results appear to be in qualitative agreement with

the available experimental observations.

2 The model Let fX(t); t � 0g denote the real-valued stochastic process describing the
motion of the myosin head along the actin �lament during the rising phase. In the absence

of jumps, the myosin head is assumed to move according to a Wiener process with zero

drift and in�nitesimal variance Æ2 = 0:09 (nm)2=ms. Here use of relation Æ2 = 2kBT=�v has

been made, with �v = 90pN and where kBT � 4 pNnm is the thermal energy at absolute

temperature T , kB = 0:01381 pN � nm=K denoting the Boltzmann constant and T = 293K

the environmental temperature. According to the previous assumptions, at the occurence

of the i-th event of a Poisson process fN(t); t � 0g of intensity �, an energy release occurs

and consequently the myosin head performs a jump of random amplitude Yi. The mean

amplitude of such a jump is L, 0 and �L with probabilities p, 1� p� q and q, respectively.
The following stochastic equation thus holds:

X(t) = Æ B(t) +

N(t)X
i=1

Yi; t > 0;(1)

where fB(t); t � 0g is the standard Brownian motion, and X(0) = 0. (We have arbitrarily

set 0 as the starting point of the motion). Note that the di�usive component of the motion

has zero drift, according to the experimental evidence (see Kitamura et al. [10]). We suppose

that processes B(t), N(t) and r.v.'s Y1; Y2; : : : are independent, where Yi's are copies of a

random variable Y characterized by distribution function FY (y) and probability density

fY (y). The latter is assumed to be a mixture of three Gaussian densities fZ1 (y), fZ2(y)

and fZ3(y) with means L, 0 and �L respectively, and identical variance �2. Hence, for all

y 2 R we have

fY (y) =
dFY (y)

dy
= p fZ1 (y) + (1� p� q) fZ2 (y) + q fZ3(y)

=
1p

2��2t

�
p exp

�
� (y � L)2

2�2t

�
+ (1� p� q) exp

�
� y

2

2�2t

�
+ q exp

�
� (y + L)2

2�2t

��
;(2)
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with E(Y ) = L (p�q) and Var(Y ) = �
2. We set L = 5:5 nm (the distance between adjacent

actin monomers) and �2 = 0:1 (nm)2=ms. Densities fZ1(y), fZ2(y) and fZ3(y) account for

the following: fZ1(y) describes the size of forward steps, fZ3 (y) that of backward steps,

whereas fZ2(y) accounts for an energy release that does not produce a step.

For all x 2 R and t � 0 let us now introduce the following probability densities:

f(x; t) :=
@

@x

PfX(t) � x jX(0) = 0g;(3)

fn(x; t) :=
@

@x

PfX(t) � x jX(0) = 0;N(t) = ng; n = 1; 2; : : : :(4)

One has:

f(x; t) =

1X
n=0

fn(x; t) PfN(t) = ng;(5)

where

PfN(t) = ng = (�t)n e��t

n!
; n = 0; 1; : : : ;(6)

is the probability distribution of a Poisson process N(t) having intensity �. The conditional

density fn(x; t) can be expressed as follows:

fn(x; t) =

8>><
>>:

fW (x; t jx0) if n = 0

Z
1

�1

fW (x � y; t jx0) dF (n)

Y
(y) if n = 1; 2; : : : ;

(7)

where

fW (x; t) =
1p
2�Æ2t

exp

�
� x

2

2Æ2t

�
; x 2 R

is the transition density of a Wiener process with zero drift and in�nitesimal variance Æ2, and

where F
(n)

Y
(y) denotes the n-fold convolution of FY (y) with itself. From (2), by induction

we obtain:

dF
(n)

Y
(y) =

nX
k=0

�
n

k

�
(1� p� q)n�k

kX
j=0

�
k

j

�
p
j
q
k�j

 j;k;n(y) dy;(8)

where  j;k;n(y) denotes a normal density with mean (2j � k)L and variance n�2. Hence,

from (7) and (8), for x 2 R, t > 0 and n = 0; 1; : : : we have:

fn(x; t) =
1p

2�(Æ2t+ n�
2)

nX
k=0

�
n

k

�
(1�p�q)n�k

kX
j=0

�
k

j

�
p
j
q
k�j exp

�
� [x� (2j � k)L]2

2(Æ2t+ n�
2)

�
:

(9)

Recalling Eq. (5), from Eqs. (9) and (6), for all x 2 R and t � 0 we �nally obtain the

probability density of X(t):

f(x; t) = e��t
1X
n=0

(�t)n

n!
p
2�(Æ2t+ n�

2)

nX
k=0

�
n

k

�
(1 � p � q)n�k(10)

�
kX

j=0

�
k

j

�
p
j
q
k�j exp

�
� [x� (2j � k)L]2

2(Æ2t+ n�
2)

�
:
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Figure 1: Plot of density (10) with �
2 = 0:1, p = 0:18, q = 0:01 and � = 1:10.

Note that, as shown in Di Crescenzo et al. [6], this is the solution of the following integro-

di�erential equation:

@ f

@t

= �� f + Æ
2

2

@
2
f

@x
2
+ �

Z 1

�1

f(x � y; t) dFY (y);

with initial condition lim
t#0

f(x; t) = Æ(x). Density (10) is multimodal, with peaks located at

multiples of L (see the example plotted in Figure 1). If p > q, at each point x = kL (k

integer) where a peak exists, this peak is higher than the symmetric peak located at �kL,
a manifestation of the prevalence of forward with respect to backward displacements.

Let us now obtain some moments of X(t). From (1) we have:

E[X(t)] := m(t) = L(p � q)�t;(11)

Var[X(t)] := v
2(t) = f[L2(p+ q) + �

2]�+ Æ
2g t;(12)

Ef[X(t)�m(t)]3g = L(p � q)(L2 + 3�2)�t:(13)

Hence, from (11) and (12) the coeÆcient of variation follows:

CV[X(t)] :=
v(t)

m(t)
=

p
[L2(p+ q) + �

2]�+ Æ
2
p
t

L(p� q)� t
:(14)

Let us denote by �(t) = X(t)=t the velocity of the myosin head displacement. Making use

of Eqs. (11) and (12) we obtain the mean and the variance of �(t):

E[�(t)] = L(p � q)�;(15)

Var[�(t)] =
[L2(p + q) + �

2]� + Æ
2

t

:
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Finally, Eqs. (12) and (13) yield the skewness:

E[X(t) �m(t)]3

v
3(t)

=
�(p+ q)L(p � q)(L2 + 3�2)

f[L2(p + q) + �
2]�+ Æ

2g3=2
p
t

:(16)

The skewness goes to zero as t ! +1, it is positive (negative) as p > q (p < q), whereas

it vanishes when p = q. Under the assumption p > q, which is of interest in the context of

myosin head's motion, we have the following monotonicity properties of the skewness:

(i) as a function of � 2 (0;+1), it is increasing for � < � � 2Æ2=[L2(p + q) + �
2],

decreasing for � > �, and goes to 0 as �! +1;

(ii) as a function of �2 2 (0;+1), it is increasing if �2 < �
2 � L

2[2 (p + q) � 1] + 2Æ2=�,

decreasing for �2 > �
2, and tends to 0 when �2 ! +1.

Let us denote byM the r.v. describing the number of energy quanta releases required to

produce one step, that corresponds to a jump of mean amplitude �L or L. On the ground

of our assumptions, M is a geometric r.v. with parameter p + q. Denoting by D the r.v.

describing the dwell time, i.e. the time between consecutive myosin jumps, we have

D = T1 + � � �+ TM ;(17)

where Ti is the duration of the e�ect of the i-th energy quantum release. Being N(t) a Pois-

son process with intensity �, we have that T1; T2; : : : are i.i.d. exponential r.v.'s with mean

�
�1. This is in agreement with Kitamura and Yanagida [9], whose dwell-time histograms

are well �tted by exponential curves. From (17) we obtain

E(eDs) =

+1X
k=1

E(es(T1+���+Tk)) P(M = k) =
�(p + q)

�(p + q) � s

; s < �(p+ q);

so that the dwell time D is exponentially distributed with mean

E(D) =
1

�(p+ q)
:(18)

From (15) and (18) we have

E[�(t)] =
p� q

p+ q

L

E(D)
;

so that the mean velocity E[�(t)] can be seen as the mean net displacement in one step

divided by the mean time needed to have one step.

3 Rising phase Some histograms of the number of steps per displacement have been

shown in Kitamura and Yanagida [9] and Kitamura et al. [10]. There are 66 observed

displacements under a near-zero load and 77 displacements for a load between 0 and 0:5

pN. The number of net steps in each displacement ranges from 1 to 5 under a near-zero load

and from 1 to 4 for a load between 0 and 0.5 pN. Moreover, the distribution of the total

number of net steps observed in a rising phase minus 1 is well-�tted by a Poisson random

variable. Hence, in order to include such features in our model we introduce a random

variable U that describes the duration of the myosin head rising phase. Let fN+(t); t � 0g
and fN�(t); t � 0g be two independent Poisson processes characterized by intensities �p

and �q, that describe the numbers of forward and backward steps performed by the myosin

head during a rising phase, respectively. We assume that U is the �rst-passage time of the
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number of net steps, given by R(t) := N+(t)�N�(t), through a Poisson-distributed random

threshold S, with

P(S = k) =
e�� �k�1

(k � 1)!
; k = 1; 2; : : : ;(19)

where � > 0 (note that this assumption re�nes a previous model considered in Buonocore

et al. [2]). The mean number of net steps during the rising phase is thus given by

E(S) = �+ 1:(20)

We note that R(t) is a randomized random walk, whose transition probability for positive

�, p and q is given by (see, for instance, Conolly [3])

pk(t) = PfR(t) = k jR(0) = 0g =
�
p

q

�k=2
e
��(p+q)t

Ik(2�t
p
pq); t > 0;

where Ik(x) =
P+1

n=0 (x=2)
2n+k

=[n!(n+ k)!] is the modi�ed Bessel function. For all t > 0,

the p.d.f of U can be expressed as follows:

fU (t) =

+1X
k=1

fU jS(t j k) P(S = k);(21)

where P(S = k) is given in (19) and fU jS(u j k) is the �rst-passage-time density of R(t)

through k. The latter is given by

fU jS(t j k) =
k

t

pk(t) =
k

t

�
p

q

�k=2
e
��(p+q)t

Ik(2�t
p
pq): t > 0:(22)

From (19), (21) and (22) we have

fU (t) =
e
��(p+q)t

t

e��
+1X
k=1

k

(k � 1)!

�
p

q

�k=2
�
k�1

Ik(2�t
p
pq); t > 0:(23)

Making use of Eq. (23) and of Eqs. 4.16.1 and 4.16.2 of Erd�elyi et al. [7], for p > q we

obtain:

E(U) =
�+ 1

� (p � q)
;(24)

Var(U) =
(2�+ 1)p + q

�
2 (p � q)3

;

CV(U) =
1

�+ 1

s
(2�+ 1)p + q

p� q

:

Note that E(U) = E(S)=E[R(t)=t], so that the mean duration of the rising phase equals the

mean number of net steps times the net steps rate. Two plots of density (23) are shown in

Figure 2. Parameters p and q are chosen according to the experimental results concerning

myosin number of steps along the actin �lament for di�erent load values that are given

in Kitamura and Yanagida [9], where the ratio between the number of forward steps and

backward steps is 18 under a near-zero load, and is 6 for a load between 0 and 0:5 pN.

Moreover, recalling from (18) that the mean dwell-time is [�(p + q)]�1, � is obtained from

[�(p+ q)]�1 =

�
4:8ms under a near-zero load

12:2ms for a load between 0 and 0:5 pN
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Figure 2: Plots of density (23) in the following cases: (i) � = 1:5, [�(p + q)]�1 = 4:8ms and

p=q = 18, where E(U) = 13:37ms and Var(U) = 122:80ms2, and (ii) � = 0:6, [�(p+q)]�1 = 12:2ms

and p=q = 6, where E(U) = 27:83ms and Var(U) = 858:98ms2.

where the rates of dwell times, appearing on the right-hand sides, are experimentally eval-

uated in the presence of 1 �M ATP and at 20C (see Kitamura et al. [10] and Kitamura

and Yanagida [9]). Moreover, due to (20), the value of � is chosen according to the follow-

ing experimental mean numbers of steps observed during rising phases (see Kitamura and

Yanagida [9]):

�+ 1 =

�
2:5 under a near-zero load

1:6 with a load between 0 and 0:5 pN.

Hence, in case (i) of Figure 2, where fU (t) exhibits a positive mode, it is p=q = 18, �(p+q) =

(4:8)�1 and � = 1:5; in case (ii), where fU (t) is strictly decreasing, we have p=q = 6,

�(p + q) = (12:2)�1 and � = 0:6.

Let us now denote by V the random variable denoting the position attained by the

myosin head at the end of the rising phase. Its density is given by:

fV (x) :=

Z +1

0

f(x; t) fU (t) dt; x 2 R(25)

with f(x; t) expressed in (10) and fU (t) given in (23). In order to provide a qualitative

insight of its behaviour, in Figures 3 and 4 we show two instances of probability density

(25). For p > q, making use of Eq. (25), we have:

E(V ) = (�+ 1)L;(26)

Var(V ) =
�L

2 [(2�+ 1) p + q] + (�+ 1)f�[L2(p+ q) + �
2] + Æ

2g
�(p� q)

;(27)

CV(V ) =

p
�L

2 [(2�+ 1) p + q] + (� + 1)f�[L2(p+ q) + �
2] + Æ

2g
(�+ 1)L

p
�(p � q)

:
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Figure 3: Plot of density (25) with � = 1:5, �2 = 0:1, p = 0:72, q = 0:04 and � = 0:27.
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Figure 4: Plot of density (25) with � = 0:6, �2 = 0:1, p = 0:18, q = 0:03, � = 0:39.
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Table 1: See text for explanation

p q � E(V ) � 2
p
Var(V ) E(V ) + 2

p
Var(V )

0.09 0.005 2.19 -15.82 43.32

0.18 0.01 1.10 -15.72 43.22

0.36 0.02 0.55 -15.67 43.17

0.72 0.04 0.27 -15.65 43.15

Comparing Eq. (26) with (24) and (15) we have E(V ) = E(U) � E[�(t)], so that the mean

position at the end of the rising phase equals the mean duration of the rising phase times the

constant mean velocity of the myosin head. In Tables 1 and 2 the values of E(V )�2
p
Var(V )

are indicated. These are obtained via Eqs. (26) and (27) for some choices of p, q and �

under the conditions p=q = 18, � = 1:5 and E(V ) = 13:75 (Table 1) and p=q = 6, � = 0:6

and E(V ) = 8:8 (Table 2).

Table 2: See text for explanation

p q � E(V ) � 2
p
Var(V ) E(V ) + 2

p
Var(V )

0.03 0.005 2.34 -16.70 34.30

0.06 0.01 1.17 -16.45 34.05

0.12 0.02 0.59 -16.32 33.92

0.24 0.04 0.29 -16.26 33.86

4 Rising phase in the absence of backward steps The experimental results of Kita-

mura and Yanagida [9] and Kitamura et al. [10] show that backward steps during a rising

phase are rare with respect to forward steps. Hence, it is challenging to analyse the results

given in the previous section when backward steps are not allowed, i.e. by assuming q = 0.

In this section we thus assume that R(t) identi�es with N+(t), which is a Poisson process

with intensity �p. Hence, the random duration U of the rising phase in the absence of back-

ward steps is the �rst-passage time of N+(t) through the random threshold S. Recalling

Eq. (18), in this case the dwell time is exponentially distributed with mean value (�p)�1,

so that fU jS(t j k) is an Erlang density with parameters k and (�p)�1:

fU jS(t j k) = �p e��pt
(�pt)k�1

(k � 1)!
; t > 0:(28)

From Eqs. (19), (21) and (28), we obtain the probability density of the rising phase

duration in the absence of backward steps:

fU (t) = e�� �p e��ptI0

�
2
p
��p t

�
; t > 0:(29)

From (29) we have that fU (0) = e���p > 0, and that fU (t) is a Polya frequency of order

2 density (PF2), i.e. a logconcave density (see Marshall and Olkin [11]). This means that

[U � t jU > t] �lr [U � � jU > � ] whenever 0 < t � � (see Theorem 1.C.22 of Shaked

and Shantikumar [12]). In other words, as time goes on, the residual time of rising phase

decreases in the likelihood ratio order sense. Moreover, from (29) we obtain

d fU (t)

dt
= e�� (�p)2 e��pt

h
(�� 1)I0

�
2
p
��p t

�
� � I2

�
2
p
��p t

�i
; t > 0:
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From this expression it is possible to show that density fU (t) is decreasing for all t > 0 if

� � 1, whereas density (29) is unimodal with a positive mode if � > 1.
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