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Abstract. In this paper a feedforward neural network architecture to model survival

probabilities is illustrated. The two main features of the network are that non-linearity

are captured in the survival function, and the time variable is embedded in the model so

it is able to extract its interactions with other system features. The model is described

in a hierarchical Bayesian framework. Some experiments with synthetic and real world

data show the capabilities of the model.

1 Introduction In literature we �nd many di�erent modeling approaches to survival

analysis. Conventional parametric models may involve too strict assumptions on the distri-

butions of failure times and on the form of the inuence of the system features on the survival

time, assumptions which usually extremely simplify the experimental evidence, particularly

in the case of medical data [Kalbeisch et al., 1980]. In contrast, semi-parametric models

do not make assumptions on the distributions of failures, but make instead assumptions on

how the system features inuence the survival time; furthermore, usually these models do

not allow for direct estimation of survival times. Finally, non-parametric models only allow

for a qualitative description of the data.

Neural networks have been recently used for survival analysis, for three surveys on the

current use of neural networks we refer to [Ripley et al., 1998], [Schwarzer et al., 2000],

[Eleuteri et al., 2002].

In this paper we describe a novel neural network architecture which overcomes all the

limitations of currently available neural network models without making assumptions on

the underlying survival distribution and which is proved to be exible enough to model

the most complex survival data. We describe our model in a Bayesian framework, which,

as advocated by [Raftery et al., 1994] in the context of survival analysis, helps taking into

account model uncertainty, which can help to improve the predictive performance of a

model.

The remainder of the paper is organized as follows. In Section 2 we describe the fun-

damentals of survival analysis and pose the censoring problem. In Section 3 we describe

some of the most used standard modeling techniques, which will be used in comparison to

our model. In Section 4 we describe the architecture of our neural network and we de�ne a

hierarchical Bayesian description of the neural network and a Monte Carlo estimator of the

survival function. In Section 5 some experimental results are shown, in comparison with

some commonly used modeling techniques.

2 Survival and hazard functions Let T (x) denote an absolutely continuous random

variable (rv) describing the failure time of a system de�ned by a vector of features x. If

F
T
(tjx) is the cumulative distribution function for T (x), then we can de�ne the survival
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function:

S(tjx) = PfT (x) > tg = 1� F
T
(tjx) = 1�

Z
t

0

f
T
(ujx)du(1)

which is the probability that the failure occurs after time t.

The requirements for a function S(tjx) to be a survival function are, uniformly w.r.t. x:

1. S(0jx) = 1 (there cannot be a failure before time 0),

2. S(+1jx) = 0 (asymptotically all events realize),

3. S(tjx) must be non-increasing as t increases.

From the de�nitions of survival and density of failure, we can derive the hazard function

which gives the probability density of an event occuring around time t, given that it has

not occured before t. It can be shown that the hazard has this form:

�(tjx) =
f
T
(tjx)

S(tjx)
:(2)

In many studies (e.g. in medical statistics or in quality control), we do not observe

realizations of the rv T (x). Rather, this variable is associated with some other rv Y � r

such that the observation is a realization of the rv Z = q(T; Y ). In this case we say that

the observation of the time of the event is censored. If Y is independent from T , we say

that censoring is uninformative.

In this paper we will assume uniform right censoring, i.e. q � min(�; �) and Y uniformly

distributed over an interval [0; a].

Survival data can then be represented by triples of the form (t;x; y) where x is a vector

of features de�ning the process, t is an observed time, and y is an indicator variable:

y =

�
1 if t is an event time

0 if t is a censored time
:(3)

It is possible to show [Eleuteri et al., 2002] that in the case of right censoring, the joint

sample density of a survival process for a set of independent observations D = f(t
k
;x

k
; y
k
)g

can be written as:

L(D) �
Y
k

l(y
k
jt
k
;x

k
) = S(t

k
jx
k
)1�ykf

T
(t
k
jx
k
)yk :(4)

Note that censored data models can be seen as a particular class of missing data models

in which the densities of interest are not sampled directly [Robert et al., 1999].

3 Models for Survival Analysis In the next sections we will describe some of the most

commonly used models, both for homogeneous (time-only) and heterogeneous modeling.

3.1 The Kaplan-Meier non-parametric estimator The Kaplan-Meier (KM) estima-

tor is a non-parametric maximum likelihood estimator. It is piecewise constant, and can be

thought of as an empirical survival function for censored samples. It is only homogeneous.

Let k be the number of events in the sample, t1; t2; : : : ; tk the event times (supposed

ordered), e
i
the number of events at time t

i
and r

i
the number of times (events or censored)

greater than or equal to t
i
. The estimator is given by the formula:

SKM(t) =
Y
i:ti<t

r
i
� e

i

r
i

:(5)
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It should be noted that the estimator is noisy when the data are few, since it is piecewise

constant. Therefore KM estimates from datasets sampled from the same distribution but

with di�erent number of samples can di�er quite a lot.

Despite its restrictions, this is the most widely used tool for analyzing survival data,

because its estimation is very fast and it allows qualitative inference on the data.

3.2 The Weibull homogeneous model The Weibull homogeneous model assumes a

speci�c functional form for the density of event times, that is:

f
T
(t) =We(a; b) � abtb�1 exp(�atb)I(0;+1)(t)(6)

where a and b are positive parameters and I(�) is the set indicator function. This density
implies that the hazard can be modelled as:

�(t) = abtb�1 :(7)

3.3 Proportional hazards model The most used survival speci�cation which takes

into account system features is to allow the hazard function to have the form:

�(tjx) = �(t) exp(w � x)(8)

where w are the parameters of the model, �(t) is some parameterised homogeneous hazard

function. This is called a proportional hazards (PH) model. The main drawbacks of such

model are assumptions on the form of the homogeneous hazard and on the interaction

between the covariates and the hazard. Furthermore, a linearity interaction between the

covariates is usually assumed, which, while simplifying the analysis and interpretation of

the parameters, it also hampers the capabilities of the model. Despite this, it is one of the

most used models in literature, and in the case of Weibull homogeneous hazard, it can also

be seen as an accelerated failure time (AFT) model since the predictors act additively on

the logarithm of failure time.

4 A neural network model In this section we de�ne a neural network (NN) which,

given a data set of system features and times, provides a model for the survival function

(and implicitly, by suitable transforms, of the other functions of interest). Furthermore, a

Bayesian description of the model is given.

4.1 Network architecture It is well known [Bishop, 1996] that a sigmoid is the appro-

priate activation function for the output of a NN to be interpretable as a probability. If

V (a) = (1 + exp(�a))�1 is such a sigmoid function (a is the net input to the activation),

by taking into account eq.1 and using S = 1 � V we can de�ne the activation function of

the NN as:

S(a) =
1

1 + exp(a)
:(9)

This de�nition is not suÆcient to de�ne a survival function, since we must also enforce the

requirements de�ned in the previous section as follows (for a more detailed discussion on

these conditions, see [Eleuteri et al., 2002]):

1. S(0jx) = 1; S(+1jx) = 0.

These requirements are satis�ed if we choose one of the activation functions in the

hidden layer to be of the form h(tjw
t1
) � log(tw

t1
). The only input feeding into this

time unit through the weight w
t1

is the time input (neither biases nor other inputs

feed this unit). Furthermore, the weights into and out of the hidden time unit must

be non-negative.
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Figure 1: Architecture of a neural network for survival analysis.

2. S(tjx) must be non-increasing as t increases.

This requirement is satis�ed if all hidden unit activations are monotonic non-decreasing

and if all the weights on paths connecting the time input to the network output are

non-negative.

In �gure 1 the architecture of the SNN is shown (the bias connections are not shown).

We have thus de�ned a neural network model which describes a class of semi-parametric

survival functions S(tjx;w), where w is the weights vector.

4.2 The Bayesian approach to modeling In the conventional maximum-likelihood

approach to training, a single weight vector is found which minimizes an error function; in

contrast, the Bayesian scheme considers a probability distribution over weights. We will

build a Bayesian statistical model, which is composed by a parametric statistical model

(the likelihood) and a prior distribution over the weights. For an in-depth discussion on

Bayesian learning in the context of neural networks see [Neal, 1996].

The learning process in this case is described by a prior distribution p(w) which is

modi�ed when we observe the data D through the likelihood p(Djw). This process can be

expressed by Bayes' theorem:

p(wjD) =
p(Djw)p(w)R
p(Djw)p(w)dw

:(10)

The likelihood is given in eq.4, in which S is the function realized by the network

and f
T
is given by the Jacobian of the network, which can be eÆciently evaluated with a

backpropagation procedure [Eleuteri et al., 2002].

The prior over weights should reect any knowledge we have about the mapping we want

to build. For the SNN model, we must then take into account the fact that we want a smooth

mapping and that we have both constrained and unconstrained weights; furthermore, we

should take into account the specialized rôle the weights have in the network depending on

their position. We can thus de�ne the following weight groups:

� Unconstrained weights:

{ a group for each of the covariate input, comprising the weights out of that input

into the hidden squashing units;
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{ one group for the biases feeding the hidden squashing units;

{ one group for the output bias.

� Constrained weights:

{ one group for the weights out of the input time unit feeding the hidden squashing

units;

{ one group for the weight out of the input time unit feeding the hidden time unit;

{ one group for the weight out of the hidden time unit;

{ one group for the weights out of the hidden squashing units;

If n is the number of inputs then we have n+ 5 groups.

We assign a distribution to each group, governed by its set of parameters (hyperparame-

ters). Since the weights are a priori statistically independent, then the prior over the whole

set of weights will be the product of the priors over each group.

For the unconstrained weights we can choose a Gaussian prior of the form:

p(w
u
j�

u
) =

Y
k2Gu

��
k

2�

�
Wk=2

exp

 
�
�
k

2

WkX
ik=1

w2
ik

!
(11)

where w
u
is the vector of unconstrained weights, G

u
is the set of the unconstrained weight

groups, W
k
is the cardinality of the k-th group and �

u
is the vector of hyperparameters

(inverse variances).

For all the constrained weights except those out of the hidden squashing units we choose

an exponential prior:

p(w(e)
c
j�(e)

c
) =

Y
k2G

(e)
c

�
k

Wk exp

 
��

k

WkX
ik=1

w
ik

!
I(w(e)

c
)(12)

where w
(e)
c is the vector of constrained weights, G

(e)
c is the set of the unconstrained weight

groups, W
k
is the cardinality of the k-th group, �

(e)
c is the vector of hyperparameters

(inverse means) and I(�) is the indicator function over the positive half-space in which the

weights are constrained.

For the constrained weights out of the hidden squashing units we choose a stable [Samorodnitsky et al.,

1994] L�evy density:

p(w(L)
c
j) =

� 

2�

�
N=2

exp

 
�

NX
i=1

�


2w
i

+
3

2
logw

i

�!
I(w(L)

c
) :(13)

where  is a scale parameter and N is the number of hidden squashing units.

For a complete description andmotivation of the above choices, we refer to [Eleuteri et al.,

2002].

4.3 Markov chain Monte Carlo methods for sampling the posterior The best

prediction we can obtain given a new input and the observed data D can be written in the

following way:

p(yj(x; t);D) =

Z
p(y;w;�j(x; t);D)dwd� =

Z
p(yj(x; t);w)p(w;�jD)dwd�(14)
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where p(yj(x; t);w) is the predictive model of the network. This can be seen as the evalu-

ation of the expectation of the network function with respect to the posterior distribution

of the network weights. In our case the integral cannot be solved analytically, so we must

use a numerical approximation scheme.

The posterior density in eq.10 can be eÆciently sampled by using a Markov chain Monte

Carlo (MCMC) method, which consists in generating a sequence of weight vectors, and then

using it to approximate the integral in eq.14 with the following Monte Carlo estimator (M

is the number of samples from the posterior):

p(yj(x; t);D) �
1

M

MX
i=1

p(yj(x; t);w
i
)(15)

which is guaranteed to converge by the Ergodic Theorem to the true value of the integral

as M goes to in�nity [Meyn et al., 1993].

The MCMC method we used for generating the sequence of weight vectors is the Slice

Sampling method. For a detailed discussion see [Neal, 2000].

4.4 Gibbs sampling As we have seen, the priors over the weights used in the inference

of the posterior are themselves parametrized. Instead of setting the values of these hyperpa-

rameters to arbitrary values, we can make them part of the inference process, by sampling

from eq.10. This can eÆciently be done by using the Gibbs sampling process. In a �rst

step the hyperparameters are kept constant, and we use an MCMC method to sample from

eq.10. The second step consists in keeping the weights constant, while the hyperparameters

are sampled from the following distribution:

p(�jw;D) =
p(�;w;D)

p(w;D)
=

p(Djw)p(wj�)p(�)

p(Djw)p(w)
/ p(wj�)p(�) :(16)

This process can be done eÆciently if we choose a hyperprior p(�) which is conjugate

to the hyperposterior p(�jw;D) (i.e. they both belong to the same family). For a detailed

discussion on the topic of hierarchical Bayesian modeling we refer to [Robert, 2001].

It is possible to show that in the case of Gaussian, exponential and L�evy priors, by choos-

ing gamma hyperprior distributions, the resulting hyperposteriors are gamma distributions

[Eleuteri et al., 2002].

5 Experiments To assess the performance of our model, we tested it on synthetic homo-

geneous and real world heterogeneous data. All the software for the simulations has been

written by the authors in the MATLAB language.

5.1 Synthetic homogeneous data In the �rst experiment the failure density is:

f
T
(t) =

(t� 2)4

4
exp

1

20

�
�32� (t� 2)5

�
:(17)

The density was sampled with the MCMC slice sampling algorithm; 5000 samples were

generated, with about 13% uniformly right censored data in the interval [0; 10]. The data

were then uniformly split into two disjoint data sets: a training set of 3000 samples and a

testing set of 2000 samples (with the same percentage of censored data in each set). Three

models were �tted to the data: a standard Weibull model, a KM non-parametric estimator

and a SNN model with ten hidden units.

The SNN model was trained using the MCMC slice sampling algorithm with Gibbs

sampling of the hyperparameters. The �rst 100 samples were omitted from the chain, to
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allow its burn-in. Then, 100 samples were generated, and the last 50 were used to obtain

the Monte Carlo estimator of the SNN output, based on an inspection of the energies of the

chain. Note that in a real use of the algorithm, a simple inspection of the energies might not

be suÆcient to assess convergence; instead, a formal test of convergence, like the Estimated

Potential Scale Reduction diagnostic ([Robert et al., 1999], [Gelman et al., 1992]) should be

used. The Weibull model was trained by standard Maximum Likelihood techniques.

As can be seen in �gure 2, the Weibull model cannot �t the data at all. The SNN model

of the survival function is similar to the KM estimator of the data. Note that two KM

estimator curves have been shown, one for the complete data set, the other for the test set

only. This is important because the KM estimator is noisy when the data are few; however

it asymptotically converges to the true survival function, in absence of censoring.
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Figure 2: Weibull, KM and SNN models of a synthetic survival function (evaluated on the test set).

5.2 Real heterogeneous data These data are taken from trials of chemotherapy for

stage B/C colon cancer1. It is composed of 1776 samples, with 12 covariates. The dataset

was split into a training set of 1076 samples, and a test set of 700 samples. About 49% of

the data are censored, which makes the analysis of the data a complex task. Two models

were �tted: a Weibull PH model and a SNN model with 30 hidden units. KM estimates

were then evaluated for each model.

The SNN model was trained with the MCMC slice sampling algorithm with Gibbs

sampling of the hyperparameters. As in the previous experiment, the �rst 100 samples

were omitted from the chain. Then, 240 samples were generated and the last 60 samples

were used to obtain the Monte Carlo estimator of the SNN output, based on an inspection

of the energies of the chain. The Weibull PH model was trained by standard Maximum

Likelihood techniques.

The test data was strati�ed in three quantiles based on the survival estimates of the

models at t = 220 weeks. Then, the mean (w.r.t. the covariates) survival probabilities

were estimated, togheter with KM estimates of the quantiles induced by the models. If the

output of the model and KM estimates are similar, then the model captures the distribution

of the data. As can be seen in �g.3 and �g.4, the SNN model has good performances, while

the Weibull PH model cannot �t the data at all.

1
The data are distributed with the freeware R statistical software, available at http://www.r-project.org
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Figure 3: SNN model of a real survival function with covariates (evaluated on the test set).
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Figure 4: Weibull PH model of a real survival function with covariates (evaluated on the test set).

6 Discussion and perspectives In this paper we have described a novel NN architec-

ture that addresses survival analysis in a neural computation paradigm.

Starting from well de�ned mathematical requirements on the survival function, we have

de�ned a feedforward neural network which, by a careful choice of the architecture and the

activation functions for the neurons, satis�es those requirements.

Experiments on complex synthetic and real survival data demonstrate that the SNN

model can approximate both homogeneous and heterogeneous survival functions, and its

performances are better than those of the most used model used in literature, namely the

Weibull Proportional Hazards and Accelerated Failure Time model.
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