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Abstract. With the advance of information technology, the computer has become

a model for the brain, replacing earlier ones, such as the telephone exchange and

hydraulic machinery. But what kinds of computations does the brain perform? What

we know about its structure and function imposes constraints. We can analyze the

consequences and implications of these constraints to arrive at new insights. Thus we

are led to a view of multivariable, broadly tuned single cells, overlapping computational

areas and distributed representations of functions and operations.

Recent �ndings from imaging and neurobehavioral studies support the idea that

brain programs or representations are dynamic and distributed and that brain-body

interactions are inseparably linked. It is proposed here that the primary constraint on

representations is that they be in brain-body correspondence with the appropriate task

or operation and within that constraint there is considerable latitude in the ways these

programs can be generated and regenerated. Based on these viewpoints, this paper

presents an outline of principles and their illustration by quantitative treatments.

1 Introduction Computational theories of arti�cial intelligence, in the broad sense, even

when not addressed to neuroscience, have drawn heavily on knowledge of the nervous system.

Some such theories now lead an independent existence without any reference to biology. Yet,

invariably, implementations simulate some degree of quasi-mental activity. It follows that

a knowledge of neural function is relevant to biocomputation and arti�cial intelligence.

In trying to understand how the brain works we may look at its design and ask two

questions: First, does it suggest a rationale in terms of function? Can we think of any

reasons why this design should be superior to others? And second, what are the functional

consequences of the particular design? What do the properties of the units and their

interconnections imply for the ways they operate?

There have been numerous attempts to model the brain with the use of advanced math-

ematical techniques and, while interesting, it is doubtful whether they have given us much

new insight. This may be due, in part, to the depth of our knowledge being insuÆcient. It

is as if we were looking at a classical painting from a distance, where we can see the outlines

of the composition, the balance of colors and of light and dark. But the essential content

is still not within our grasp. Therefore, we need to ask some simple questions, and it is

surprising how much new insight we can get based on what we know already. So, to begin

with, let us outline some of the properties of neurons and networks. Starting with single

cells, we know that di�erent neurons are tuned to di�erent stimuli and produce di�erent

responses. At one time it was thought that these responses are highly speci�c.

So one particular neuron might become active when grandmother appeared. It was the

idea of grandmother cells, which we now believe to be untenable. In fact, neural tuning is

quite broad. A visual cell responding vigorously to an edge oriented at 30Æ to the horizontal

will respond with diminishing strength to progressive deviations from 30Æ. Moreover, the
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same cell may give di�erential responses to parameters such as movement and color. The

result is that neurons are multivariable and broadly tuned. This is a property which is not

suÆciently appreciated in the literature.

At the network level, a striking feature of design is the impressive convergence and

divergence of lines of communication between the various levels and stations of nervous

systems. This is quite di�erent from point to point transmission in man made systems.

It raises a number of questions, including how detailed information might be represented.

At �rst sight such a design may appear too di�use to subserve accuracy of sensation or

movement. We need to ask what distinguishes the operations in neural networks where

many source cells converge onto a target cell and one source cell diverges to many target

cells.

At a global level we �nd that information is processed and transmitted in streams or

channels at the same time as there is a dense interconnectivity between di�erent parts

of the brain. There are distinguishable neural channels not only for the di�erent senses

and activations of di�erent muscle groups, but also within each modality. For example, in

vision there are channels for motion, color, shape from retina to cortex, and similarly in the

control of movement. There is a dense interconnectivity through convergent, divergent and

feedforward and feedback pathways, so that every neuron is ultimately connected to every

other neuron in the brain. But at the same time there are channels and areas which are

tuned to preferred parameters.

How can we make sense of these design features and what are their functional implica-

tions?

2 Neural Tuning To appreciate a rationale for broad tuning consider the case of color

vision. The human fovea contains 3 types of cone, the red, green and blue cones. Each

is tuned to a broad range of the 400nm visible spectrum with peak sensitivities at ap-

proximately 565, 535 and 440nm respectively. It is well known that the responses from

these cones are combined to produce the sensations of a continuous range of colors with

high discriminability. Suppose instead of this broadly tuned system we had photoreceptors

which were tuned to a narrow wavelength range, analogously to grandmother cells. It has

been estimated from psychophysical experiments that we can distinguish some 106 di�erent

colors. (see Boynton 1990). A US Bureau of Standards publication lists 7500 color names

(Kelly & Judd 1976). Suppose we use the lower �gure with 7,500 cones to cover the 400nm

spectrum. Each cone would have to be tuned to a wavelength width of 4=75nm = 0:5�A
approximately. The cones are spaced some 2�m apart in the fovea. Then 7500 cones would

occupy about 3% of the human fovea. This would create problems for the spatial resolution

of colors. But, even worse, from the uncertainty principle, a 0.5�Atuning would imply a

position uncertainty of about 800�m, extending over more than half the fovea. Clearly,

broadly tuned cells are superior in performance.

As regards multivariable tuning, consider a circular receptive �eld with its associated

target cell responding to the position and intensity of a spot of light. In principle, one could

have one target cell computing each position and intensity, or one could have one target cell

tuned only to position and another to intensity, or one could have two broadly tuned target

cells, each responding to both position and intensity. Suppose the common receptive �eld

contains k cells, each capable of j intensity responses. Then in the �rst case, the target cell

would have to accommodate k� j responses. In the second case it would require k+ j and
in the third case 2

p
(k � j) responses for the two cells. ( In the third case the total number

of distinct responses of the pair is
p
(k � j)�

p
(k � j) ). For k � j � 4, k � j and k + j

are both greater than or equal to 2
p
(k � j). So the required response repertoire is smaller

for broadly tuned, multivariable cells.
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Let us now look at a speci�c model of broadly tuned, multivariable cells. When a spot

of light moves across a diameter of the receptive �eld let the response of the cell increase

to a peak in the center and then diminish again. For a given position let the response

also increase with light intensity. Let two target cells A, B have overlapping receptive

�elds (Leibovic 1969). We can plot the responses of A vs. B for di�erent positions and

intensities of the spot of light. We obtain a series of distinct curves parametrized either by

position or intensity from which both position and intensity can be uniquely determined. It

illustrates how multivariable information can be encoded and suggests as a consequence that

it requires the activities of groups of cells. The example has implications for the problem

of representation to be discussed later.

We also �nd that this design is robust with respect to reliability. For, suppose there are

three target cells with overlapping receptive �elds. If one of them failed there would still be

two for computing spot position and intensity. Instead, if there were separate target cells

for position and intensity, one would need four cells to safeguard against failure, one extra

one for the position cell and one for the intensity cell.

Thus, multivariable, broad tuning turns out to be economical in terms of the number of

di�erent kinds of units required for accurate processing and transmission of information as

well as in terms of required response repertoire, and in terms of any redundancy subserving

reliability.

3 Convergence and Divergence Successive transformations or computations are car-

ried out between di�erent levels in the nervous system. For example, if a target cell in

the visual pathway is to compute speed and direction of movement it needs inputs from

photoreceptors within its receptive �eld in the retina. This necessitates convergence, as

a result of which there is a lack of information on the detailed shape of the image. To

recover detail requires concurrent divergence and overlap of receptive �elds as we saw in

the previous section on neural tuning. To further pursue this, consider a linear system of

target and source cells. Let the i-th target cell output yi be a linear combination of the

source cell outputs xj , i.e.

yi =
X

j

aijxj(1)

where it is assumed that the xj and yi represent a single variable, e.g. the �ring frequency of
a neuron. Then, for 1 � j � N and 1 � i � T; T � N , there can be a unique solution for the

xj under suitable conditions (Leibovic 1988). In other words, all the information contained

in the source cells can be recovered. In eq. (1) the source cells are simply characterized

by their outputs xj . But suppose the xj have a structure, so that successive segments of

the output of xj re
ect di�erent variables or aspects of the input. We can split the xj

into a number equal to the separate variables contained in the output of the j-th cell. For

example,

xj =
X

k

bjkxjk(2)

and then

yi =
X

j;k

aijbjkxjk(3)

In this case the number of target cells must be larger than the number of source cells if all

information is to be preserved. There are examples in the nervous system in which there
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is more divergence than convergence and vice versa. Thus in the macaque visual pathway

some 100�106 photoreceptors converge onto 106 ganglion cells and an approximately equal

number of principal cells in the LGN, which then diverge to 50� 106 cells in layer IV of V1

(Orban 1984). In the cerebellum 1 parallel �ber diverges to 300 Purkinje cells while at the

same time more than 50,000 parallel �bers converge onto 1 Purkinje cell. (Eccles 1969).

Of course, the function of serial operations in the brain is not just to preserve point-

wise information between di�erent levels, but to compute meaningful parameters. The

above considerations can serve as a guide in deciphering where detailed input information

is preserved, where it is discarded and where the multivariable responses of source cells may

be made explicit.

Reliability can also be achieved in various ways in convergent { divergent pathways

(Leibovic 1993, 2000). For example, referring to the model of eq. (1), in a two layer net

with divergence, let there be n cells in layer 1 diverging to n +m in layer 2. The number

of distinct subsets in layer 2 containing n target cells is

T =
(n +m)!

n!m!
(4)

Each of these sets can contain the complete information from layer 1 if the net is functioning

correctly. But if one of the target sets fails, one could rely on a network which could take

a majority vote. The appropriate m would depend on failure probability, but in any event

this would be a much more economical system than the one considered in the classic paper

of von Neumann (1956).

Thus convergence and divergence is necessary for computations in receptive �elds and

the preservation of information on the structure of activity patterns in groups of cells. It

is an economical design which is well suited to ensuring reliability. As with multivariable,

broadly tuned cells, a consequence of convergence and divergence is that information is

distributed between levels.

4 Channels We have seen that successive computations are carried out through source

cells converging onto target cells. We have also seen that there can be advantages to multi-

variable tuning, in other words for computing more than one variable per target cell. This

was the case in the discussion of response repertoire and reliability for position and inten-

sity tuning. On the other hand, di�erent computations have di�erent network requirements.

A case in point is illustrated by a model arti�cial vision system (Quesada-Arencibia et al

2000) which computes the size, position, speed and direction of a moving object. There

is a channel for object size and position, and a channel for speed and direction which are

calculated for each position of the moving object. In principle, the object position can be

obtained from the motion channel. But the calculated movement trajectory then deviates

appreciably from the correct one. More biological examples are readily at hand as follows.

To distinguish two points of light as separate there must be at least one unstimulated

photoreceptor between two stimulated ones in the retina. But to distinguish their colors

there must be at least two cones with di�erent spectral sensitivities stimulated by each spot,

with an intervening space of cones in between. Again, to detect retinal motion requires a

larger receptive �eld than distinguishing between two spots of light (Leibovic 1988). Each

of these functions requires di�erent connectivities which presents a rationale for di�erent

form, color and motion channels. Such channels have been described in the visual pathway

and they also occur in other sensory and motor modalities (see e.g. Maguire et al 1990). In

vision, the di�erent channels synapse in di�erent cortical areas. Thus, the primary visual

cortex V1 has subdivisions for color, motion and form parameters which undergo further

processing in V2 (see Livingstone & Hubel 1987); color is represented in V4 and motion in
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V5. There is also evidence for parietal and temporal processing streams for space (where)

and form (what) respectively (Ungerleider & Mishkin 1982).

There are more than 30 cortical areas concerned with di�erent aspects of vision. But

it would be wrong to characterize them as devoted to a single variable. That would be

repeating the mistake of grandmother cells. My proposition is that multivariable, broad

tuning is a universal design feature of the nervous system and this applies not only to single

cells, but also to functional groups of cells in sub-cortical nuclei as well as cortical and

cerebellar subdivisions.

Thus a rationale for channels is to be sought in computational eÆciency. A consequence

is that categorical information is represented in distinguishable loci. But we must reject

the notion that either channels or cortical areas are simply unimodal.

5 Problems of Representation A traditional view of the brain is that it consists of

di�erent channels and areas which deal with di�erent stimulus and action parameters. Per-

ception and recall are sub-served by serial processes from lower to higher levels in spe-

cialized areas of the brain up to association and integration areas, presumably in frontal

cortex. Subsequently, instead of a unidirectional processing stream it has been proposed

that there is an interaction between high level, specialized modules which receive their input

from lower level analyzers. The high level interactions would be controlled by convergence

zones (Damasio 1989) which bind or bring together the separate aspects of a percept in the

specialized modules. Thus, the sight of motion and shape would result in the realization

of a bird in 
ight. However, neither integration areas nor convergence zones have been

identi�ed in neural tissue, and there are some interesting recent and not so recent �ndings

which suggest a di�erent point of view as proposed here. I shall mention a few examples.

It is well known that left hemisphere damage to language centers at an early age leads to

the development of language centers in the right hemisphere. It demonstrates the plasticity

of the brain in development. With regard to the adult brain, there are patients with severe

left hemisphere lesions who retain some semantic abilities. These are presumed to be due

to residual or normally silent capabilities in the right hemisphere, which has traditionally

been considered as nonlinguistic.

More recently, there have been discoveries regarding phantom limbs. After amputation

of a limb the patient can feel pain and other sensations in the missing limb. It turns out

that such sensations can also be evoked by stimulating speci�c areas on the patient's face.

The face and hand areas are adjacent in the somatosensory cortex and some time after

amputation the hand areas seem to be taken over by the face area as revealed by brain

imaging. (Pons et al 1991, Ramachandran 1993). The interesting point, however, is that

the face stimulation can produce amputated hand sensations very soon after the operation

and before neural reorganization could have occurred. (Borsook et al. 1997). This suggests

that the hand and face areas are not sealed o� from each other but, in fact, are intrinsically

multivariable, though hand sensation may, in general, be silent in the face area and vice

versa.

Since the invention of brain imaging a whole new �eld of research has opened up. A

remarkable discovery was that even in the performance of simple tasks, there is widespread

activation of di�erent areas of the brain. Of particular interest are some studies which are

beginning to reveal the neural substrates of not only sensory and motor activations but of

thought processes. I shall mention only a few.

There has been a lot of work as well as controversy on visual imagery and visual repre-

sentation (see TINS Debate in TINS 1994). A case in point concerns the question: Which

cortical areas are activated when a subject performs a visual task on the one hand or per-

forms that task in his imagination on the other hand? Some have claimed that the areas
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are identical (e.g. Kosslyn & Ochsner 1994) and include V1 and V2, which have retinotopic

projections and are involved in analyzing local parameters of shape, color, motion. Others

(e.g. Roland & Gulyas 1994) have maintained that only higher level visual areas are acti-

vated in imagery. There are a number of methodological problems which may explain the

discrepant results and there is evidence that imagery and perception, not being identical,

do not produce identical activations (see e.g. Kosslyn et al 1997). Yet it remains a fact that

lower as well as higher visual areas are active in both conditions in at least some experimen-

tal paradigms. Thus, imagery, a reconstructive process, drawing on memory and attention,

may use neural mechanisms which are traditionally associated with low level analysis of the

visual scene: The mental reconstruction does not occur only in high level association areas

or convergence zones.

Not only do imagery and performance reproduce similar neural activities, in addition

imagery induces physical activation which is also part of the performance. For example,

kinesthetic sensation is internally simulated during imagined movement (Naito et al. 2002),

and eye movements accompany visual imagery (Brandt et al. 1989). Thus, the thought

processes generating a particular mental imagery also contain a penumbra of associations

involving the whole organism.

Bodily activity induces neural activity and vice versa. This is equally true at the molec-

ular level: physical states turn on mental states (and v.v.) and induce hormonal activity.

Hormones bind to DNA and a�ect gene expression, leading to the production of proteins

which alter mental and physical states. The brain, on the view presented here is merely

an organ which participates in a cycle of activities in support of the living organism. Any

separation we may make between body and brain may be quite illusory.

6 Visual Representations are not Encoded in Fixed Retinotopic Tissue We

showed some time ago (Leibovic et al 1971) that visual percepts are not encoded in �xed

retinotopically organized areas of the brain. In our experiment a subject is placed in a dark

room without any visual space cues and has to set up a series of small, dim lights along a

straight line, perpendicular to his line of sight and at several distances from himself. This

is the well-known paradigm of the fronto-parallel lines. Instead of being straight, the lines

set up by the subject are convex towards him at near and concave at far distances. It has

been shown that binocular disparity is the dominant cue in this situation. Other cues, like

accommodation and convergence play little, if any, role.

But if the cue is binocular disparity, then it should be possible to predict all the experi-

mental fronto-parallel lines from just one of them at one distance from the subject. It turns

out, however, that these theoretically derived fronto-parallel lines are quite di�erent from

the experimental ones. This implies �rstly, that other than the purely retinotopic cues of

binocular disparity are involved and secondly, that visual representations are not encoded

in either retinotopically organized �xed cell assemblies nor in �xed patterns of activity in

labile assemblies. For, if the representation resided in retinotopic, �xed cell assemblies then

di�erent retinotopic images should appear to be di�erent; and if the representation was in

a �xed activity pattern, then di�erent retinotopic images should evoke di�erent activity

patterns and appear to be di�erent. But this is not the case: the experimentally generated

fronto-parallel lines are retinotopically di�erent, but appear to be all the same.

7 Representations, Sensorimotor Activity and Thought Processes Our results

on the fronto-parallel lines have implications for functional imaging studies. Together they

suggest that representations are not stored in some �xed groupings in higher brain centers

or convergence zones. If they were, then only the high level centers or convergence zones

would need to be activated to go through an imagined or recalled task. But, as the imaging
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studies show, the low level areas are also recruited. True, one could make the argument that

distributed memory residing partly in low level centers need to be accessed from convergence

zones. But, as stated earlier, no such convergence zones have been identi�ed. I suggest

instead that something like a program or plan of widespread neural activation which depends

on a sequence of functional operations is at work and is generated, or regenerated, by the

appropriate input or cue (Leibovic 2000). Such input or cue need not come from any

convergence zone, but may arise in any part of the brain. The high interconnectivity

ensures spread of activation and interactions through re-entrant pathways. I propose that

primary activity in a specialized area also contains a substrate of more or less silent activity

for other specialized areas. Thus activity in one area primes activity in other areas. If these

other areas have also received primary activation, the to and fro of information leads to a

resultant co-activation which represents the appropriate percept. Thus, activation in areas

specialized for form (what) and for position or movement (where) can lead to the percept of

a bird in 
ight. There is no need of convergence zones for binding the component activities

which, in themselves, have only partial or no meaning. The representation resides in the

global activity arising naturally through coactivation and co-operative interactions. There

is no distinction of high and low level areas, only of functional di�erences.

A percept then arises from the �t of distributed activity in relation to the constraints

provided by the input or cue. As a consequence, like a perceptual or motor task which can

be performed in more than one way, the corresponding neural activity can exhibit more

than one pattern. The important point is that there should be a correspondence between

neural activity and task.

A compelling example of such a correspondence is the discovery of mirror neurons in the

monkey brain (Gallese et al. 1996). These are found to discharge when either the monkey

manipulates an object or sees the experimenter performing a similar action. My interpre-

tation of this is that, like the imaging results, it suggests that the working neurons are also

the thinking neurons. Sensorimotor activity and thought have similar representations.

8 Conclusion In summary, neurons are not univalent grandmother cells, but are multi-

variable and broadly tuned. This makes for eÆciency in terms of the number of units and

the response repertoires required to encode information. As a consequence, information is

carried in the simultaneous activities of populations of cells. Moreover, with this design any

redundancy in the service of reliability is minimized.

I propose that multivariability and broad tuning is a general feature of design in the

nervous system including, in particular, channels and cortical areas.

The views I have presented place the brain within the context of the body, as suggested

by the examples on mirror neurons and imaging, where imagined motion engenders kines-

thesia and visual imagery is accompanied by eye movements. We are thus led to a dynamic

view of organic, functional operations and neural representations. All these are sub-served

by broadly tuned, multivariable neurons and neural assemblies, interconnected through

converging and diverging pathways and computing di�erent parameters. It is an interde-

pendent, highly adaptable, eÆcient, dynamic system which has evolved through natural

selection.
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