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Abstract. The paper investigates knowledge discovery based on learning of languages

generated by patterns from positive examples. A pattern p is a �nite string of constant

symbols and variables, and the language de�ned by p is the set of constant strings

obtained from p by substituting nonempty and constant strings for variables. We

consider the class PL�

k of unions of at most k intersections of �nitely many pattern

languages. It is well known that the class of unions of �nitely many pattern languages

is not inferable from positive examples. Every intersection of �nitely many pattern

languages can be represented as a union of pattern languages, but it may be a union of

in�nitely many ones. The class PL� of intersections, however, is shown to have �nite

thickness. Using the result, we show that the class PL�

k is refutably inferable from

complete examples as well as inferable from positive examples.

In order to study eÆcient learning algorithm, we introduce two kind of syntactic

ordered relations for �nite sets of regular patterns, and show that the semantic con-

tainment of unions of intersections of regular pattern languages is equivalent to the

syntactic containment of some sets of regular patterns. In terms of this result, the class

of intersections of regular pattern languages is polynomial time (refutably) inferable

from positive (complete) examples, under some assumption.

1 Introduction. Inductive learning or inductive inference is a process to �nd general

rules from their concrete examples. The present paper deals with inductive/refutable learn-

ing of languages generated by patterns from examples. A pattern is a nonempty �nite string

consisting of constant symbols and variables. The language L(p) generated by a pattern p

is the set of constant strings obtained from p substituting nonempty constant strings for

variables in p.

Learnability of pattern languages has been extensively investigated in the framework

of identi�cation in the limit due to Gold[8] ([20], [9], [21]). Angluin[2] proved a theorem

characterizing inferable classes from positive examples in Gold's framework, and gave a

useful suÆcient condition, called �nite thickness, for the inferability. The class PL of

pattern languages has �nite thickness, and thus is inferable from positive examples ([2]).

The class PL is one of the most basic class in the framework of elementary formal systems

which was introduced by Smullyan[22] to develop a new theory of recursive functions, and

was proposed as a unifying framework for language learning by Arikawa et al.([3], [5]). That

is, an elementary formal system consisting of only one de�nite clause de�nes a pattern

language. From practical point of view, pattern languages were investigated in another

framework of learning such as PAC learning ([10], [19]) and learning from neighbor systems

([14], [15]).

Pattern languages merely are not used for some applications because of their simplic-

ity. Various kinds of languages generated by patterns have been investigated in Gold's

2000 Mathematics Subject Classi�cation. 68T05, 68T25.

Key words and phrases. Pattern language, inductive inference, refutable inference, identi�cation in the

limit.



480 MASAKO SATO AND YASUHITO MUKOUCHI

framework such as languages generated by decision trees over patterns and so on ([4]). In

particular, unions of pattern languages were extensively studied by Wright, Shinohara and

Arimura ([23], [6], [7], [21]). Wright[23] introduced a more general suÆcient condition called

�nite elasticity for the inferability than �nite thickness, and showed that the property is

closed under union operation. Moreover, Moriyama and Sato[11] and Sato[16] showed that

the property is closed under various operations such as intersection, concatenation and so

on. As a result, the classes of bounded unions of intersections of pattern languages are

shown to have �nite elasticity, and thus are inferable from positive examples. Note that an

intersection of �nite number of pattern languages can be expressed as a union of pattern

languages, but not always �nite number. However, the class of intersections of �nitely many

pattern languages is shown to have �nite thickness, and thus is inferable from positive exam-

ples. It is well known that the class of �nite unions of pattern languages is super-�nite and

thus is not inferable from positive examples. In some practical applications such as genome

informatics, such languages generated by patterns are paid much attentions (Arikawa et

al.[4]).

On the other hand, Mukouchi and Arikawa[13] proposed refutably inductive inference

as a framework of machine discovery, and showed that the class PL is refutably inferable

from complete examples.

In this paper, we investigate inductive learnability and refutability of bounded unions

of intersections of pattern languages from examples. The class PL�
k of unions of at most

k intersections of �nitely many pattern languages is shown to be inferable from positive

examples as well as refutably inferable from complete examples.

In order to construct an eÆcient learning algorithm, the complexity of the membership

problem or �nding one of compact expressions generating a given sample is an important

key. Concerning the membership problem, it is well known that the problem of regular

pattern languages is polynomial time computable although that of pattern languages is

NP-complete. A pattern is regular if each variable occurs at most once in the pattern.

We introduce two kinds of syntactic partially ordered relations on generalizations and

instances of �nite sets of patterns, and show an equivalence between the semantic con-

tainment and the syntactic containment, under some assumption of the cardinality of the

alphabet. In terms of the result, if the set of minimal generalizations of a given sample is

polynomial time computable, then the class RPL� of intersections of �nitely many regular

pattern languages is polynomial time inferable from positive examples.

2 Preliminaries. Let � be a �xed alphabet of constant symbols, andX = fx; y; z; x1; x2;

� � � g be a countable set of variables. Assume � \ X = �. A pattern is a nonempty �nite

string over � [ X. A pattern p is regular if each variable occurs at most once in p. For

instance, p = axbyy and q = axbyz are patterns over fa; b; cg and p is regular but not q. By

P and RP, we mean the classes of patterns and regular patterns, respectively. The length

of a pattern p, denoted by jpj, is the number of symbols in p.

A substitution � is a homomorphism from patterns to patterns that maps each constant

to itself. By p�, we denote the image of a pattern p by a substitution �. We assume that

x� is not empty for any variable x. Thus jpj � jp�j for any �.

We de�ne the language generated by a pattern p as follows:

L(p) = fw 2 �+ j 9� s:t: w = p�g:

We denote PL and RPL the classes of pattern languages and regular pattern languages,

respectively.

The present paper deals with various classes of languages generated by pattern lan-

guages.
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We give the notions of identi�cation in the limit from positive examples (Gold[8],

Angluin[2]), and refutable inferability from complete examples (Mukouchi and Arikawa[13]).

Let N be the set of nonnegative integers. A language class L = L0; L1; � � � over � is an

indexed class of recursive languages if there is a computable function f : N � �� ! f0; 1g

such that f(i; w) = 1 if w 2 Li, otherwise 0. Hereafter we con�ne ourselves to indexed

classes of recursive languages, and identify a class with a hypothesis space.

A positive presentation, or a text, of a nonempty language L is an in�nite sequence of

strings w1; w2; � � � in �� such that fwn j n � 1g = L. A complete presentation, or an

informant, of L is an in�nite sequence (w1; t1); (w2; t2); � � � of elements in ���f+;�g such

that fwn j n � 1; tn = +g = L and fwn j n � 1; tn = �g = Lc(= �+ nL). In what follows,

� denotes a positive or complete presentation, and �[n] denotes the �'s initial segment of

length n.

An inductive inference machine (IIM, for short) is an e�ective procedureM that requests

inputs from time to time and produces nonnegative integers, called guesses, from time to

time. Let M be an IIM and M(�[n]) be the last guess of M which is successively presented

�[n] on its input request.

An IIM M converges to h 2 N for a positive presentation, if there is an n 2 N such

that for any m � n, M(�[m]) = h. An IIM M infers a class L in the limit from positive

examples, if for any Li 2 L and for any positive presentation � of Li, M converges to an

index j for � such that Lj = Li. A class L is inferable from positive examples, if there is

an IIM which infers L from positive examples.

In the above de�nition, the behavior of an IIM is not speci�ed, when we feed a positive

presentation of a target language not in the hypothesis space. Mukouchi and Arikawa[13]

proposed an inference machine that can refute the entire space of hypothesis.

An inductive inference machine that can refute hypothesis space (RIIM, for short) is

an e�ective procedure that works like an IIM and, moreover, has an ability to refute the

class. A class L is refutably inferable from complete examples, if there is an RIIM M which

satis�es the following condition: If L is contained in the hypothesis space, then M infers

each target language L in the limit from complete examples, otherwise M refutes and stops

at some stage.

3 Bounded unions of intersections of pattern languages. A notion of �nite

thickness for a language class due to Angluin[2] is a very useful suÆcient condition for

inferability and de�ned as follows: A class L has �nite thickness, if for any nonempty

subset S � �+, fL 2 L j S � Lg is �nite. Since PL has �nite thickness, the class is

inferable from positive examples (cf. Angluin[2]).

We denote by P� the class of nonempty �nite subsets of P. For the class P�, we de�ne

two language classes as follows:

PL� = fL(P ) j P 2 P�g; PL� = fL(fPg) j P 2 P�g;

where L(P ) =
S
p2P L(p) and L(fPg) =

T
p2P L(p) for each P 2 P�. Since PL has �nite

thickness, it immediately follows that:

Theorem 1 The class PL� of unbounded intersections of pattern languages has �nite thick-

ness. Thus it is inferable from positive examples.

Note that the class PL� of unbounded unions of pattern languages is not inferable from

positive examples since it is a super-�nite class (cf. Gold[8]). For a positive integer k, by

PLk we denote the class of unions of at most k pattern languages, i.e.,

PLk = fL(P ) j P 2 Pkg; where Pk = fP 2 P� j ]P � kg:
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A notion of �nite elasticity due to Wright[23] is de�ned as follows (cf. Wright[23] and

Motoki et al.[12]): A class L has �nite elasticity, if there does not exist an in�nite sequence

w0; w1; w2; � � � 2 �+ and an in�nite sequence L1; L2; � � � 2 L such that

fw0; w1; � � � ; wk�1g � Lk; but wk =2 Lk (k � 1):

Finite elasticity is a good property in a sense that (1) it is a more general suÆcient

condition for inferability than �nite thickness and (2) it is closed under various class opera-

tions such as union, intersection and so on (Wright[23], Moriyama and Sato[11], Sato[16]).

Wright showed that the class PLk (k � 1) has �nite elasticity and thus is inferable from

positive examples.

For P1; � � � ; Pn 2 P
�, we de�ne

L(fP1; � � � ; Png) =

n[
i=1

L(fPig) =

n[
i=1

\
p2Pi

L(p):

Clearly L(P ) = L(ffp1g; � � � ; fpngg) holds if P = fp1; � � � ; png for patterns pi's. Moreover,

we de�ne

PL�
k = fL(fP1; � � � ; Png) j 1 � n � k; P1; � � � ; Pn 2 P

�g:

Clearly PLk ( PL�
k (k � 1) holds. Since PL� has �nite thickness, we obtain the following

result:

Theorem 2 Let k � 1. The class PL�
k
has �nite elasticity. Thus it is inferable from

positive examples.

Now we consider refutable inferability of the class PL�
k from complete examples.

M-�nite thickness introduced by Sato[16] is another generalized notion of �nite thickness:

A class L has M-�nite thickness, if for any nonempty �nite set T � �+, (1) for any L 2 L

containing T , there is a minimal language L0 2 L of S satisfying L0 � L, and (2) fL 2 L j

L is a minimal language of Sg is �nite.

Let us de�ne the econ function for a class L as follows: For �nite sets T;F � �+,

econ(T;F ) =

�
1; if 9L 2 L s:t: T � L and F � Lc;

0; o.w. .

If a class L has �nite elasticity and M-�nite thickness and the econ function is com-

putable, then the class is refutably inferable from complete examples (Sato[16]).

Theorem 3 The class PL�
k
has M-�nite thickness, and the econ function is computable.

Thus the class is refutably inferable from complete examples.

For regular patterns and regular pattern languages, the classes RP�, RPk, RPL�,

RPLk, RPL�, and RPL�
k are de�ned similarly to those for patterns.

We note that the theorems obtained in this section are valid for the subclasses RPL�
and RPL�

k.

4 Generalizations of sets of patterns and eÆcient learning. An inference machine

M is polynomial time updating if after receiving wn, M produces a guess hn within a

polynomial time in the sum of lengths of examples so far received. A class L is polynomial

time inferable from positive examples if there is a polynomial time updating inference

machine that infers the class from positive examples.
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If a class has �nite elasticity, and both of the membership and MINL problems are

polynomial time computable, then the class is polynomial time inferable from positive

examples (Angluin[1], Arimura et al.[6]). Here the MINL problem for a class L is �nding

one of minimal languages in L of a given �nite set S � �+, and the membership problem

is to decide whether w 2 L or not for given w 2 �+ and L 2 L.

In this paragraph, we consider eÆcient learning algorithms for the classes RPL� and

RPL�
k (k � 1) from positive examples.

A pattern q is a generalization of a pattern p (or p is an instance of q), denoted by

p � q, if there is a substitution � such that p = q�. If p � q and q � p, p and q are

equal except renaming variables. In this paper, we identify such patterns, and thus P is a

partially ordered set under the relation �.

Let P 2 P�. A pattern q is a generalization of P if p � q for every p 2 P . A pattern q

is an instance of P if q � p for every p 2 P . A pattern p is a minimal generalization (mg)

if p is a generalization of P and there is no generalization p0 of P such that p0 � p. We

de�ne a maximal instance (mi) of P similarly. We denote by mg P and mi P the sets of

minimal generalizations and maximal instances of P , respectively. Clearly mg P is �nite

since lengths of patterns in mg P are less than or equal to the shortest length of patterns

in a �nite set P . However mi P is not always �nite. In fact, mi faxxa; xxg = fa2n j n � 1g

over � = fag. As easily seen, L(fPg) = L(mi P ), i.e.,
T
p2P L(p) =

S
q2mi P L(q) holds.

Hence L(axxa) \ L(xx) = fa2n j n � 1g.

For regular patterns, the following result is given:

Lemma 1 Let P be a nonempty �nite set of regular patterns. Then lengths of regular

patterns in mi P are less than or equal to
P

p2P jpj. Thus the set mi P is �nite.

We de�ne relations on P� as follows:

P v Q () 8p 2 P;9q 2 Q s:t: p � q;

P v0 Q () 8q 2 Q;9p 2 P s:t: p � q:

Obviously P v Q implies L(P ) � L(Q), and P v0 Q implies L(fPg) � L(fQg). The

converses, however, are not valid in general. The relation � is polynomial time computable

for regular patterns ([20]) but NP-complete for patterns ([1]). Thus the relations v and v0

are polynomial time computable for sets in RP� but NP-complete for sets in P�. Hence the

membership problems for the classes RPL� and RPL�
k are easily shown to be polynomial

time computable.

Note that since PL� and PL�
k have �nite elasticity, so have these classes considered.

We �rst consider the MINL problem for the class RPL�.

By the de�nition v0, it is easily shown that mg mi P v0 P holds for any P 2 RP�, but

not always the converse. A set P 2 RP� is reduced if mg mi P = P holds.

Lemma 2 For any P 2 RP�
, there is a reduced set Q in RP�

satisfying L(fPg) = L(fQg).

Let reduced-RP� be the set of all reduced sets in RP�. Then the next result follows:

Lemma 3 Let P;Q 2reduced-RP �
. Then

L(fPg) � L(fQg) () P v0 Q () mi P v Q:

By Lemma 3, the next result is given.

Theorem 4 If for any �nite set S � �+, mg S is polynomial time computable, then the

class RPL� is polynomial time inferable from positive examples.



484 MASAKO SATO AND YASUHITO MUKOUCHI

Note that the problem �nding one in mg S is polynomial time computable ([20]).

Next, we consider the MINL problem for the class RPL�
k.

Arimura et al.[7] presented an eÆcient algorithm for the MINL problem of the class

RPLk using a framework of generalization systems, and the class is polynomial time infer-

able from positive examples, provided that the class has compactness.

Here the class RPk has compactness w.r.t. containment if for any P;Q 2 RPk, the

syntactic containment P v Q is equivalent to the semantic containment L(P ) � L(Q).

Theorem 5 (Sato et al.[17]) The class RPk
has compactness w.r.t. containment if and

only if ]� � 2k � 1 for k � 3 and ]� � 4 for k = 2.

For a pattern p, by Sn(p) the set of strings over � obtained from p by substituting

strings with length at most n to each variable. For P 2 P�, put Sn(P ) =
S
p2P Sn(p).

Theorem 6 Let k � 3, ]� � 2k � 1, and let P1; � � � ; Pn; Q1; � � � ; Qm 2 reduced-RP�
for

n � 1 and 1 �m � k. Then

S2

�
nS
i=1

mi Pi

�
� L(fQ1; � � � ; Qmg)

() L(fP1; � � � ; Png) � L(fQ1; � � � ; Qmg) ()
nS
i=1

mi Pi v
mS
j=1

mi Qj :

Note that the former equivalence means that the set S2

�
nS
i=1

mi Pi

�
is a characteristic

set of
nS
i=1

L(fPig) withinRPL�
k, and the latter shows the equivalence between the semantic

containment and the syntactic containment.
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