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CELLULAR AUTOMATA

Franz Pichler

Received March 26, 2003

Abstract. We propose to model the local dynamics of H2O by a finite state machine
and extend it in spatial direction by the concept of cellular finite state machines (cel-
lular automata). The cellular state machine is assumed to realize a chaotic process
caused by shear-forces at its boundaries. On a hydrodynamical level this chaotic pro-
cess is assumed to correspond to turbulence. Clusters of water molecules are associated
with possible strange attractors of the H2O chaotic process.

1 Motivation The starting point to consider this topic was the invitation of Peter Weibel
(ZKM Karlsruhe, Germany) to contribute with a paper on “Victor Schauberger and the
turbulence of water” in the publication of the exhibition “Surroundings Surrounded” in the
year 2001.

There the hypothesis was presented to model water clusters by means of strange at-
tractors of a hydrodynamical H2O model defined on a molecular level. Besides of a set-
theoretical formulation of the local dynamics in the style of general dynamical systems
theory, no further detail was given. Here we try to continue this work. We propose to
model the local dynamics of H2O by a finite state machine and extend it in spatial direc-
tion by the concept of cellular finite state machines (cellular automata).

The cellular state machine is assumed to realize a chaotic process caused by shear-forces
at its boundaries. On a hydrodynamical level this chaotic process is assumed to correspond
to turbulence. Clusters of water molecules are associated with possible strange attractors
of the H2O chaotic process.

2 H2O Modeling Natural water, that is chemical purified water (aqua destillata) to-
gether with other embedded substances (gases, metals, minerals, acids etc.) has, as it is
known, an extremely complex structure. To model natural water — depending on the
stated problems — different disciplines have to be consulted and have to contribute in the
modeling task. The integration of different domain oriented models (to get a single multi-
disciplinary model) can be established by the usage of the concept of a multi-level model,
where each level (in systems theory called “stratum”) models natural water on a certain
kind or degree of abstraction. For the purpose of this paper we want to assume a four-level
model as shown in Figure 1.

2000 Mathematics Subject Classification. 68Q80.
Key words and phrases. H2O-cellular automata, strange attractor clustering, Poincaré map measure-

ments.



488 F. Pichler

Chem/phys macromodel Level A

Hydrodynamical model Level B

Cluster-dynamics model Level C

Molecules-dynamics model Level D

Figure 1: Four-level model of natural water

Level A gives a description of natural water in the form of chemical and physical prop-
erties such as molecular constitution (H2O), dissolved substances, pH value, temperature,
volume, weight and others.

Level B models natural water from the viewpoint of hydromechanic. For any unit of
volume of natural water the geometrical position and a gradient to define a vector dynamics
are given by the partial differential equation of Navier-Stokes. Associated constants (like
the Reynold number R) describe hydrodynamical properties of the global state of natural
water on that level.

Level C is the level for the modeling of natural water which attracts our utmost attention
in this paper. The model on this level should reflect the cluster structure of the molecules.
The clustering (if it ever exists) should by hypothesis provide special qualities of natural
water essential for human consumption or technological use.

Level D should represent natural water as a dynamical system which models the dynam-
ics on molecular level. The forces which are assumed on this level can be divided in external
forces (kinetic forces applied to molecules via the environment of the water tank together
with the influence of its specific geometrical form) and internal forces (electro-static forces,
magnetic forces, electro-dynamical forces, Van der Waal’s forces and possible others). By
means of such forces a local generative model for the molecular dynamics has to be for-
mulated. State machines in the form of specific Petri-nets or cellular automata (Wolfram
1986) are considered as appropriate systemstheoretical concepts for that modeling task.

3 Modeling H2O by cellular automata

3.1 Cell geometry and cell topology Our goal is to make a proposal for the construc-
tion of a cellular automaton which can serve for experimentation by computer simulation to
get first results for the dynamic behaviour of liquid water. Here the basic question is how
to define the finite state machines of the individual cells. We take for a first approach as
geometrical form of each cell the regular cube. By the dipole characteristic it is suggested
that the H2O molecule which is situated in a cell is geometrically modelled by a triangle
where the two H-atoms are situated on the opposite edges of a plane of the cubic cell and
the position of the 0-atom is diagonally on the opposite edge. Since there are 4 regular
triangles for each plane which can be determined in this way this gives 24 different ways to
define for an H2O molecule a geometric orientation.

In consequence we assume for each cell the existence of 24 state position components to
describe the different possible geometrical positions of the H2O molecule in a cell.

From a mathematical point of view it is suggested to assume in the set X of 24 state
position components a mathematical structure by X := GF (8)×GF (3) such that state tran-
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Figure 2: Cubic cell and associated von Neumann neighbourhood

Figure 3: State position components defined by the location of the H2O molecule in a cell

(O-atom rotating clockwise in the bottom plane)
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sitions can be described by algebraic operations to give a chance to apply known theoretical
results from the field of discrete structures.

In addition to the position components x of a cell-state q we assume for the H2O molecule
a directional moment y which is described by a binary vector y = (y0, y1, · · · , y5) ∈ GF (2)6

.
In conclusion the state set Q of each cell-machine c is defined by Q := {∅}∪X×Y where

X (the set of the 24 different geometrical positions of a H2O molecule in a cell) is given by
X := GF (8) × GF (3) and the set Y (the set of the cube-specific directional moments) is
defined by Y := GF (2)6 . The state ∅ means that no H2O molecule is in the cubic cell. Any
state q �= ∅ is represented by a vector q = (x1, x2, y0, y1, · · · , y5) where x1 ∈ GF (8) gives
the location of the 0-atom at one of the 8 edges of the cell-cube, x2 ∈ GF (3) determines
the location of the corresponding H-atoms at the 4 possible diagonally opposite edges and
y0, y1, · · · , y5 are the directional moments of the H2O molecule corresponding to the six
different possible directions determined by the cube-planes.

The neighbourhood of the cell c consists of the six cells c0, c1, · · · , c5 which interface
directly with the planes of c (we assume a “von Neumann” neighbourhood).

3.2 Construction of the cell-state machines For any cellular state machines the
construction of the state transition function of the cell state machine is the crucial part in
modeling. It compares in modeling continuous dynamical systems to the determination of
the associated partial differential equation system. Our approach is to take a most simple
construction of the state transition function and improve this by simulation experiments.

In our approach it is sufficient to define the state transition function δ : Q×Q6 → Q for
a cell machine only for its state q = ∅. The next state q′ = δ(φ, q0, q1, · · · , q5) is determined
as one of the state q1, q2, · · · , q5 of the 6 neighbouring cell-machines. The selection is done
by a function α : Q6 → Q such that q′ = α(q0, q1, · · · , q5). In terms of systems theory such
a type of state transition is referred as a register flow dynamics. A specific exception for
the state transition function has to be made at boundary cells as we will see later, when we
discuss the complete cellular state machine.

3.3 Discrete event control of the cell automata Since a state transition takes only
place for a state q in case when q = ∅ it is suggested to consider not a clock-control
of the cellular machine but a discrete event control. This allows also a more effective
implementation for simulation. Since the state transition of an individual cell machine
depends only from locally given conditions it is sufficient to define the events which cause
state transitions for the case of an individual state machine. In addition to our cellular
automata model we make here also use of an associated Petri net model. This allows us to
treat conflicts in a more systematic way.

In Fig. 4, we show a section of a 2-dimensional cellular machine which we will use to
explain our method of discrete event control and our concept for conflict solution. The
same approach can also be applied to our 3-dimensional case of cellular machine for H2O
modeling.

Let us assume that q0 = ∅ and also q6 = ∅ and that in addition α0(q1, q2, q3, q4) = q2

and also α6(q2, q10, q11, q3) = q2. Then we have a conflict in determining the next states
of q0 and q6 respectively by its associated state transition values δ0(∅, q1, q2, q3, q4) and
δ6(∅, q2, q10, q11, q3).

We solve this conflict by defining an order relation ≤ on the set of all cells ci of our
cellular state machine which are in a conflict and use this order relation to determine the
cell machine which is allowed for executing the state transition. Let us assume that sell ci

and ck are in conflict to each other, then the following should be valid.
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Figure 4: Section of a 2-dimensional cellular machine

(1)ci ≤ ck if ci is “below” of ck

(2)ci ≤ ck if ci and ck are on the same level but for ci the Manhattan distance to the
“central” cell of the level is smaller than for ck

(3) in case that for ci and ck no decision whether ci ≤ ck or ck ≤ ci by (1) or (2) can be
made we select one of it randomly

The conditions (1)-(3) determine a function β : C0 → C0 on the set C0 of cell machines
which are in conflict to each other by selecting a minimal member of it.

For demonstration on our example of Figure 4 let us assume that besides of c0 and
c6 also c9 “point” by its selection functions α5 and αq respectively to the state q2. Then
C0 = {c0, c6, c9}. Then q0 ≤ q6 and q9 ≤ q6. If c4 is the central cell of the associated level
then q0 ≤ q9. Therefore β(c0) = β(c6) = β(c9) = c0 . The order relation ≤ of this example
can be represented by the graph as shown in Fig. 5.

We see, that in our cellular state machine C the state transitions are controlled by
discrete events which select the cell machines with state q = ∅ and allow a state transition
by a shift of a neighbouring state q′ (selected by α) which avoids a possible conflict with
other cell machines.

3.4 Petri-net model For simulation studies it is desired to have for the cellular state
machine an associated Petri-net model available. This allows the application of existing
Petrinet tools for the different desired experiments. We assign to our cellular state machine
C in the following way a marked Petri-net PNC in the kind of a condition/event net (C/E
net):
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Figure 5: Order relation of the conflicting cell machines of the example of Fig. 4
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Figure 6: Section of cellular state machine (a) and associated marked Petri-net (b)

(1) each cell c of C is interpreted a place s of PNC

(2) the different directional channels between the cells are the arcs with one transition t
of PNC

(3) the marking µ of PNC is given by µ : S → {0, 1} with µ(s) := 0 if the associated cell
machine c is in state q = ∅; µ(s) := 1 if the associated cell machine c is in state q �= ∅
(S is the set of all places of PNC)

In Fig. 6, we show by a 2-dimensional example a section of a cellular state machine and
the associated marked Petri-net.

3.5 Cellular automata for H2O modeling: Geometry and Boundary Conditions
For studying the dynamics of the H2O molecules by means of a cellular state machine it
is necessary to determine the geometrical form and also of the boundary conditions to be
assumed. For simplicity reasons we will consider a conical water container which is open
on both sides to allow an input and an output of water. In figure 7 we sketch such a
container. We assume that the water in the container flows from the top to the bottom
driven by gravitational forces. The cellular finite state machine C which we would like to
construct, has to model the geometry of the container, that means that it has to be filled by
cubes in figure 2, with appropriate molecular size. C is certainly a complex model and for
simulation effective programming methods and powerful computing facilities are required.
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Figure 7: Conical container

Of essential importance are the boundary conditions which we have to assume. At top of
the cone we assume the existence of an input layer of cells which receives at every time
step randomly their states. For the cell layer below we assume that the selection map α of
each cell machines selects at each time step for the next state the state of the cell from the
input layer above. A similar arrangement is considered for the output process of the cellular
machine C. We assume for C the existence of an output layer of cell machines which are
at every time step in state q = ∅. The associated selection map α of the cell machines of
the output layer determines the cell machines above to “absorb” their state. By this kind
of definition of the boundary conditions on top and at the bottom of the cellular machine
C a flow “through” C from top to bottom is realized. In order that this flow becomes
eventually chaotic, which is our goal, specific boundary conditions have to be assumed for
the cell machines on the cone walls. The physical facts are given by shear-forces which
contribute in hydrodynamical models to turbulence phenomena. To model such forces in
our cellular machine C we assume for the cell machines c which are situated on the cone
wall a specific state transition function δ̄ which includes in addition to the “propagation
part” of shifting also collision.

δ̄(∅, q0, q1, · · · , q5) = δc(δ(∅, q0, q1, · · · , q5))

where δc : Q → Q models collision.
To model a dependence of δc from the height (level) x of the cell machine we might

assume that δc depends on x; δc = δ(x). Then, it should be possible also to take different
cone-types such as for example the hyperbolic cone of Walter Schauberger (compare with
Radlberger [6]) into account.

4 Dynamical behaviour of the H2O model The ultimate goal of our modeling effort
is to give a description of state changes for the cellular automaton globally in time and
space. Let us repeat the assumption which we have to take into account in this task: We
assume that the cellular arrangement realizes on I/O process modeling the flow of water.
Furthermore we assume that the boundary conditions provide the forces in changing the
dynamical behaviour. Physically we associate boundary condition with forces (mechanical,
electrical, van de Waal etc) which results in specific input values to the cells which are
situated close to the boundary. Of specific interest are boundary conditions which cause a
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chaotic dynamic behaviour of the cellular automaton which means on hydro dynamical level
turbulence. From a physical point of view such boundaries have to contribute to a turbulent
flow of the H2O molecules. This is the case if the flow is confronted with sharp edges and
barriers. The modeling of such an effect on the level of cellular automata requires boundaries
which cause sharp changes of the generated input values. In cellular automata dynamics
this should result in a chaotic regime such that strange attractors appears. Obviously,
the proof of such a situation cannot be done in a mathematical analytical way but has to
be realized by computer simulation. On a hydrodynamical level strange attractors can be
associated to H2O clusters of different size. Mathematically such clusters might be derived
by computer simulation from specific Poincaré maps taken from strange attractors.

However, the construction and implementation of a simulation model for the cellular
finite state machine C (=CFSM) is outside of the scope of this paper. Nevertheless let us
state the main steps which have to be taken to construct a simulation model and to provide
the necessary experimental frame to run experiments.

Step 1: Determination of the actual size of the water container to be modelled by C. This
results in the complexity of C measured by the number of necessary cell machines in
C.

Step 2: Construction of C and “open” implementation to be able to experiment with
different possible boundary conditions for the cell machines at the cone wall and to
find a valid state transition function δ for the cell-machines (determination of α and
in addition of δc for the “cone wall” cell machines)

Step 3: Simulation experiments to determine a valid state transition function for the cell
machines

Step 4: Simulation experiments to determine the boundary conditions (determined mainly
by the collision part δc of the state transition function of the boundary cell machines)
such that a turbulent flow is observed

Step 5: Visualisation of the flow in C such that possible strange attractors can be identified
and observed

Step 6: Experiments with suitable Poincaré maps to project strange attraction to geomet-
rical objects of cluster type to propose approaches for physical measurements on real
flows of water

The achieved results should be of help to construct an appropriate model to describe
the dynamics of water on level C of our figure 1. However, the clustering of liquid water
observed by physical measurements so far proves only as a short time effect. Translated
this fact into the language of esoterically oriented papers this means that water has only a
“short time memory”.

5 Physical measurement methods for H2O structures Experimental research done
by physical measurements have shown the existence of H2O clusters. Such measurements
are realized by different existing diffraction methods based on X-rays or on ultra-/hyper
acoustic waves. Others make use of properties of the infrared-spectrum or are based on the
determination of the dielectricity constant. Also the nuclear magnetic resonance method is
known for the determination of clusters. It is not a goal of this paper to discuss this topic
in greater detail.
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6 Resume and Conclusion We presented a possible construction of a 3-dimensional
cellular automaton C for the modeling of liquid water. The individual cells c of C are
geometrically defined as cubes which have a “von Neumann” neighbourhood consisting of
the adjacent 6 cubes. Mathematically each individual cell c is a finite state machine c =
(Q, A, δ) which receives as its input the state values of the neighbouring cells c0, c1, · · · , c5.
For the state transition δ : Q×A → Q, to describe propagation, we assume a shift of states
from a neighbouring cell. Only the cell machines on the boundary of the cone wall have in
addition a collision part.

To generate a chaotic flow in C certain highly unsteady boundary conditions have to
be assumed. By our hypothesis this should result in the appearance of strange attractors
which can be associated to clusters derived from appropriate Poincaré maps.

Although our approach in modeling liquid water for the computation of chaotic flows in
a cellular automaton does not yet meet finally valid physical requirements it may provide
a starting point for our modeling task. Future work in modeling liquid water has to take
physical facts for the determination of the propagation and collision operation to provide a
heuristics for the determination of the state transition function of the cell machines stronger
into account.
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