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Abstract.

We present a class of neuronal models that emits a spike (�res) if a scalar quantity,

the membrane potential, satis�es a threshold condition. Equations use two generic

functions � and � that describe the subthreshold behavior and the spike process, re-

spectively. Special cases include the leaky integrate-and-�re neuron and the piecewise

linear FitzHugh-Nagumo model.

1 Introduction Neuronal activity is the result of a highly nonlinear dynamic process.

A complete description of the underlying microscopic processes does not always provide

a clear understanding of the behavior and its mathematical analysis is often not feasable.

Hence a simpli�ed description is highly desirable and has been attempted repeatedly [11],

[5], [12], [14], [1], [9]. In this work we aim at a simpli�ed model of neuronal activity with a

single scalar variable v(t), the membrane potential of the neuron. If a spike is triggered at

a time tf the membrane potential follows an invariant time course �(t� t
f ) and we call tf

the �ring time of the neuron. We consider that the neuron performs a linear integration of

the inputs weighted by a kernel �(t). The temporal evolution is given by

v(t) =
X
tf2F

�(t� t
f ) +

Z t

0

�(s)I(t � s)ds + urest(1)

where I(t) is the input current and urest the resting potential. Rescaling v we take urest = 0.

The �ring set F is derived from a threshold process de�ned, in its general version, by

T (v)(t) = 0 ) t 2 F where T has values in C
0(R). The motivations of the integral

formulation (1) come from the well-known experimental results of (i) the approximately-

invariant shape of a spike and (ii) an approximately linear behavior of the neuron when no

spike has been previously triggered. Expression (1) should be contrasted with di�erential

formulations of the neuronal activity and is known as the spike-response-model (see [6] and

references therein). An advantage of this expression is to provide an intuitive understanding

of the neuronal activity while allowing a rigorous mathematical analysis. The non-trivial

dynamics of (1) is the consequence of the nonlinearity of the model due to the threshold

process which gives rise to an additional spike function � each time the threshold criterion

is satis�ed.

It has been shown that (1) allows a phenomenological and a numerical description of various

types of neurons, in particular the Hodgkin-Huxley dynamics [10], [6]. In this paper, we

present analytical derivations of (1) from simpli�ed well-known neuronal models. At the

same time, we give explicit expressions for the two kernels �, � and the threshold function

T .
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2 Derivation of the kernels and the threshold We will derive expressions for the

two kernels � and �. Basically we require �(t) to be a pulse-shaped function that satis�es

(i) �(t) = 0 for t < 0 and (ii) �(t) has a decay to a low activity resting state that we take

to be equal to 0. The impulse response � satis�es (i) �(t) = 0 for t < 0 and (ii) has a decay

to 0 (iii) � reaches is maximum at the origin. Rescaling input I(t) we choose �(0) = 1.

2.1 Integrate-and-�re models with explicit reset Expression (1) was �rst derived

from the integral formulation of the leaky integrate-and-�re neuron [6]. The basic circuit

of an integrate-and-�re model consists of a capacitor C in parallel with a resistor R driven

by a current I(t). When the membrane potential satis�es a threshold condition the model

is reset to a value vr. The kernels are given (for C = 1) by

�(t) = �(# � vr)e
�

t
� ;

(2)
�(t) = e

�
t
� ;

for t > 0 and 0 otherwise, where � = RC is the membrane time constant. Parameter # > vr

is the threshold that de�nes the �ring set of the integrate-and-�re model

v(t) = #) t 2 F :(3)

A completely analogous analysis can also be performed for the generalized integrate-and-

�re models where the dynamics is described by n variables, the membrane potential v(t)

and auxiliary variables wi(t), i = 1; : : : ; n � 1 [13]. Let X = (v(t); w1(t); : : : ; wn�1(t))

be the state variable, we consider the subthreshold linear evolution _X(t) = AX(t) + Iv(t)

where A is a square matrix and Iv(t) = (1=C I(t); 0; : : : ; 0). When v(t) = # holds the

potential is reset to a subthreshold value vr. Since the subthreshold dynamics is linear,

it is straightforward to derive the impulse response of this �lter. To simply illustrate our

purpose, we consider the two-dimensional model

dv(t)

dt
= �

v(t)

�
� �w(t) +

1

C
I(t);

(4)
dw(t)

dt
= v(t) � 
w(t):

For 
 = 0 and � > 0, one recognizes the damped oscillator �v + 
 _v + !
2
0v = 1=C _I where


 = 1=� monitors the damping force and !2
0 = � is the frequency of the related harmonic

oscillator. Note that (4) includes the standard IF model (� = 0) and the recently proposed

resonate-and-�re model (
 = 1=� , � = 1) [8]. Basically, the kernel �(t) presents two di�erent

expressions monitored by the sign of � = (
 � 1=� )2 � 4�. For � > 0, the kernel � is the

linear combination of exponential functions �(t) = �1 exp(�1t)+�2 exp(�2t) while for � < 0

this kernel has an exponential decay with damped oscillations; �(t) = � exp(�t) sin(!t+  )

(we do not consider the degenerated case � = 0). The kernel � is directly obtained from

�(t) and stems from the reset process.

Neuronal models without superthreshold behavior such as integrate-and-�re models are

expressed through an �(t) function that describes a reset pulse rather than the entire form

of the spike. In this case, we note �(t) = ��r(t) where �r(t) has a jump discontinuity

at 0 (see FIG. 4 B). To account for the entire form of a spike, we have introduced a

generalization of the integrate-and-�re neuron that incorporates a superthreshold behavior,

namely the integrate-and-�re model with spikes (IFS) [16]. A simpli�ed version derived

from the piecewise linear idealization of a conductance based integrate-and-�re model is

given by

dv

dt
= �

v

�
+ �h(v � #) +

1

C
I(t)(5)
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Figure 1: Schematic representation of the integrate-and-�re model with spikes in the phase

space (without input currents). The direction of the arrows indicates the 
ow and the

dashed arrow describes the reset process. Trajectories that start in the subthreshold regime

return directly to the stable resting state vrest. If # is reached a spike-like excursion of

the membrane potential driven by a (virtual) �xed point vs = �� (see (5)) occurs. The

dynamics is stopped if v reaches a second threshold #2 and is reinitialized at a subthreshold

value vr. This model presents an interesting relation to phase models (e.g. the �-model [4]).

where � > 0 and h(x) is the Heaviside step function h(x) = 1 if x > 1 and 0 otherwise.

This model incorporates a reset process if v(t) reaches a second threshold #2 (FIG. 1),

v(t) = #2 ) v(t+) = vr where #2 > # monitors the amplitude of a spike. Thus we de�ne

the resetting set R from v(t) = #2 ) � = t
r
2 R. It has been shown [16] that the spike is

given by

�(t� t
f ) = �f (t� t

f )� �r(t� t
r)(6)

where �f (t) = �� (1� exp(�t=� )) and �r = (#� vr)exp(�t=� )+ �f (t). The kernel � is given

by (2). In this formulation, the spike is split into two parts. A �rst term, �f , describes the

sharp part of the spike while �r stands for the afterpotential. Note that we �nd a slightly

di�erent formulation than (1) since the reset time tr is de�ned implicitly and hence the

spike shape presents a small variability. This phenomenon does not appear to be relevant

in the modeling of neuronal activity and a realistic approximation is to �x t
r = t

f + Æ

where Æ stands for the spike duration. Hence the resetting set R is simply derived from a

translation of the �ring set.

2.2 Smooth integrate-and-�re models Integrate-and-�re models yield a non-smooth

reset pulse �r related to the non-smooth recovery behavior. A more realistic modeling of

neuronal activity that accounts for a smooth recovery process can be obtained from two (or

higher) dimensional nonlinear di�erential models. Most of two-dimensional models have a

dimensionless version given by

dv

dt
= f(v;w) + I(t)

(7)
dw

dt
= g(v;w)

We address the following question : can we �nd an integral formulation as in equation (1)

from the model (7) ?. In general it is not possible to obtain an explicit expression for v(t)
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Figure 2: (A) Nullclines of the Morris-Lecar model and (B) their piecewise linear reductions.

Panel (C) shows the nullclines of the FitzHugh-Nagumomodel and (D) their piecewise linear

reductions. The generic expression of these models is given by (7). We represent, in A and

C, f(v;w) = 0 (solid lines) and g(v;w) = 0 (dashed lines). Figures (B) and (D) are obtained

by considering a line of discontinuity (dotted lines) that acts as the threshold of the model

and by de�ning a linear approximation of the two functions f and g in the subthreshold

and superthreshold regimes.

due to the nonlinearity of these models. The technique we propose uses a piecewise linear

idealization of the nonlinear functions. This allows the splitting of the phase space into two

di�erent parts representing the di�erent regimes of the neuron, i.e. the subthreshold and

the superthreshold regime. The transition between these two regimes de�nes the threshold

condition just as in the IFS model.

Let us illustrate our treatment on two of the most popular simpli�ed models that are

the FitzHugh-Nagumo model [5] and the Morris-Lecar model [12]. In FIG. 2 we show

in the phase plane the geometrical piecewise linear reduction of the Morris-Lecar model

(FIG. 2A,B) and FitzHugh-Nagumo model (FIG. 2C,D). We introduce a linear partition of

the phase space by de�ning a threshold line given by v(t)� �w(t)� # = 0. Let us suppose

that we stimulate the neuron by a constant superthreshold current. In order to analyze

the trajectory we have to introduce two di�erent times corresponding to a crossing of the

threshold line from left to right and conversely. Hence we introduce the two sets F and R.

A �ring time tf 2 F is de�ned when the neuron enters in the superthreshold regime while

a reset time tr 2 R is de�ned when the subthreshold regime is reached again. For example,

if the recovery process is given by dw=dt = �w=�w + g(v) these two set are analytically
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Figure 3: Bifurcation diagram of the piecewise linear FitzHugh-Nagumo model (9). The

constant current I is the bifurcation parameter and we take � = 1, � = 1, � = 4, # = 0:2,

b = 1 and 
 = 0:5. To avoid mathematical complications we consider a smooth version of

the Heaviside function h�(x) = 0:5(1 + tanh(x=�)) and we take � = 0:00125. Computations

were performed with AUTO [3].

de�ned from

v(t)� �

Z t

0

e
�

t�s
�w g(v(s))ds = #) t 2 F [ R(8)

Just as in the case of the IFS model we approximate the resetting set R by a translation

of the �ring set F which imposes a nearly invariant shape of a spike. Hence the model (7)

can be mapped onto (1). The spike is described by �(t� t
f ) = �f (t� t

f )� �r(t� t
r) with

t
r = t

f + Æ where �f and �r are two pulse shaped functions. In our qualitative analysis [16]

these two functions are the same and present two distinct expressions that are well �tted

by the two functions exp(�t) sinh(!t) and exp(�t) sin(!t). Just as for the generalized IF

model, the kernel �(t) presents two qualitatively di�erent shapes depending on parameters,

viz, resonator or integrator type.

3 Validity of the piecewise linear reduction Each simpli�cation of a model is, of

course, an approximation of the full behavior. We may therefore wonder if, as a minimal

condition, the piecewise linear model reproduces at least qualitatively the behavior of the

full model. In [2] a pulse-based model is derived from the Hodgkin-Huxley model using a

piecewise linear approximation for the dynamics of the auxiliary variables. Then the validity

of the model is tested using di�erent input scenarios. Here, we address this question using

the piecewise linear FitzHugh-Nagumo system under a constant current

dv

dt
= �

v

�
+ �h(v � �(w � I)� #) � w + I

(9)
dw

dt
= b(v � 
w)

and considering I as a bifurcation parameter. Since we are interested in qualitative prop-

erties we consider identical parameters � , b and 
 in the subthreshold and superthreshold

regime. An input current a�ects the v-nullcline of the original model and hence the thresh-

old line of the reduced model. An accurate description is obtained by considering the
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Figure 4: The action potential �(t � t
f ) is the response of the neuron to the threshold

crossing at tf . The kernel is split into �(t � t
f ) = �f (t � t

f ) � �r(t � t
r) where tr =

t
f + Æ. A) Reset kernel �r(t). Standard integrate-and-�re models have a reset kernel with

discontinuity (dotted line for the standard IF model and dashed solid line for the generalized

IF model) while smooth two-dimensional models have a continuous reset (solid line). B)

Two dimensional models with smooth recovery processes also have a continuous action

potential. For IF models the action potential �f (t) vanishes.

contribution of the input into the de�nition of the line of discontinuity. This choice de-

pends on the dependence between the original v-nullcline and the input. We show in FIG. 3

the bifurcation diagram of (9) where the constant current I is the bifurcation parameter.

The piecewise linear model has a bifurcation structure similar to the original model and

the two relevant bifurcations (the fold of limit cycle bifurcation and the subcritical Hopf

bifurcation) are reproduced (see for example [7]).

4 Discussion The spike-response-model (1) has been proposed as a framework for various

neuronal models. The advantage is the provision of a synthetic representation that allows

mathematical analysis. In this paper we have addressed the question of how models can

be mapped onto the spike-response-model. We �nd that the standard IF model and the

generalized IF model have a direct mapping to the integral formulation. Other models that

account for spike description or smooth recovery process can be written in this formalism

provided that we de�ne the kernel �(t � t
f ) = �f (t � t

f ) � �r(t � t
r) and we consider

the approximation t
r = t

f + Æ. We summarize in FIG. 4 some typical shapes of these

two kernels. We distinguished between two kernels �(t) that we report as integrator and

resonator kernel. However the resonance properties of the full system are less trivial due to

the interaction with the spike function. Basically, integrator kernels present an exponential

decay whereas resonator exhibit damped oscillations. We consider �int(t) = exp(�t=� ) and

�res(t) = exp(�t=� ) cos!t as typical kernels of integrator and resonator neurons respectively

(FIG. 5). The kernel �int can be derived from the leaky integrate-and-�re neuron while �res
from the leaky resonate-and-�re neuron. More complicated kernels yielding new resonant

e�ects can be derived from the generalized IF model [13].

We have obtained di�erent kernels coming from di�erential equations for the simpli�ed

modeling of neuronal activity. The main drawbacks of this technique is to introduce a

direct correlation (on the same time scale) between the two kernels � and � which is not

probably true for detailed models. For example the kernel � of IF models is not related

to a relaxation in the dynamics but guarantees the reset of the past of the neuron, i.e.

�(t) = �C(#� vr)�(t). However our study suggests interesting improvements of simpli�ed

neuronal models. First, from the expression (6) for � we can easily account for a natural
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Figure 5: Kernels � for the description of the subthreshold activity of neurons. We dis-

tinguish two di�erent types. A) Kernel with an exponential decreasing to zero (integra-

tor kernel). A popular example is given by the standard integrate-and-�re neuron where

�(t) = exp(�t=� ). Panel B shows an � kernel with damped oscillations (resonator kernel). A

generic example is the function �(t) = exp(�t=� ) cos!t that is obtained from the generalized

integrate-and-�re model.

di�erence between the time scale of the two parts of a spike, �f and �r. Theoretical studies

that will be reported elsewhere show that the kernel �r and its interplay with � has an

important role in the behavior of the system. Secondly our linear partition between the

subthreshold and the superthreshold regime suggests a non trivial threshold process that

may improve the prediction of real data.
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