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ABSTRACT. We introduce an efficient synchronization model that organizes a pop-
ulation of discrete Integrate and Fire oscillators into stable and structured groups.
Each oscillator fires synchronously with all the others within its group, but the groups
themselves fire 'with a constant phase difference. The structure of the synchronized
groups depends on the choice of the coupling function. We show that by defining the
interaction between oscillators according to the relative distance between them, our
model can be used as a general clustering algorithm that is simple, efficient, robust,
unbiased by the size of the clusters, and that can find an arbitrary number of clus-
ters. In addition to helping the model sell-organize into stable groups, the synergy
between clustering and synchronization reduces the computational complexity signif-
icantly. The resulting clustering algorithm has several advantages over conventional
clustering techniques. In particular, it can generate a nested sequence of partitions,
and can determine the optimum number of clusters in an efficient manner. Moreover,
since our approach does not involve optimizing an objective function, it is not sensitive
to initialization, and can incorporate non-metric similarity measures. We illustrate the
performance of our algorithms with several synthetic and real data sets.

1 Introduction Synchrony of coupled oscillators is a widespread phenomenon that man-
ifests itself in mechanics [14}, chemistry [9], and biology [11]. A characteristic feature of
biological oscillators is that they interact with each other through sudden impulses. For
example, the famous fireflies of south east Asia communicate through light flashes, while
crickets exchange brief chirps. The behavior of a single hiological oscillator is usually mod-
eled with a singularly perturbed system of differential equations. The mathematical analysis
of a large network of oscillators becomes then a complex task to accomplish especially when
the connectivity of the graph is random, unknown, or non uniform. An alternative approach
is to neglect the details of the shape of oscillators by modeling the network with a set of
discrete one-dimensional Integrate and Fire (DIF) oscillators,

A DIF is characterized by a state variable which is assumed to be monotonically in-
creasing toward a threshold. When this threshold is reached, the oscillator fires a pulse to
its neighbors, and jumps back to its basal level and a new period begins. Unlike a regular
integrate-and-fire oscillator, a DIF has no amplitude associated with it. This is obviously
a costly simplification when it gets to a detailed analysis, however as we will show in the
theoretical part of this paper, synchrony between oscillators, phase-locking, as well as the
self-organizing of oscillators into groups are still present in the simplified network of DIF’s.

In this paper , we show how to use the self-organizing property of oscillator networks
and DIF networks in particular to cluster large data sets efficiently and without recurring
to & costly optimization procedure. In particular, we show that by letting the coupling be
a function of the similarity between oscillators, we can control the number and structure of
the sub-groups, and thus use this model as a genera! clustering algorithm. Unlike existing
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models, our model does incorporate techuiques from relational and prototype-based cluster-
ing methods, and results in a clustering approach that is simple, efficient, robust, unbiased
by the size of the clusters, and can find an arbitrary number of clusters. In addition to
helping the model self-organize into stable structured groups, the synergy between cluster-
ing and synchronization reduces the computational complexity of our model significantly.
This is because the number of competing oscillators shrinks progressively as synchronized
oscillators get summatrized by a single oscillator.

A brief outline of the rest of the paper is as follows. In Section 2, we introduce the
discrete integrate and fire oscillators and outline a few theoretical results that are related
to clustering. In Section 3, we present our model. First, we introduce the problem of
clustering, and we present our approach to it. In Section 4, we demonstrate the performance
of our clustering algorithm on several data sets and apply the developed algorithm to image
segmentation.

2 Discrete Integrate and fire oscillators Let O = {Oy,---, 0} be a set of n oscil-
lators where each oscillator O; is characterized by a phase ¢; and a state variable z; given

by
zi = fi(di)

where each function f; : [0,1} -+ {0, 1] is a smooth monotonically increasing function satis-
fying fi(0) = 0 and fi(1) = 1. When z; reaches a threshold at z; = 1, the ith oscillator
fires and instantaneously resets to zero, after which a new cycle begins. In the presence of
coupling, the phases of the adjacent oscillators change by an amount €;;(¢7) and we have

a:,-[t+) = x(t) + €;(¢;)-

The coupling can be excitatory, inhibitory, or null depending on the firing oscillator. The
magnitude of the coupling also depends on the affected oscillator and its phase at the time of
firing. This is quite different from the work in [11} where the coupling is constant and where
all oscillators are identical. However, for simplicity we will still maintain the assumption
that all oscillators have the same frequency.

2.1 The case of two oscillators Let O, and O; denote the two oscillators, and f; and
f2 their corresponding characterizing functions. Let us also define the functions

(1) u(@) = 1= f7'(fa{o) +e2(d)), and
(2} h(e) = 1= f7 (flu(e)) + eufu{d))).
The function h(¢) is the firing map of the system, in the sense that its iterates provide us
with stroboscopic pictures of the system every time the first oscillator fires. Notice that if

both couplings are null, then the function h will reduce to identity. In [15] we proved the
following resuit.

Theorem 1. Assume that there ezists ¢. € (0,1) such that h{¢.) = ¢u and that for all
¢ € (0,1), we have

[ () + €1,{) f'3(d) + €5,{¢)
P2 (L (@) +ez(@)) fr2(f o fo(d)+enn(9)))

then, the two oscillators will perfectly synchronize for all initial conditions except for ¢..

(3)

>1, forall 1=1,...,n,
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The above theorem solves partially Peskin’s conjecture [10] who postulated in 1975 that
non identical integrate and fire oscillators will synchronize even when the coupling is not
sufficiently small and when the coupling is asymmetric.

2.2 The case of n oscillators In the case of n oscillators, the firing map, A becomes a
function of n — 1 variables. The dynamics of such a map can be quite complex especially
when the oscillators are non identical. Tracking the behavior of the iterates of the map h
would then require the following assumptions:
(1) The difference function || fi(¢)— f;(d)]| << lforalli,j=1,--- ,nand ¢ € [0,1].
(2} To obtain synchrony in the network, we also need the network to be globally
coupled and that the firing of one oscillator affects all other oscillators in the same way: i.e.

€ij($) = eix(d) = ei($),for all 1,5,k < n.
Using the above assumptions we obtained {15]
Theorem 2. Assume that for all ¢ € (0,1), we have
fli(é) + €(é)
FU ) + eld))

Then, the system of n oscillators will perfectly synchronize for all initial conditions except
for a set of measure zero.

>1, forall 1=1,.

(4)

2.3 Clustering of discrete integrate and fire oscillators The clustering of globally
coupled oscillators has been observed and studied by many authors [4], (5], [11}, [13], and
many others. For example, in a network of globally coupled Josephson junctions, some
oscillators perfectly synchronize (their phases and amplitudes are identical at all times) while
others phase-lock (their behavior is identical to the other oscillators but with a constant
phase shift}, thus {forming clusters of oscillators [14] . To the best of our knowledge, there are
no theoretical results on the necessary conditions for the occurrence of such phenomenon.
The result presented in this section is a step in this direction.

For simplicity, we will assumne that all the DIF oscillators are identical f; = f, and that
the set of oscillators @ is divided into & nmtually disjoint groups Gy,+++,Gi. We also
assume that if O and O; are two ditferent oscillators, then

FUIT ) a6ld))

' (é)+ei{e)) e
0< - '(f(¢;)+f1(d>1))) <1 otherwise,

(5) { L{9;)-bei(8;) j > 1 if oscillators O; and O; belong to the same group,

Theorem 3. Under the above assumptions, for all initial conditions (ezcept for a set of
measure zero) any two oscillators will synchronize if and only if they belong to the same
group Gy .

3 Data clustering with DIF oscillators Clustering is a process by which a data set is
divided into different classes such that elements of the same cluster are as similar as possible
and elements of different clusters are as dissimilar as possible. In a set of n elements, and
assuming that one already knows that the desired number of clusters k, an exhaustive
search of all possibilities requires a search time in the order of n*. This, of course, makes
this problemn highly combinatorial prohibiting the use of exact optimization technigues for
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any reasonable data set. Traditional clustering algorithms can be divided into two main
categories [7]: hierarchical and partinional. Hierarchical clustering techniques yield a nested
sequence of partitions and do not require the specification of the appropriate number of
clusters. However, these algorithmms are computationally expensive and cannot incorporate
a priori knowledge about the global shape or size of clusters. Prototype-based clustering
algorithms represent each cluster by a prototype and use the sum of the distances from the
prototypes to the data points as an objective function. While this allows for incorporating
knowledge about the size and shape of the clusters, finding the appropriate number of
clusters remains a problem. Moreover, the major drawbacks of these algorithms are their
sensitivity to noise, outliers, and initialization. Recently, a few algorithms that address
these drawbacks have emerged [3] [2] [8]. However, these algorithms are computationally
complex and are only suitable to simple distance measures. Moreover, since prototype-
based algorithms essentially rely on an optimization procedure, they require parametric
and differentiable distance measures, thus prohibiting subjective, and non metric similarity
measures.

Terman and Wang [13], and Horn and Opher [6] realized the potential of coupled oscil-
lators as a useful tool for data clustering. Both of their models associate one oscillator with
one data point and define the coupling between the oscillators as a function of the similar-
ity between the points. Local excitation was used to induce synchronization within clusters
while global inhibition was used to create cluster competition and thus the phase locking
between clusters. An inherent limitation of these models is that they tend to divide the data
set into a small number of clusters of the same size. Terman and Wang {17] have devised
an improved algorithm that overcomes these limitations through complex lateral interac-
tions. This method however, cannot be used for general data sets and is computationally
inefficient for very large data sets.

3.1 The proposed model LetY = {y;,--- ,yn} be the set of n objects to be partitioned.
Object data can be represented by p features and the similarity measure d;; between two
points y; and y; is usually given by an explicit function in R?. Relational data on the other
hand cannot be represented in R? and the objects y; are not given explicitly. Instead the
data is available only in a relational matrix D = [d;;] with zero diagonal terms. Usually,
for both object and relational data, the similarity measure is normalized such that the
Max(d,—,—) =1.

In our model, we represent each data point y; by a DIF oscillator 0. The problem
of clustering reduces to partitioning the population of n oscillators into C subpopulations
where C' is unknown, Synchronized oscillators of the same group correspond to a data
cluster, and should have a phase difference with oscillators of dissimilar groups. Obviously
this dictates that the coupling strength €;;(¢) should be a function of the similarity measure
dij. To this purpose, we choose

€ij(¢) = ald;;)
where the function  is a strictly decreasing function satisfying a{0) > 0 and o(1) < 0. It is
important to notice that the choice of the function a is not unique to cause clustering. Of

course the choice of the function of a will affect the outcome in terms of the nature, size,
and nutber of clusters. In most of our applications we used the function

1 - (%"—)2] if d,‘j < & . .
) = for all j #1i.,
e (= L T P M 171
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where Cg is the maximum excitatory coupling, Cr is the maximum inhibitory coupling,
and do defines the neighborhood that encloses all oscillators O; that are similar to oscillator
O;. If d;; is close to dg, then this is the zone of doubt, and the coupling should be very
weak. On the other hand, if di; >> & or d;j << do, then the relation between oscillators
0; and O; is more certain, and the coupling should be strong. Typically, once an oscillator
reaches the threshold, it excites few oscillators and it inhibits several others. In other
words, during the evolution of the system, any oscillator receives inhibition more frequently
than excitation. Therefore, it is preferable to let Cg be larger than C;. Once a group
of oscillators G = {y&,,*-* ,¥x, } synchronize, they should be considered as a single point.
Thus the distance d;s from a single point 1 to the group G should be redefined appropriately.
Some possible choices for dig are:

Inin(dih 1dil‘g| R dik,)
(7) dig = ¢ max(dir,,dik,," -+, dix,)
é E?:l dik; -

These three choices correspond to the single linkage, complete linkage and average linkage
algorithms, respectively, in sequential agglomerative hierarchical nonoverlapping models
[12]. When the clusters are compact and well separated all three choices yield the same
results. Different results can be obtained otherwise. The average linkage is used in the ap-
plications shown in this paper. The resulting clustering algorithm, called Self-Organization
of Oscillator Network SOON is sumrmarized below:
Algorithm Self-Organization of Oscillator Network
Store (or construct) the similarity matriz [d;;[;

Initialize phases ¢; randomdy for t =1..- n;

Repeat
Identify the firing oscillator i such that ¢;= maz(d1, ¢z, ,dn);
T=1-4;
Reset ¢; = 0;

For all escillators j #i DO
Compute e,-;;
Update the phases ¢; = ¢; + T}
¢; = F{fl¢;) + e
End For
Identify synchronized groups and reset their phases;
Adjust the similarity measure matriz of newly formed or updated groups;
Until Synchronized groups stabilize.

The following figure illustrates the evolution of the phases for the objects of & data set
consisting of two well separated clusters. The pairs of graphs display the phases of each
oscillator and the corresponding objects partitionning at the corresponding stage. At first
(a), the phases are random and the belonging of each object is still unknown. After 10
iterations, a few oscillators had already synchronized thus forming small clusters labeled
by the same shape in the feature space(b). After 25 iterations, the clustering is complete
and there are only two phases present in the phase space corresponding to the correct
partitionning of the objects.

4 Applications
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Figure 1: Evolution of the clustering algorithm: Phases and Clusters

4.1 Synthetic data We first start with a few examples from synthetic data to emphasize
the robustness of SOON to noise and outliers and its ability to correctly identify the correct
number of clusters in an unsupervised manner. In fact, for object data and when the
clusters are expected to have ellipsoidal shapes, the Mahalanobis distance can be used as
the dissimilarity measure. That is,

(8) d*(y;,Gr) = (y; - Ck)TCk—l (¥j — &),

where ¢; and C; are the mean and covariance matrix of cluster k. The advantage of us-
ing this dissimilarity measure is that the distances of points belonging to the same cluster
would have a x? distribution with p degrees of freedom. This desirable feature will (i) au-
tomate the choice of the resolution parameter &y, (ii) avoid the need to globally normalize
the distances before using them to compute the coupling, and (iii) make the neighborhood
of the excitatory region adaptive and cluster dependent. Figure 2 illustrates the evolution
of SOON using a 2-D synthetic Gaussian mixture consisting of six clusters of various sizes
and orientations. Fig. 2(a) displays the results after 5 iterations where 4 small groups have
formed. The center of each group is indicated by the “+“ sign and the ellipses enclose
points with a Mahalanobis distance less than 9 (i.e. points within the excitatory neighbor-
hood). The remaining points indicate the individual oscillators that did not synchronize
yet. Fig. 2(b) displays the results after 500 iterations. As can be seen, most oscillators
have synchronized, and there are several groups of various sizes. As the algorithm evolves
further, similar groups get merged. Fig. 3(c) shows the result after 1200 iterations where
the remaining groups are phase locked.

Figure. 3 illustrates the robustness of SOON to noise. Noise points will either form very
small clusters that can be discarded based on cardinality or will not synchronize at all.
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Figure 2: Detection of cllipsoidal clusters. Results at the end of (a) 5 iterations, (b) 500
iterations, and (c) 1200 iterations.
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Figure 3: Detection of ellipsoidal clusters in noisy data. Results at the end of {a) 5 iterations,
(b) 500 iterations, aud (¢) 1700 iterations.

4.2 Large databases and Scale-SOON Recently, the advent of the World Wide Web
search engines, the problem of organizing massive multimedia databases, and the concept of
"data mining” large databases has led to a renewal of interest in clustering and the develop-
ment of algorithms that are suitable for large databases. The main reason for the renewal
of interest is that running several passes over a database makes the run time prohibitive
for many clustering algorithms. In [16] we modified the SOON algorithm presented here to
Scale-SOON to efficiently cluster huge data sets. The algotrithm Scale-SOON consists of
successive runs of SOON over data sample sets that fill the memory buffer. After each run,
the obtained clusters are summarized by a single oscillator with equivalent sufficient statis-
tics and the synchronized oscillators are purged from the buffer. Our empirical evaluation
has shown that Scale-SOON scales linearly with respect to the number of records and the
number of attributes [16]. Our experiments have also indicated that even if large memory
is available to hold the entire data, it is more efficient to process it incrementally. This is
because the problem is much simpler when fewer oscillators are interacting, and also the
cache memory is used more efficiently.

Figures 4 and 5 compare the performance of Scale-SOON with BIRCH [19], one of the
best algoritluns suitable for large data sets. BIRCH is a hierarchical algorithm that performs
a preclustering phase that identifies and suminarizes dense regions.

4.3 Color Image Segmentation Figure 6 illustrates the ability of SOON to segment
real color images. We should note here that this problem is different from the image
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Figure 4: Comparison of SOON and BIRCH on two large data sets

segmentation achieved using pulse coupled neural networks where the spatial coordinates
are used to define the neighborhood of the excitatory coupling and only the gray level is used
to discriminate between pixels. In this application, each pixel in the image is mapped to an
8-D vector and the segmentation problem is transformed to clustering an 8-D dataset. The
8 features consist of three color, three texture, and two position features [1]. The images
shown are from the Corel image database. Each image is to be segmented into several
homogeneous regions by clustering the feature vectors mapped from the image pixels. In
this application, there is no one correct number of clusters. In general, for each image, we
can obtain several reasonable segmentations corresponding to different resolutions.
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