T-FUZZY LEFT K-IDEALS OF SEMIRINGS

ZHAN JIANMING & TAN ZHISONG

Received March 8, 2003

ABSTRACT. In this paper, we introduce the concept of T-fuzzy left K-ideals of semirings, and then some related results are obtained. Using a t-norm T, the direct product and T-product of T-fuzzy left k-ideals are discussed, and their properties are investigated.

1.Introduction and preliminaries A semiring S is an algebraic structure $(S, +, \cdot)$ in which (S, +) is a commutative monoid and (S, \cdot) is a semigroup such that a(b+c) = ab + ac and (a + b)c = ac + bc for all $a, b, c \in S$. Also $x \cdot 0 = 0 \cdot x = 0$ for all 0 is the additive identity of S. A subset I of S is called a left(right) ideal of S if I is closed under addition and $SI \subseteq I(IS \subseteq I)$. A left(right)ideal of S is called a left(right) k-ideal of S if $y, z \in I, x \in S, x + y = z$ implies $x \in I$. In 1965, L.A.Zadeh introduced the notion of a fuzzy subset A of a set X as a mapping from X into [0, 1]. Rosenfeld and Kuroki applied this concept in group theory and semigroup theory, respectively. A nonempty fuzzy subset A of a semiring S is called a fuzzy left (right)ideal of S if (i) $A(x + y) \ge min\{A(x), A(y)\}$ and (ii) $A(xy) \ge A(y)(A(xy) \ge A(x))$ for all $x, y \in S$. S.Ghosh([1]) introduced the concept of fuzzy k-ideals of semirings and obtain some results. In this paper, we introduce the concept of T-fuzzy left k-ideals of semirings are discussed, and their properties are investigated.

2.T-fuzzy left k-ideals

Definition 2.1([5]) By a *t*-norm *T*, we mean a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following conditions:

 $\begin{array}{ll} ({\rm I}) \; T(x,1) = x \\ ({\rm II}) \; T(x,y) \leq T(x,z) & \text{if } y \leq z \\ ({\rm III}) \; T(x,y) = T(y,x) \\ ({\rm IV}) \; T(x,T(y,z)) = T(T(x,y),z) \\ \text{for all } x,y,z \in [0,1]. \end{array}$

Note that every t-norm T has a useful property: $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$ for all $\alpha, \beta \in [0, 1]$.

Definition 2.2 Let μ be a fuzzy set of a semiring R. Then μ is called a T-fuzzy left k-ideal of R if for any $x, y, z \in R, x + y = z$ implies $\mu(x) \ge T(\mu(y), \mu(z))$.

T-fuzzy right k-ideal of a semiring is defined similarly. For any subset A of a semiring R, \mathcal{X}_A will denote the characteristic function of A.

²⁰⁰⁰ Mathematics Subject Classification. 16Y60, 13E05, 03G25.

Key words and phrases. T-fuzzy left k-ideals, fuzzy k-ideals, T-product, Semirings.

Theorem 2.3 Let R and $I \subseteq S$. Then I is a left k-ideal of R if and only if \mathcal{X}_I is a T-fuzzy left k-ideal of R.

Proof Let I be a left k-ideal of R. Then it's easy to show that \mathcal{X}_I is a T-fuzzy left k-ideal of R. In fact, let $x, y, z \in R$ such that x + y = z. If $y, z \in I$, then $x \in I$ as I is a left k-ideal of R. Thus $\mathcal{X}_I(x) = 1 = T(\mathcal{X}_I(y), \mathcal{X}_I(z))$. Otherwise. $T(\mathcal{X}_I(y), \mathcal{X}_I(z)) = 0 \leq \mathcal{X}_I(x)$. Therefore, \mathcal{X}_I is a T-fuzzy left k-ideal of R. Conversely, if \mathcal{X}_I is a T-fuzzy left k-ideal of R. Conversely, if \mathcal{X}_I is a T-fuzzy left k-ideal of R. Let $x \in S, y, z \in I$ such that x + y = z. Then $\mathcal{X}_I(x) \geq T(\mathcal{X}_I(y), \mathcal{X}_I(z)) = 1$. Thus $\mathcal{X}_I(x) = 1$ and hence $x \in I$, as required.

Let $f : R \to S$ be a mapping of semirings. For a fuzzy set μ in Y, the inverse image of μ under f, denoted by $f^{-1}(\mu)$, is defined by $f^{-1}(\mu x) = \mu(f(x))$ for all $x \in R$.

Theorem 2.4 Let $f : R \to S$ be a homomorphism of semirings. If μ is a T-fuzzy left k-ideal of S, then $f^{-1}(\mu)$ is a T-fuzzy left k-ideal of R.

Proof Let $x, y, z \in R$ such that x + y = z. Then f(x) + f(y) = f(z), and that $f^{-1}(\mu(x) = \mu(f(x)) \ge T(\mu(f(y)), \mu(f(z))) = T(f^{-1}(\mu)(y), f^{-1}(\mu)(z))$. Hence $f^{-1}(\mu)$ is a T-fuzzy left k-ideal of R.

Lemma 2.5 ([5]) For all $\alpha, \beta, \gamma, \delta \in [0, 1], T(T(\alpha, \beta), T(\gamma, \delta)) = T(T(\alpha, \gamma), T(\beta, \delta))$

Theorem 2.6 Let T be a t-norm and let $R = R_1 \times R_2$ be the direct product of semirings R_1 and R_2 . If $\mu_1(resp.\mu_2)$ is a T-fuzzy left k-ideal of $R_1(resp.R_2)$, then $\mu = \mu_1 \times \mu_2$ is a T-fuzzy left k-ideal of R defined by $\mu(x) = \mu(x_1, x_2) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2))$ for all $x = (x_1, x_2) \in R$.

Proof Let $x = (x_1, x_2), y = (y_1, y_2)$ and $z = (z_1, z_2)$ be such that x + y = z. Then $\mu(x) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2))$ $\geq T(T(\mu_1(y_1), \mu_1(z_1)), T(\mu_2(y_2), \mu_2(z_2)))$ $=T(T(\mu_1(y_1), \mu_2(y_2)), T(\mu_1(z_1), \mu_2(z_2)))$ $=T((\mu_1 \times \mu_2)(y_1, y_2), (\mu_1 \times \mu_2)(z_1, z_2))$ $=T(\mu(y), \mu(z))$ Hence $\mu = \mu_1 \times \mu_2$ is a T-fuzzy left k-ideal of R.

We will generalize the idea to the product of n T-fuzzy left k-ideals, We first need to generalize the domain of T to $\prod_{i=1}^{n} [0, 1]$ as follows:

Definition 2.7([5]) The function $T_n: \prod_{i=1}^n [0,1] \to [0,1]$ is defined by

 $T_n(\alpha_1, \alpha_2, \dots, \alpha_n) = T(\alpha_i, T_{n-1}(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n))$ for all $1 \le i \le n$, where $n \ge 2, T_2 = T$, and $T_1 = id$ (identity)

Lemma 2.8 ([5]) For every $\alpha_i, \beta_i \in [0, 1]$, where $1 \le i \le n$ and $n \ge 2$, $T_n(T(\alpha_1, \beta_1), T(\alpha_2, \beta_2), \ldots, T(\alpha_n, \beta_n)) = T(T_n(\alpha_1, \alpha_2, \ldots, \alpha_n), T_n(\beta - 1, \beta_2, \ldots, \beta_n))$

Theorem 2.9 Let $\{R_i\}_{i=1}^n$ be the finite collection of semirings and $R = \prod_{i=1}^n R_i$ the direct product semiring of $\{R_i\}$.Let μ_i be a *T*-fuzzy left *k*-ideal of R_i , where $1 \leq i \leq n$.Then $\mu = \prod_{i=1}^n \mu_i$ defined by

 $\mu(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \mu_i(x_1, x_2, \dots, x_n) = T_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n))$ is a *T*-fuzzy left *k*-ideal of the semiring *R*.

Proof Let $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n)$ and $z = (z_1, z_2, \ldots, z_n)$ be such that x = y + z. Then $x_i = y_i + z_i$ for all $1 \le i \le n$. We have

 $\begin{aligned} \mu(x) &= \mu(x_1, x_2, \dots, x_n) = T_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n)) \\ &\geq T_n(T(\mu_1(y_1), \mu_1(z_1)), T(\mu_2(y_2), \mu_2(z_2)), \dots, T(\mu_n(y_n), \mu_n(z_n)))) \\ &= T(T_n(\mu_1(y_1), \mu_2(y_2), \dots, \mu_n(y_n)), T_n(\mu_1(z_1), \mu_2(z_2), \dots, \mu_n(z_n))) \\ &= T(\mu(y_1, y_2, \dots, y_n), \mu(z_1, z_2, \dots, z_n)) \\ &= T(\mu(y), \mu(z)) \end{aligned}$

Hence μ is a *T*-fuzzy left *k*-ideal of *R*.

Definition 2.10 Let μ and ν be fuzzy sets in R. then the product of μ and ν , written $[\mu \cdot \nu]_T$, is defined by $[\mu \cdot \nu]_T(x) = T(\mu(x), \nu(x))$ for all $x \in R$.

Theorem 2.11 Let μ and ν be T-fuzzy left k-ideals of semiring R. If T^* is a t-norm which dominates T, that is, $T^*(T(\alpha,\beta),T(\gamma,\delta)) \ge T(T^*(\alpha,\gamma),T^*(\beta,\delta))$ for all $\alpha,\beta,\gamma,\delta \in [0,1]$, then T^* -product of μ and $\nu, [\mu \cdot \nu]_T^*$ is a T-fuzzy left k-ideal of R.

Proof Let $x, y, z \in R$ be such that x + y = z,

 $[\mu\cdot\nu]_T*(x)=T^*(\mu(x),\nu(x))$

 $\geq T^*(T(\mu(y),\mu(z)),T(\nu(y),\nu(z))) \\ \geq T(T^*(\mu(y),\nu(y)),T^*(\mu(y),\nu(z)))$

$$= T([\mu \cdot \nu]_T * (y), [\mu \cdot \nu]_T * (z))$$

Hence $[\mu \cdot \nu]_T *$ is a *T*-fuzzy left *k*-ideal of *R*.

Let $f: R \to S$ be an onto homomorphism of semirings. Let T and T^* be t-norms such that T^* dominates T. If μ and ν are T-fuzzy left k-ideal of S, then the T^* -product of μ and $\nu, [\mu \cdot \nu]_T^*$ is a T-fuzzy left k-ideal of S. Since every onto homomorphic inverse image of a T-fuzzy left k-ideal is a T-fuzzy left k-ideal, the inverse images $f^{-1}(\mu), f^{-1}(\nu)$, and $f^{-1}([\mu \cdot \nu]_T^*)$ are T-fuzzy left k-ideals of R. The next theorem provides that the relation between $f^{-1}([\mu \cdot \nu])_T^*$) and T^* -product $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_T^*$ of $f^{-1}(\mu)$ and $f^{-1}(\nu)$.

Theorem 2.12 Let $f : R \to S$ be an onto homomorphism of semirings. Let T^* be a t-norm such that T^* dominates T. Let μ and ν be T-fuzzy left k-ideals of S. If $[\mu \cdot \nu]_T *$ is the T^* -product of μ and ν , and $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_T *$ is the T^* -product of $f^{-1}(\mu)$ and $f^{-1}(\nu)$, then

 $f^{-1}([\mu \cdot \nu]_T *) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_T *$ Proof Let $x \in R$, then $f^{-1}([\mu \cdot \nu]_T * (f(x)))$ $= T^*(\mu(f(x)), \nu(f(x)))$ $= T^*(f^{-1}(\mu)(x), f^{-1}(\nu)(x))$ $= [f^{-1}(\mu) \cdot f^{-1}(\nu)]_T * (x)$

3. Chain conditions

Let μ be a fuzzy set in X. For $\alpha \in [0, 1]$, the set $U(\mu; \alpha) = \{x \in X | \mu(x) \ge \alpha\}$ is called a level set of μ .

Theorem 3.1 Let μ be a T-fuzzy left K-ideal of R and Let $\alpha \in [0, 1]$ be such that $T(\alpha, \alpha) = \alpha$. Then the nonempty $U(\mu; \alpha)$ is a left k-ideal of R.

Proof Let $x \in R, y, z \in U(\mu; \alpha)$ be such that x = y + z. Then $\mu(y) \ge \alpha$ and $\mu(z) \ge \alpha$. Hence $\mu(x) \ge T(\mu(y), \mu(z)) \ge T(\alpha, \alpha) = \alpha$, which implies that $x \in U(\mu, \alpha)$. Therefore $U(\mu; \alpha)$ is a left k-ideal of R.

Definition 3.2 A semiring R is said to satisfy the K-ascending(resp.K-descending) chain condition(briefly,K-ACC(resp.K-DCC)) if for every ascending (resp.descending)sequence $A_1 \subseteq A_2 \subseteq \ldots (resp.A_1 \supseteq A_2 \supseteq \ldots)$ of left K-ideals of R, there exists a natural number n such that $A_n = A_k$ for all $n \ge k$. If R satisfies the K - ACC, we say R is K-Noetherian semiring.

Theorem 3.3 Let $\{A_k | k \in N\}$ be a family of left k-ideals of a semiring R which is nested, i.e., $A_1 \supset A_2 \supset \ldots$ Let μ be a fuzzy set in R defined by

$$\mu(x) = \begin{cases} \frac{k}{k+1} & \text{if } x \in A_k / A_{k+1}, k = 0, 1, 2 \dots \\ 1 & \text{if } x \in \bigcap_{k=0}^{\infty} A_k \end{cases}$$

for all $x \in X$, where A_0 stands for R. Let $\alpha \in [0, 1]$, such that $T(\alpha, \alpha) = \alpha$. Then μ is a T-fuzzy left k-ideal of R.

Proof Let $x, y, z \in R$ be such that x + y = z. Suppose that $y \in A_k/A_{k+1}$ and $z \in A_r/A_{r+1}$ for $k = 0, 1, 2, \ldots; r = 0, 1, 2, \ldots$. Without loss of generality, we may assume that $k \leq r$. Then obviously $z \in A_k$. Since A_k is a left k-ideal of R, it follows that $x \in A_k$, so that $\mu(x) \geq \frac{k}{k+1} = T(\mu(y), \mu(z))$. If $y \in \bigcap_{k=0}^{\infty} A_k$ and $z \in \bigcap_{k=0}^{\infty} A_k$, then $x \in \bigcap_{k=0}^{\infty} A_k$. Hence $\mu(x) = 1 = T(\mu(y), \mu(z))$. If $y \notin \bigcap_{k=0}^{\infty} A_k$ and $z \in \bigcap_{k=0}^{\infty} A_k$, then there exists $n \in N$, such that $y \in A_n/A_{n+1}$. It follows that $x \in A_n$, so that $\mu(x) \geq \frac{n}{n+1} = T(\mu(y), \mu(z))$. Finally, assume that $y \in \bigcap_{k=0}^{\infty} A_k$ and $z \notin \bigcap_{k=0}^{\infty} A_k$. Then $z \in A_n/A_{n+1}$ for some $n \in N$. Hence $x \in A_n$, and thus $\mu(x) \geq \frac{n}{n+1} = T(\mu(y), \mu(z))$. Therefore, is a T-fuzzy left k-ideal of R.

Theorem 3.4 Let R be a semiring satisfying K - DCC and let μ be a T-fuzzy left k-ideal of R. Let $\alpha \in [0, 1]$ be such that $T(\alpha, \alpha) = \alpha$. If a sequence of elements of $Im\mu$ is strictly increasing, then μ has finite number of values.

Proof Let $\{t_k\}$ be a strictly increasing sequence of elements of $Im\mu$. The $0 \leq t_1 < t_2 < \ldots \leq 1$. Then $U(\mu; t_r) = \{x \in R | \mu(x) \geq t_r\}$ is a left k-ideal of R for all $r = 2, 3, \ldots$ from Theorem 3.1. Let $x \in U(\mu; t_r)$. Then $\mu(x) \geq t_r \geq t_{r-1}$, and so $x \in U(\mu; t_{r-1})$. Hence $U(\mu; t_r) \subseteq U(\mu; t_{r-1})$. Since $t_{r-1} \in Im\mu$, there exists $x_{r-1} \in X$ such that $\mu_{r-1} = t_{r-1}$. It follows that $x_{r-1} \in U(\mu; t_{r-1})$, but $x_{r-1} \notin U(\mu; t_r)$. Thus $U(\mu; t_r) \subset U(\mu; t_{r-1})$, and so we obtain a strictly descending sequence $U(\mu; t_1) \supset U(\mu; t_2) \supset U(\mu; t_3) \supset \ldots$ of left k-ideals of R which is not terminating. This contradicts the assumption that X satisfies the K - DCC. Consequently, μ has finite number of values.

Theorem 3.5 Let *R* be a semiring and let $\alpha \in [0, 1]$ be such that $(\alpha, \alpha) = \alpha$. The following are equivalent:

(i) R is a k-Noetherian semiring.

(ii) The set of values of any left k-ideal of R is a well-ordered subset of [0, 1].

Proof $(i) \Rightarrow (ii)$ let μ be a left k-ideal of R. Assume that the set of values of μ is not a well-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence $\{t_k\}$ such that $\mu(x_k) = t_k$. It follows that $U(\mu; t_1) \subset U(\mu; t_2) \subset \ldots$ is a strictly ascending chain of left k-ideals of R, where $U(\mu; t_r) = \{x \in R | \mu(x) \ge t_r\}$ for every $r = 1, 2, \ldots$ This contradicts the assumption that R is K-Noetherian.

 $(ii) \Rightarrow (i)$ Assume that the condition (i) is satisfied and R is not K-Noetherian. Then there exists a strictly ascending chain.

$$(*) A_1 \subset A_2 \subset \ldots$$

of left k-ideals of R. Let $A = \bigcup_{k \in N} A_k$. Then A is a left k-ideal of R. Define a fuzzy set in R by

$$\nu(x) = \begin{cases} 0 & \text{if } x \notin A\\ \frac{1}{r} & \text{where } r = \min\{k \in N | x \in A_k\} \end{cases}$$

we claim that ν is a left K-ideal of R. Let $x, y, z \in R$ be such that x+y=z. If $y \in A_k/A_{k-1}$ and $z \in A_k/A_{k-1}$, then $x \in A_k$. It follows that $\nu(x) \ge \frac{1}{k} = T(\nu(y), \nu(z))$. Suppose that $y \in A_k$ and $z \in A_k/A_r$ for all r < k. Sine A_k is a left k-ideal of R, it follows that $x \in A_k$. Hence $\nu(x) \ge \frac{1}{k} \ge \frac{1}{k+1} \ge \nu(z)$, and so $\nu(x) \ge \min\{\nu(y), \nu(z)\} \ge T(\nu(y), \nu(z))$. Similarly for the case $y \in A_k/A_r$ and $z \in A_k$, we have $\nu(x) \ge \min\{\nu(y), \nu(z)\} \ge T(\nu(y), \nu(z))$. Thus ν is a left k-ideal of R. Since the chain (*) is not terminating, ν has a strictly descending sequence of values. This contradicts the assumption that the value set of any left k-ideal is well-ordered. Therefore R is k-Noetherian. This completes the proof.

References

- [1] S.Ghosh, Fuzzy k-ideals of semirings, Fuzzy sets and systems, 95(1998), 103-108.
- [2] C.B.Kim & M.Park, k-fuzzy ideals in semirings, Fuzzy sets and systems, 81(1996), 281-286.
- [3] N.Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy sets and systems 5(1981),203-215.
- [4] T.K.Mukherjee & M.K.Sen, Rings with chain conditions, Fuzzy sets and systems 39(1991), 117-123.
- [5] M.A.A.Osman, On some product of fuzzy subgroups, Fuzzy sets and systems, 24(1987),117-123.
- [6] A.Rosenfeld, Fuzzy groups, J.Math.Anal.Appl, 35(1971), 512-517.
- [7] L.A.Zadeh, Fuzzy sets, Inform & control, 8(1965), 338-353.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P.R. China

E-mail: zhanjianming@hotmail.com