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Abstract. As a generalization of positive implicative BCK-algebra, the notion of gen-
eralized BCK-algebras is introduced. A method to make a gBCK-algebra from a quasi-
ordered set is provided. The notion of generalized BCK-ideals of generalized BCK-
algebras is introduced, and then the connections between such ideals and congruences
are considered. Characterizations of generalized BCK-ideals are given. A generalized
BCK-ideal generated by a set is established.

1. Introduction

In 1966, Y. Imai and K. Iséki [2] introduced a new notion, called a BCK-algebra. This
notion is originated from two different ways: One of them is based on set theory; another
is from classical and non-classical propositional calculi. As is well known, there is a close
relationship between the notions of the set difference in set theory and the implication
functor in logical systems. Then the following problems arise from this relationship. What
is the most essential and fundamental common properties? Can we formulate a new general
algebra from this viewpoint? How can we find an axiom system to establish a good theory
of general algebras? To give an answer these problems, Y. Imai and K. Iséki introduced
a notion of a new class of general algebras which is called a BCK-algebra. This name is
taken from the BCK-system of C. A. Meredith. Since then many researchers studied several
notions and properties of BCK-algebras. For the general development of BCK-algebras,
the ideal theory plays an important role.

The aim of this paper is to construct a new algebra, called a generalized BCK-algebra
(gBCK-algebra for short), which is a generalization of a positive implicative BCK-algebra.
We give a method to make a gBCK-algebra from a quasi-ordered set. We introduce the
notion of generalized BCK-ideals of generalized BCK-algebras, and then we consider the
connections between such ideals and congruences. We provide characterizations of general-
ized BCK-ideals. We establish a generalized BCK-ideal generated by a set.

2. Preliminaries

Recall that a BCK-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying the following
axioms: for every x, y, z ∈ X ,

• ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
• (x ∗ (x ∗ y)) ∗ y = 0,
• x ∗ x = 0,
• 0 ∗ x = 0,
• x ∗ y = 0 and y ∗ x = 0 imply x = y.
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For any BCK-algebra X , the relation ≤ defined by x ≤ y if and only if x∗y = 0 is a partial
order on X . A BCK-algebra X is said to be positive implicative if (x∗y)∗z = (x∗z)∗(y∗z)
for all x, y, z ∈ X . A nonempty subset I of a BCK-algebra X is called an ideal of X if it
satisfies

• 0 ∈ I,
• x ∗ y ∈ I and y ∈ I imply x ∈ I for all x, y ∈ X .

3. Generalized BCK-algebras

Definition 3.1. By a generalized BCK-algebra (gBCK-algebra, for short) we mean a
triplet (G, ∗, 0), where G is a nonempty set, ∗ is a binary operation on G and 0 ∈ G is
a nullary operation, called zero element, such that
(G1) x ∗ 0 = x,
(G2) x ∗ x = 0,
(G3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(G4) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Notice that gBCK-algebras are determined by identities, and thus the class of gBCK-
algebras forms a variety.

Example 3.2. (1) Every positive implicative BCK-algebra is a gBCK-algebra.
(2) Let G = {0, a, b, c} be a set with the following Cayley tables.

∗1 0 a b c
0 0 0 0 0
a a 0 0 0
b b 0 0 0
c c 0 0 0

∗2 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 0
c c c 0 0

It is routine to check that (G, ∗1, 0) and (G, ∗2, 0) are gBCK-algebras, which are not BCK-
algebras.

Example 3.2 tells us that a gBCK-algebra is a generalization of a positive implica-
tive BCK-algebra, that is, Positive implicative BCK-algebras are stronger systems than
gBCK-algebras.

Proposition 3.3. Let G be a gBCK-algebra. Then
(i) 0 ∗ x = 0,
(ii) (x ∗ y) ∗ x = 0.
(iii) x ∗ y = 0 implies (x ∗ z) ∗ (y ∗ z) = 0.

Proof. (i) Putting x = y = z in (G4) and using (G2), we have

0 = 0 ∗ 0 = (x ∗ x) ∗ (x ∗ x) = (x ∗ x) ∗ x = 0 ∗ x.

(ii) Replacing z by x in (G4) and using (G2) and (i), we get

(x ∗ y) ∗ x = (x ∗ x) ∗ (y ∗ x) = 0 ∗ (y ∗ x) = 0.

(iii) Assume that x ∗ y = 0. Then

(x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z = 0 ∗ z = 0.

This completes the proof.

A reflexive and transitive relation R on a set G is called a quasi-ordering of G, and the
couple (G,R) is then called a quasi-ordered set (see [1, p. 20]).
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Proposition 3.4. Let RG be a relation on a gBCK-algebra G defined by

(x, y) ∈ RG if and only if y ∗ x = 0.

Then RG is a quasi-ordering of G. Moreover,
(i) (x, 0) ∈ RG, ∀x ∈ G.
(ii) If x ∈ G is such that (0, x) ∈ RG, then x = 0.

We then call RG the induced quasi-ordering of a gBCK-algebra G.

Proof. Since x ∗ x = 0 for all x ∈ G, we have (x, x) ∈ RG, that is, RG is reflexive. Let
x, y, z ∈ G be such that (x, y) ∈ RG and (y, z) ∈ RG. Then y ∗ x = 0 and z ∗ y = 0. It
follows from Proposition 3.3(i), (G1) and (G4) that

0 = 0 ∗ x = (z ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ 0 = z ∗ x

so that (x, z) ∈ RG, that is, RG is transitive. Hence RG is a quasi-ordering of G. Moreover,
(i) follows from Proposition 3.3(i).
(ii) Let x ∈ G be such that (0, x) ∈ RG. Then x = x ∗ 0 = 0. This completes the

proof.

Lemma 3.5. Let RG be the induced quasi-ordering of a gBCK-algebra G. Let x, y ∈ G be
such that (x, y) ∈ RG. Then (x ∗ z, y ∗ z) ∈ RG and (z ∗ y, z ∗ x) ∈ RG for all z ∈ G.

Proof. Let x, y, z ∈ G be such that (x, y) ∈ RG. Then y ∗ x = 0, and so

(y ∗ z) ∗ (x ∗ z) = (y ∗ x) ∗ z = 0 ∗ z = 0,

and
(z ∗ x) ∗ (z ∗ y) =

(
z ∗ (z ∗ y)

)
∗ x = (z ∗ x) ∗

(
(z ∗ y) ∗ x

)
= (z ∗ x) ∗

(
(z ∗ x) ∗ (y ∗ x)

)
= (z ∗ x) ∗

(
(z ∗ x) ∗ 0

)
= (z ∗ x) ∗ (z ∗ x) = 0.

Hence (x ∗ z, y ∗ z) ∈ RG and (z ∗ y, z ∗ x) ∈ RG for all z ∈ G.

Proposition 3.6. Let RG be the induced quasi-ordering of a gBCK-algebra G. Then

(i)
(
y, x ∗ (x ∗ y)

)
∈ RG, ∀x, y ∈ G.

(ii)
(
x ∗ y, (x ∗ z) ∗ (y ∗ z)

)
∈ RG, ∀x, y, z ∈ G.

Proof. (i) is by (G2) and (G3).
(ii) Proposition 3.3(ii) implies that (x, x ∗ z) ∈ RG for all x, z ∈ G. It follows from (G3),

(G4) and Lemma 3.5 that(
x ∗ y, (x ∗ z) ∗ (y ∗ z)

)
=

(
x ∗ y, (x ∗ y) ∗ z

)
=

(
x ∗ y, (x ∗ z) ∗ y

)
∈ RG

for all x, y, z ∈ G.

For every quasi-ordering R of G, denote by ER the relation on G given by

(x, y) ∈ ER if and only if (x, y) ∈ R and (y, x) ∈ R.

Obviously, ER is an equivalence relation on G, which is called an equivalence relation induced
by R. Denote by [a]ER the equivalence class containing a and by G/ER the set of all
equivalence classes of X with respect to ER, that is,

[a]ER = {x ∈ G | (x, a) ∈ ER}
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and

G/ER =
{
[a]ER | a ∈ G

}
.

Define a relation ≤R on G/ER by

[a]ER ≤R [b]ER if and only if (a, b) ∈ R.

Then ≤R is a partial order on G/ER, and so (G/ER,≤R) is a poset, which is called a poset
assigned to the quasi-ordered set (G,R). A relation R on G is said to be compatible if
(x ∗ u, y ∗ v) ∈ R whenever (x, y) ∈ R and (u, v) ∈ R for all x, y, u, v ∈ G. A compatible
equivalence relation on G is called a congruence relation on G. The set

[0]R = {x ∈ G | (x, 0) ∈ R}
is called the kernel of R.

Theorem 3.7. Let RG be the induced quasi-ordering of a gBCK-algebra G and let Θ =
ERG be the equivalence relation induced by RG. Then

(i) Θ is a congruence relation on G with kernel [0]Θ = {0}.
(ii) the quotient algebra (G/Θ, •, [0]Θ) is a gBCK-algebra, where the operation • on G/Θ

is defined by

[a]Θ • [b]Θ = [a ∗ b]Θ.

Proof. (i) Note that Θ is an equivalence relation on G. Let x, y, u, v ∈ G be such that
(x, y) ∈ Θ and (u, v) ∈ Θ. Then (x, y) ∈ RG, (y, x) ∈ RG, (u, v) ∈ RG, and (v, u) ∈ RG.
Using Lemma 3.5, we obtain (x∗u, x∗v) ∈ RG and (x∗v, y∗v) ∈ RG. By the transitivity of
RG, we get (x∗u, y∗v) ∈ RG. Similarly, we have (y∗v, x∗u) ∈ RG. Hence (x∗u, y∗v) ∈ Θ,
that is, Θ is a congruence relation on G. Now if x ∈ [0]Θ, then (x, 0) ∈ Θ and so (0, x) ∈ RG.
It follows from Proposition 3.4(ii) that x = 0. Hence [0]Θ = {0}.

(ii) is straightforward.

Let G be a gBCK-algebra and ∅ �= K ⊆ G. Denote by θK the relation on G given by

(x, y) ∈ θK if and only if x ∗ y ∈ K and y ∗ x ∈ K.

Lemma 3.8. If θK is reflexive for every nonempty subset K of a gBCK-algebra G, then
[0]θK = K.

Proof. Suppose that θK is reflexive for every nonempty subset K of G. Then 0 = x∗x ∈ K.
If a ∈ K, then a ∗ 0 = a ∈ K and 0 ∗ a = 0 ∈ K. Hence (a, 0) ∈ θK , that is, a ∈ [0]θK .
Conversely if a ∈ [0]θK , then (a, 0) ∈ θK and hence a = a∗0 ∈ K. Therefore [0]θK = K.

Lemma 3.9. Let K be a nonempty subset of a gBCK-algebra G. Assume that the relation
θK is an equivalence relation on G. Then

a ∈ K, a ∗ b ∈ K and b ∗ a = 0 imply b ∈ K.

Proof. Suppose that a ∈ K, a ∗ b ∈ K and b ∗ a = 0. Then b ∗ a = 0 ∈ [0]θK = K, and so
(a, b) ∈ θK . Since θK is an equivalence relation on G, a and b belong to the same class of
θK . Hence a ∈ K = [0]θK implies b ∈ [0]θK = K. This completes the proof.

We provide a method to make a gBCK-algebra from a quasi-ordered set.

Theorem 3.10. Let (G,R) be a quasi-ordered set. Suppose 0 /∈ G and let G0 = G ∪ {0}.
Define a binary operation ∗ on G0 as follows:

x ∗ y =
{

0 if (x, y) ∈ R
x otherwise.

Then (G0, ∗, 0) is a gBCK-algebra.
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Proof. Since R is reflexive, obviously x ∗ x = 0 for all x ∈ G. Since (x, 0) /∈ R for every
x ∈ G, we have x ∗ 0 = x for all x ∈ G. Note that 0 ∗ x = 0 for all x ∈ G. Assume that
(x, y) /∈ R and (x, z) /∈ R. Then

(x ∗ y) ∗ z = x ∗ z = x = x ∗ y = (x ∗ z) ∗ y.

If (x, y) ∈ R and (x, z) /∈ R, then

(x ∗ y) ∗ z = 0 ∗ z = 0 = x ∗ y = (x ∗ z) ∗ y.

Suppose that (x, y) /∈ R and (x, z) ∈ R. Then

(x ∗ y) ∗ z = x ∗ z = 0 = 0 ∗ y = (x ∗ z) ∗ y.

If (x, y) ∈ R and (x, z) ∈ R, then

(x ∗ y) ∗ z = 0 ∗ z = 0 = 0 ∗ y = (x ∗ z) ∗ y.

This proves the condition (G3) holds. To verify the condition (G4), we consider the following
cases:

(1) (x, y) ∈ R and (y, z) ∈ R.
(2) (x, y) /∈ R and (y, z) ∈ R.
(3) (x, y) ∈ R and (y, z) /∈ R.
(4) (x, y) /∈ R and (y, z) /∈ R.

For the case (1), we have (x, z) ∈ R, and so

(x ∗ y) ∗ z = 0 ∗ z = 0 = 0 ∗ 0 = (x ∗ z) ∗ (y ∗ z).

Case (2) implies that

(x ∗ y) ∗ z = x ∗ z = (x ∗ z) ∗ 0 = (x ∗ z) ∗ (y ∗ z).

For the case (3), we get first (x ∗ y) ∗ z = 0 ∗ z = 0. If (x, z) ∈ R, then

(x ∗ z) ∗ (y ∗ z) = 0 ∗ (y ∗ z) = 0 = (x ∗ y) ∗ z;

if (x, z) /∈ R then

(x ∗ z) ∗ (y ∗ z) = x ∗ y = 0 = (x ∗ y) ∗ z.

For the case (4), if (x, z) ∈ R then

(x ∗ y) ∗ z = x ∗ z = 0 = 0 ∗ y = (x ∗ z) ∗ (y ∗ z).

If (x, z) /∈ R, then

(x ∗ y) ∗ z = x ∗ z = x = x ∗ y = (x ∗ z) ∗ (y ∗ z).

Hence the condition (G4) is true. This completes the proof.

4. Generalized BCK-ideals

In what follows let G denote a gBCK-algebra unless otherwise specified.

Definition 4.1. Let G be a gBCK-algebra. A nonempty subset I of G is called a gener-
alized BCK-ideal (gBCK-ideal, for short) of G if it satisfies the following conditions:
(I1) x ∈ G and a ∈ I imply a ∗ x ∈ I,
(I2) x ∈ G and a, b ∈ I imply x ∗

(
(x ∗ a) ∗ b

)
∈ I.

Combining (G2) and (I1), we obtain that every gBCK-ideal contains the zero element
0.

Example 4.2. Let G = {0, a, b, c, d} be a set with the following Cayley table.
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∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 c
d d d d d 0

It is routine to check that (G, ∗, 0) is a gBCK-algebra and the sets I1 = {0, a, d} and
I2 = {0, b, d} are gBCK-ideals of G.

Proposition 4.3. Let I be a gBCK-ideal of G. If b ∈ I and x ∗ b = 0 for x ∈ G, then
x ∈ I.

Proof. Let b ∈ I and x ∗ b = 0 for x ∈ G. Putting b = 0 in (I2) and using (G1), we obtain
x∗(x∗a) ∈ I for all a ∈ I and x ∈ G. It follows from (G1) that x = x∗0 = x∗(x∗b) ∈ I.

Corollary 4.4. Let I be a gBCK-ideal of G and let RG be the induced quasi-ordering of
G. If b ∈ I and (b, x) ∈ RG for x ∈ G, then x ∈ I.

Theorem 4.5. Let K be a gBCK-ideal of a gBCK-algebra G. Then the relation θK is a
congruence relation on G with the kernel [0]θK = K.

Proof. Since x ∗ x = 0 for all x ∈ G, we know that θK is reflexive. Obviously, θK is
symmetric. Let x, y, z ∈ G be such that (x, y) ∈ θK and (y, z) ∈ θK . Then x ∗ y ∈ K,
y ∗ x ∈ K, y ∗ z ∈ K, and z ∗ y ∈ K. By (I1), we have (z ∗ y) ∗ x ∈ K. It follows from (G1),
(G2), (G4) and (I2) that

z ∗ x = (z ∗ x) ∗ 0 = (z ∗ x) ∗
(
((z ∗ x) ∗ (y ∗ x)) ∗ ((z ∗ y) ∗ x)

)
∈ K.

Similarly, we get x ∗ z ∈ K. Hence (x, z) ∈ θK , showing that θK is an equivalence relation
on G. By Lemma 3.8, [0]θK = K. Now it remains to show that θK is compatible. Let
x, y, u, v ∈ G be such that (x, y) ∈ θK and (u, v) ∈ θK . Then x ∗ y ∈ K, y ∗ x ∈ K,
u ∗ v ∈ K, and v ∗ u ∈ K. Using (G4) and (I1), we obtain

(x ∗ u) ∗ (y ∗ u) = (x ∗ y) ∗ u ∈ K and (y ∗ u) ∗ (x ∗ u) = (y ∗ x) ∗ u ∈ K.

Hence
(x ∗ u, y ∗ u) ∈ θK (4.1)

On the other hand,

(y ∗ u) ∗ (y ∗ v) =
(
y ∗ (y ∗ v)

)
∗ u

= (y ∗ u) ∗
(
(y ∗ v) ∗ u

)
= (y ∗ u) ∗

(
(y ∗ u) ∗ (v ∗ u)

)
,

and hence (
(y ∗ u) ∗ (y ∗ v)

)
∗ (v ∗ u) =

(
(y ∗ u) ∗ ((y ∗ u) ∗ (v ∗ u))

)
∗ (v ∗ u)

=
(
(y ∗ u) ∗ (v ∗ u)

)
∗

(
(y ∗ u) ∗ (v ∗ u)

)
= 0.

Since v ∗ u ∈ K, it follows from Proposition 4.3 that (y ∗ u) ∗ (y ∗ v) ∈ K. Similarly,
(y ∗ v) ∗ (y ∗ u) ∈ K. Thus

(y ∗ u, y ∗ v) ∈ θK . (4.2)
Combining (4.1) and (4.2), and using the transitivity of θK , we conclude that (x∗u, y∗v) ∈
θK , that is, θK is compatible. This completes the proof.
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Theorem 4.6. Let R be a reflexive and compatible relation on G. Then the kernel [0]R is
a gBCK-ideal of G.

Proof. Let x ∈ G and a ∈ [0]R. Then (a, 0) ∈ R. Since R is reflexive and compatible, it
follows from Proposition 3.3(i) that

(a ∗ x, 0) = (a ∗ x, 0 ∗ x) ∈ R

so that a ∗ x ∈ [0]R. Now let x ∈ G and a, b ∈ [0]R. Using (G1), Proposition 3.3(i) and the
reflexivity and compatibility of R, we have(

x ∗ ((x ∗ a) ∗ b), 0
)

=
(
x ∗ ((x ∗ a) ∗ b), x ∗ ((x ∗ 0) ∗ 0)

)
∈ R,

proving x ∗
(
(x ∗ a) ∗ b

)
∈ [0]R. Hence [0]R is a gBCK-ideal of G.

Lemma 4.7. Let I be a nonempty subset of G such that

(I3) 0 ∈ I,
(I4) x ∗ y ∈ I and y ∈ I imply x ∈ I.

If w ∈ I then x ∗ (x ∗ w) ∈ I for all x ∈ G.

Proof. If w ∈ I, then
(
x ∗ (x ∗ w)

) ∗ w = (x ∗w) ∗ (x ∗ w) = 0 ∈ I. It follows from (I4) that
x ∗ (x ∗ w) ∈ I.

We now give characterizations of gBCK-ideals.

Theorem 4.8. Let I be a nonempty subset of G. Then I is a gBCK-ideal of G if and only
if it satisfies (I3) and (I4).

Proof. Let I be a gBCK-ideal of G. It is sufficient to show that I satisfies the condition
(I4). Let x, y ∈ G be such that x∗y ∈ I and y ∈ I. Then b := x∗(x∗y) = x∗(

(x∗y)∗0
) ∈ I.

It follows from taking a = x ∗ y that

x = x ∗ 0 = x ∗
((

x ∗ (x ∗ y)
) ∗ (

x ∗ (x ∗ y)
))

= x ∗ (
(x ∗ a) ∗ b

) ∈ I,

which proves (I4). Conversely assume that I satisfies (I3) and (I4). Let x ∈ G and a ∈ I.
Then (a ∗ x) ∗ a = 0 ∈ I by Proposition 3.3(ii) and (I3), and so a ∗ x ∈ I by (I4). Now let
x ∈ G and a, b ∈ I. Then(

x ∗ (
(x ∗ a) ∗ b

)) ∗ a = (x ∗ a) ∗ ((x ∗ a) ∗ b) ∈ I

by Lemma 4.7. It follows from (I4) that x ∗ (
(x ∗ a) ∗ b

) ∈ I, which proves (I2). Hence I is
a gBCK-ideal of G.

Theorem 4.9. Let I be a nonempty subset of G. Then I is a gBCK-ideal of G if and only
if for any a, b ∈ I, (x ∗ a) ∗ b = 0 implies x ∈ I.

Proof. The necessity is straightforward. Suppose that for any a, b ∈ I, (x∗a)∗b = 0 implies
x ∈ I. Since (0∗x)∗x = 0 for all x ∈ G, obviously 0 ∈ I. Let x, y ∈ G be such that x∗y ∈ I
and y ∈ I. Then (

x ∗ (x ∗ y)
) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0 ∈ I,

and so x ∈ I by assumption. Hence I is a gBCK-ideal of G.
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Denote by ↓a the set of all elements x ∈ G satisfying x ∗ a = 0, that is,

↓a = {x ∈ G | x ∗ a = 0}.
Note that, for some element a of a BCK-algebra G, the set ↓a may not be an ideal in
general.

Theorem 4.10. For any a ∈ G, the set ↓a is a gBCK-ideal of G.

Proof. Obviously 0 ∈↓a. Let x, y ∈ G be such that x∗y ∈↓a and y ∈ ↓a. Then (x∗y)∗a = 0
and y ∗ a = 0. It follows from (G4) and (G1) that

0 = (x ∗ y) ∗ a = (x ∗ a) ∗ (y ∗ a) = (x ∗ a) ∗ 0 = x ∗ a

so that x ∈↓a. Hence ↓a is a gBCK-ideal of G.

Theorem 4.11. Let I be a nonempty subset of a gBCK-algebra G. Then the set J consists
of all x ∈ G such that the identity(· · · ((x ∗ a0) ∗ a1) ∗ · · ·

) ∗ an = 0 for some a0, a1, · · · , an ∈ I

is the smallest gBCK-ideal of G containing I.

Proof. By means of Proposition 3.3(i), we have 0 ∈ J . Let x, y ∈ G be such that x ∗ y ∈ J
and y ∈ J . Then there are b0, b1, · · · , bm, c0, c1, · · · , cn ∈ I such that(· · · (((x ∗ y) ∗ b0) ∗ b1) ∗ · · ·

) ∗ bm = 0 (4.3)

and (· · · ((y ∗ c0) ∗ c1) ∗ · · ·
) ∗ cn = 0. (4.4)

Using (G3) repeatedly in (4.3) induces(
(· · · ((x ∗ b0) ∗ b1) ∗ · · · ) ∗ bm

)∗y = 0. (4.5)

Combining (G1), (G4), (4.4), (4.5) and Proposition 3.3(i), we get

0 =
(
(· · · (((· · · ((x ∗ b0) ∗ b1) ∗ · · · ) ∗ bm) ∗ c0) ∗ · · · ) ∗ cn

)
∗((· · · (((y ∗ c0) ∗ c1) ∗ · · · ) ∗ cn

)
=

(· · · (((· · · ((x ∗ b0) ∗ b1) ∗ · · · ) ∗ bm) ∗ c0) ∗ · · ·
) ∗ cn,

which shows x ∈ J . Using Theorem 4.8, we obtain that J is a gBCK-ideal of G. Let K be
a gBCK-ideal of G containing I. Let z ∈ J . Then(· · · ((z ∗ a0) ∗ a1) ∗ · · ·

) ∗ an = 0 for some a0, a1, · · · , an ∈ I,

and hence
(· · · ((z ∗ a0) ∗ a1) ∗ · · · ) ∗ an = 0 ∈ K. Since a0, a1, · · · , an ∈ I ⊆ K and K

is a gBCK-ideal, it follows from (I4) that z ∈ K. Therefore J ⊆ K, and the proof is
complete.

The gBCK-ideal J in Theorem 4.11 is called the gBCK-ideal generated by I, and is
denoted by 〈I〉, that is,

〈I〉 = {x ∈ G | (· · · ((x ∗ a0) ∗ a1) ∗ · · ·
) ∗ an = 0, a0, a1, · · ·an ∈ I}.

Theorem 4.12. Let I be a gBCK-ideal of G and w be an element of G. Then

〈I ∪ {w}〉 = {x ∈ G | x ∗ wn ∈ I for some non-negative integer n},
where x ∗wn means

(· · · ((x ∗w) ∗w) ∗ · · · ) ∗w in which w occurs n-times, and x ∗w0 = x.
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Proof. Let U := {x ∈ G | x ∗ wn ∈ I for some non-negative integer n}, and let x ∈
〈I ∪ {w}〉. Then there exist a0, a1, · · · , ak ∈ I such that(· · · (((· · · ((x ∗ a0) ∗ a1) ∗ · · · ) ∗ ak) ∗ w) ∗ · · · ) ∗ w = 0, (4.6)

where w can be repeated n-times. Applying (G3) to (4.6) implies(· · · ((x ∗ wn) ∗ a0) ∗ · · ·
) ∗ ak = 0 ∈ I,

and so x ∗ wn ∈ I by (I4). Hence x ∈ U , which proves 〈I ∪ {w}〉 ⊆ U . Conversely, let
y ∈ U . Then y ∗ wn ∈ I for some non-negative integer n. Since I ⊆ 〈I ∪ {w}〉, it follows
that (y ∗ wn−1) ∗ w = y ∗ wn ∈ 〈I ∪ {w}〉 so from (I4) that y ∗ wn−1 ∈ 〈I ∪ {w}〉 because
w ∈ 〈I ∪ {w}〉 and 〈I ∪ {w}〉 is a gBCK-ideal. Continuing this process, we conclude that
y = y ∗ w0 ∈ 〈I ∪ {w}〉, and so U ⊆ 〈I ∪ {w}〉. This completes the proof.
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