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LIFTING OF SOME CHAOTIC MANIFOLDS ONTO TANGENT SPACES
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Abstract. The paper studies the relation between retraction of chaotic manifolds
without conjugate points and their lifting on tangent spaces. Particular attention is
given for folding manifolds as a mechanism for producing chaos and to their lifting on
tangent spaces.

Introduction and Prelimenaries :

An n-simplex formed by a set of (n+1)-points (vertices) is the smallest closed set which
contains these points, so a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron and so-on. Any(r+1) or (n+1) vertices of n-simplex,
0 ≤ r ≤ n can define an r-simplex, called an r-face of the given simplex. By n-dimensional
polyhedron we mean a set of points in Rn which can be decomposed in n-simplexes in
such a way two simplexes of these decomposition have no common points or otherwise
have a common face. A topological space M is called an n-dimensional manifold if it is
homemorphic to a connected polyhedron and all of its points possess neighbourhoods that
are homeomorphic to the interior of the n dimensional sphere. A chaotic manifold M12...∞h

[4] is a manifold M0h with infinite similar manifolds Mih, i = 1, 2, . . . , each has a physical
character, such as magnetic field, electric charge, colour and so on. As biological example a
nerve in human body is a geometric manifolds that carrying the temperature feeling, sign of
weights, worried, excited, and so many other characters come from the brain, each of which
on the nerve could represent a manifold in its own; all of these give a chaotic manifold. For
simplicity during our work we restrict attention to two kinds of chaotic manifolds, the first
consists of one fixed points in common as shown in Fig. (1)a and the second has no such
fixed points as shown in Fig. (1)b.

Fig. (1)a Fig. (1)b
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If A ⊂ M and f : M → A is a continuous mapping such that f |A = idA i.e. f throws
M onto A, keeping each point of A fixed, then one calls f is a retraction or a retracting
mapping and A is a retract of M. Since M is Hausdoff and f is a retraction, A is closed
in M [8]. By a topological folding of a smooth m-manifold M into a smooth n-manifold
N [9] it is meant a mapping. h : M → N that satisfies (i) any piecewise geodesic path in
M ; γ : [0.1] → M, the induced path h ◦ γ : [0, 1] → N is a piecewise geodesic and (ii) h
does not preserve lengths. Some applications on folding in mathematics and physics are
discussed in [1].

Two continuous mappings f, g : X → Y between two topological spaces are said to be
homotopic, denoted by f � g, if there exists a continuous mapping F : X × [0, 1] → Y
such that for each x ∈ X, F (x, 0) = f(x), F (x, 1) = g(x) hold. The family of mappings
F (s, t) is called a homotopy connecting f and g. Two spaces X and Y are called homotopic
or of the same homotopy type if there exist two continuous mappings f1 : X → Y and
f2 : Y → X such that f2 ◦ f1 � idx and f1 ◦ f2 � idy. Obviously, every two homeomorphic
spaces are homotopic; whethere a simplex [σn] and a space consisting of one single point
are not homeomorphic but they are of the same homotopy type. Let M and M̃ be two
arcwise connected, locally arcwise connected spaces. M̃ is called a covering of M if there
exists a continuous mapping p : M̃ → M (called covering map or admissable) such that for
each x ∈ M, there exists an open set U of M, containing x such that p−1(U) is disjoint
union of open sets each of which is mapped homeomorphically onto U by p. One of the most
important result of covering is the following : if p : M̃ → M is covereing and σ : [0, 1] → M
is a path beginning at x0 ∈ M, then σ has a unique lifting path σ̃ : [0, 1] → M̃(p ◦ σ̃ = σ)
beginning at x̃0 such that p(x̃0) = x0 [8]. Moreover if σ1 and σ2 are two paths in M with
σ1(0) = σ2(0) = x0, σ1(1) = σ2(1) = x1, and σ1 � σ2, then their lifting paths σ̃1 and σ̃2

satisfy σ̃1(0) = σ̃2(0), σ̃1(1) = σ̃2(1) and σ̃1 � σ̃2 [8].

It is known that [5] a tangent vector at a point p0 in a smooth n-mainfold M is the best
linear approximation of a smooth curve passing through p0 ∈ M. Before going further we
shall make the definition of tangent space Tp0(M) clear. Let xi = xi(t) be a smooth curve
at t = t0 where the curve passing through p0. At this point the curve has a tangent vector a
with components ai where ai = ẋi(t0), i = 1, . . . , n; the dot indicates differentiation with
respect to t. When one changing to other coordinates x′1, . . . , x′n this curve is given by
functions x′i = x′i(x1(t), . . . , xn(t)) and the tangent vector has components a′i = x′i(t0)
where x′i(t) = ∂

∂x′i

[
x′i (

x1(t), . . . , xn(t)
)]

ẋ′i(t). Thus a′i =
(

∂x′i
∂xi

)
0
ai, where

(
∂x′i
∂xi

)
0

=(
∂x′i

∂xi

)
p0

. Hence a tangent vector a at p0 ∈ M is a correspondence which associates with

any local coordinate system (xi
1, . . . , xi

n) a set of numbers (ai
1, . . . , ai

n) that satisfying
the relation : for each pair of local coordinate systems ai

k =
∑n

l=1
∂xi

k

∂xj
l

(p0)a
j
l . The numbers

(ai
1, . . . , ai

n) are called coordinates of the tangent vector a in the local coordinate systems
(xi

1, . . . , xi
n). The set of all tangent vectors of M at p0 is called a tangent space of M

at p0 and denoted by Tp0(M). Obviously Tp0(M) is a vector space over the field R with
dimension n.

In the sequel we shall use an important map; the exponential map, exp : Tp0(M) →
M, exp(a) = e|a|. This map sends each vector in Tp(M) to its length in M [6].
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The main results :

It is observed that the exponential map is monotonic and continuous but not epimorphic,
and consequently the inverse map can not be defined because all the tangent vectors with
length kπ (half of the cirumference) go to the south pole or what is called a conjugate
point Q[6], see Fig. (2). Thus the map from a closed ball with centre p and redius k as
a subset of Tp(M) into the manifold M is defined exponentially takes all the boundary
without conjugate points and hence exponential map can be formed from an open ball
Bk(p) ⊂ Tp(M) into M in such a way its inverse from M into Bk(p) is well defined. It is
also continuous and preserves lengths.

Now, one might ask : Does a retraction of chaotic manifolds produce a similar retraction
on their tangent spaces. An effort is done to answer this question and we are in a position
to give the answer.

Tp(M)

P

Q
Fig. (2)

Theorem(1):
A retraction of a chaotic manifold induces a lift retraction on tangent spaces.

Proof:
Let M012...∞h be a chaotic manifold without conjugate points. Then the exponential map

exp : Tp(M012...∞h) → M012...∞h is defined as we discussed just before the theorem, and also
exp−1 is well defined. Let A0 be a retract of M0h and r0 : M0h → A0 be the corresponding
retraction with dimM0h = dimA0. Then, for each pure chaotic Mih, i = 1, 2, . . . , there
exists a retract Ai of Mih. It follows that a sequence of retractions r1 : Mih → Ai is induced
and each Ai is closed in Mih since Mih is Hausdorff and dimMih = dimAi. By the continuity
of exp−1 there induces a sequence of open balls Bih = exp−1(Mih) in the tangent space
Tpi(Mih), where pi = p for all i if we consider the chaotic manifolds with a common point
as in Fig. (3)a or otherwise pi represents the corresponding point in each Mih as in Fig.
(3)b. In either cases, one can construct a sequence of open balls {Bih} such that

B0h ⊂ B1h ⊂ B2h ⊂ . . . ⊂ Bih ⊂ . . .

This can be done since exp−1 preserves lengths and Mjh ⊂ Mih for j < i, and by noting
that Tpi(Mih) is isomorphic to Tpi(Mih) for all i and j in the second case



576 S.I.Nada

p0

M0h

M1h

M2h

Tp0(M) p2

p1

p0

M0h

M1h

M2h

B0h

B1h

B2h

Tp1(M)
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Fig. (3)a Fig. (3)b

Let us denote to exp−1(Ai) by Ki. Then, we can define a sequence of retractions r̃i : Bih →
Ki for which r̃i ◦ exp−1(xi) = exp−1 ◦ ri(xi) for all xi ∈ Mih, and for each i the following
diagram commutes. This can be done because exp−1 is epimorphic as mentioned before.
Thus, the lift retractions r̃i, i = 0, 1, 2, . . . ,∞ are contructed and our proof is completed.

Bih r̃i
Ki

exp−1exp−1

Mih Ai

ri

A notable consequence of the forgoing theorem is :

Corollary (1) :

Retracts of a chaotic manifold forms a chaotic manifold.

Proof :

Let A0 be a retract of M0h with a corresponding retraction r0 : Moh → A0. Then,
there is a retraction r̃0 such that r̃0 ◦ exp−1(x) = exp−1 ◦ r0(x) for all x ∈ M0. Also,
for the pure chaotic manifolds Mih, i = 0, 1, 2, . . . , ∞, the retracts Ai of Mi satisfy
r̃i ◦ exp−1(xi) = exp−1 ◦ ri(xi), xi ∈ Mih. Thus the chaotic manifold A012...∞h, as shown
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in Fig. (4), is formed as we wished to prove.

P0

Fig. (4)a Fig. (4)b

The second question which naturally arises now is the following say : What can one say
about lifted folding of a chaotic manifold to its tangent spaces. This will be our study next.

Theorem (2) :

The folding of a chaotic manifold M into itself induces a folding of Tp(M) into itself.

Proof :

Let f0 : Moh → M0h be a topological (isometric) folding of the essential (geometric)
manifold M0h into itself. Then, using lifting process, we gain a folding f̃0 : exp−1(M0h) ⊂
Tp(M0h) → exp−1(M0h) which makes the following diagram commutes. The map f̃0 is well
defined and continuous because exp−1 and f0 are so, and since exp−1 preserves lengths, f̃0

is a topological (isometric) folding. The folding of Moh induces a sequence of foldings for
all pure chaotic manifolds Mih into itself i = 1, 2, . . . ,∞. Thus, we have a sequence of
topological (isometric) foldings {f1 : Mih → Mih}. Each of theses pure chaoticness can be
lifted into a manifold exp−1(Mih) ⊂ Tp(Mih) and moreover a folding f̃i is constructed in
such a way f̃i ◦ exp−1(xi) = exp−1 ◦ fi(xi), xi ∈ Mih. Because exp−1 preserves length, so
does each f̃i. Hence the set {f̃i} consists of topological (isometric) foldings as we wanted to
show.

Tp(M0h) f̃0
Tp(M0h)

exp−1exp−1

M0h M0h

f0

Theorem (3) :

The limit of foldings of chaotic manifold induces a limit of foldings of tangent spaces.

Proof :

Suppose that Mn
012...∞h is an n-dimensional chaotic manifold without conjugate points

and suppose f1
0 : Mn

0h → Mn
0h is a topological (isometric) folding with f1

0 (Mn−1
0h ) = Mn−1

0h .
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Then there exists a lifted topological (isometric) folding f̃0
1

: B0h → B0h such that exp−1 ◦
f1
0 ≡ f̃1

0 ◦ exp−1, where B0h is an open ball in Tp(M0h), Mn
0h is the geometric manifold and

p is either the fixed (common) point in the given chaotic manifold as shown in Fig. (3)a or
otherwise p is chosen as pictured in Fig. (3)b. Now if

f2
0 : f1

0 (Mn
0h) −→ f1

0 (Mn
0h)

f3
0 : f2

0 f1
0 (Mn

0h) −→ f2
0 f1

0 (Mn
0h)

...

fm
0 : fm−1

0 fm−2
0 . . . f2

0 f1
0 (Mn

0h) −→ fm−1
0 fm−2

0 . . . f2
0 f1

0 (Mn
0h)

such that f2
0 (Mn−1

0h ) = f3
0 (Mn−1

0h ) = . . . = fm
0 (Mn−1

0h ) = Mn−1
0h , then limm→∞ fm

0 (Mn
0h) =

Mn−1
0h . By using the lifting process into tangent spaces, one can induce a sequence of lifted

topological (isometric) foldings {f̃m
0 } on open balls of Tp(Mn

0h) with f̃m
0 ◦ exp−1 ≡ exp−1 ◦

fm
0 . If each pure chaotic manifold Mn

ih, i = 1, 2, . . . ,∞, has a sequence of topological
(isometric) foldings {fm

i } where

f1
i : Mn

ih −→ Mn
ih

f2
i : f1

i (Mn
ih) −→ f1

i (Mn
ih)

...

fm
i : fm−1

i fm−2
i . . . f1

i (Mn
ih) −→ fm−1

i fm−2
i . . . f1

i (Mn
ih)

such that f1
i (Mn−1

ih ) = f2
i (Mn−1

ih ) = . . . = fm
i (Mn−1

ih ) = Mn−1
ih , then limm→∞ fm

i (Mn
ih) =

Mn−1
ih . Using the lifted process into tangent spaces we induce a sequence of lifted topological

(isometric) foldings {f̃m
i } on open balls of Tp(Mn

ih) with f̃m
i ◦ exp−1 ≡ exp−1 ◦ fm

i for all
i = 1, 2, . . . ,∞. Thus limm→∞ f̃m

i ◦ exp−1 ≡ exp−1 ◦ limm→∞ fm
i .

Corollary (2) :

The end of the limits of foldings of a chaotic manifold into itself induce one point or a
sequence of points.

Proof :

Let fm : Mn → Mn, n = 1, 2, 3, . . . , be a set of foldings where n = 1, 2, 3, . . . and Mn

is an n-dimensional chaotic manifold. Then limm→∞ fm(Mn) = Mn−1. If hm : Mn−1 →
Mn−1, m = 1, 2, . . . such that limm→∞ hm(Mn−1) = Mn−1 and thus Hm : M1 → M1

satisfies limm→∞ Hm(M1) = p0, where p0 is the fixed point in the chaotic manifold without
conjugate points of the first kind. For the second kind, the chaotic manifolds without
conjugate points and have no common point, we gain a sequence of points p0, p1, . . . each
point pi corresponds to Mn

ih in the chaotic manifold Mn
012...∞h, see Fig. (3)a and (3)b.

So from the results which are induced above, for foldings, one can get the following
chains :
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Mn
ih

exp−1 exp−1 exp−1

f1
ih f2

ih f3
ih lim

m→∞ fm
ih

f̃1
ih f̃2

ih f̃3
ih lim

m→∞ f̃m
ih

A1
ih A2

ih

Tp(Mih) Tp(A1
ih) Tp(A2

ih) Tp(Mn−1
ih )

Mn−1
ih

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .

Mn−1
ih

exp−1 exp−1 exp−1

f1
ih f2

ih f3
ih lim

m→∞ fm
ih

f̃1
ih f̃2

ih f̃3
ih lim

m→∞ f̃m
ih

C1
ih C2

ih

Tp(Mn−1
ih ) Tp(C1

ih) Tp(C2
ih) Tp(Mn−2

ih )

Mn−2
ih

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .

M1
ih

exp−1 exp−1 exp−1

f1
ih f2

ih f3
ih lim

m→∞ fm
ih

f̃1
ih f̃2

ih f̃3
ih lim

m→∞ f̃m
ih

K1
ih K2

ih

Tp(M1
ih) Tp(K1

ih) Tp(K2
ih) 0

0

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .

The corresponding chains for retractions are :

Mih

exp−1 exp−1 exp−1

r1
ih r2

ih r3
ih lim

m→∞ rm
ih

r̃1
ih r̃2

ih r̃3
ih lim

m→∞ r̃m
ih

A1
ih A2

ih

Tp(Mih) Tp(A1
ih) Tp(A2

ih) Tp(Mn−1
ih )

Mn−1
ih

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .
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Mn−1
ih

exp−1 exp−1 exp−1

r1
ih r2

ih r3
ih lim

m→∞ fm
ih

r̃1
ih r̃2

ih r̃3
ih lim

m→∞ r̃m
ih

C1
ih C2

ih

Tp(Mn−1
ih ) Tp(C1

ih) Tp(C2
ih) Tp(Mn−2

ih )

Mn−2
ih

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .

M1
ih

exp−1 exp−1 exp−1

r1
ih r2

ih r3
ih lim

m→∞ rm
ih

r̃1
ih r̃2

ih r̃3
ih lim

m→∞ f̃m
ih

K1
ih K2

ih

Tp(M1
ih) Tp(K1

ih) Tp(K2
ih) 0

0

exp−1

. . . . . .

. . . . . .

i = 0, 1, 2, . . .

Conclusion :

This article discusses the lifting of foldings of a chaotic manifolds into their into their
tangent spaces, and the lifting of retractions of chaotic manifolds into their tangents. The
relation between the two liftings are formulated in the form of chains of commutative di-
agrams that are given in the last paragraph. The limits of the two chains of folding and
retraction are idential. The work is thus a contribution to the topological foundation of
chaos theory which have many applications in science and technology [10, 11].
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