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ABSTRACT.

We summarize the approach leading to the dynamical mean-field equation for the
spike emission rate v(t} of an interacting population of Integrate-and-Fire (IF) neurons
derived in [9). Building on the results concerning the stability conditions and finite-size
effects, we investigate how such properties are affected by a non-trivial distribution of
spike transmission delays. The main findings are: i) the stability of the collective asyn-
chronous states is improved by widening the distribution of delays; ii} high-frequency
components of the power spectrurm of the collective activity are damped; i) Details
of the stability and spectral properties are strongly affected by the shape of the delay
distribution. We present quantitative predictions from the theory and we demounstrate
a very good agreement with simulations.

Introduction In [9] we introduced a method to derive (via a population density approach,
[6, 10]) the equations which govern the time evolution of the population activity of an
interacting ensemble of IF neurons in the ertended mean field approximation (i.e., taking
into account the instantaneous fluctuation of the afferent current). The general approach
is also amenable to an approximate treatment, by which we could characterize the stability
properties and the transient response of the activity v(¢) of the neural population in a
specific context, elucidating a close and interesting relationship between the time course
of v(t) and the “transfer function” characterizing the static mean field properties of the
system. A proper treatment of finite-size effects allowed us to study the power spectrum of
v(t). The synaptic transmission delays turn out to play a major role in the above analysis.
In the present work we remove a somewhat unnatural constraint assumed in [9], that the
synaptic delays are the same for all neurons, and we show how a distribution of synaptic
delays can be easily embedded in the analysis. Extending preliminary results presented in
[8] we discuss how the delay distribution affects the stability conditions and the spectral
properties of the system.

Dynamic equations for the population activity In the diffusion approximation, the
sub-threshold dynamics of the membrane depolarization V' of a general class of IF neurons
is given by [13] V = f(V) + u(V,t) + o(V,t)T(t), where the afferent current is described as
a Gaussian white noise with mean p(V, ¢} and variance 6%(V, ) and f(V) is a leakage term.

In the extended mean field approach [3, 2] all neurons in a homogeneous population
are driven by stochastic currents with the same mean and variance, both depending on
the recurrent and external (v and v.,; respectively) emission rates, equal for all neurons:
i = p(V, v, Vert) and 02 = 0%(V, 1, vezz). In this approximation, the set of evolving Vs is
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seen as a sample of independent realizations drawn from the p.d.f p(v, t), governed by the
Fokker-Planck equation:

O ap(ed) = Lot =[-8, 1) + ulont)] + 5 800 o),

complemented by boundary conditions accounting for the realizations disappearing at the
spike emission threshold # and re-appearing at the reset potential H [12, 1, 6, 4, 5. Since
L depends on u and 02, it is an implicit function of the emission rate v. The latter in turn
expresses the flux of realizations crossing 8, or the fraction of neurons emitting spikes per
unit time:

@ (1) = 50 (22) B 20, Dy -

It is convenient to expand p(v,t) in Egs. (1) and (2} onto the complete set of eigenfunc-
tions @, of L: p(v,t) = 3, an(t) #n(v,t}). In stationary conditions v is the inverse of the
mean inter-spike interval, and it also equals the single neuron transfer function ®(g,0?),
given by (2) with p(v,t) = ¢o(v), the eigenfunction of L with zero eigenvalue, stationary
solution of Eq. (1). The time evolution of p(v,t)} is then described in terms of dyramical
equations for the a,(2) (see e.g. [11, 6]); taking into account Eq. (2}, allows us to write the
equations governing the time evolution of v(t) (the “emission rate equation”) as [9]:

3) { at)y = [A(t—8)+Ct—8)p(t—8)a)+et—o)it—d)
vit) = @8+ f(t—4)-dt) ’

where f, is the contribution to the flux through € due to the mode ¢, (n # 0); ¢, =
(8, Yn|do), Com = (Ou Pn|Pm); ¥n are the eigenfunctions of the adjoint operator L+ and
{.|.} is a suitable inner product. Cpm and ¢, are coupling terms, in that for uncoupled
neurons u and o do not depend on the recurrent frequency v, and 8,1, vanishes. A is
the diagonal matrix of the common eigenvalues of L and L*. In Eq. (3) a single allowed
synaptic delay 4 appears. However, taking into account a distribution of delays is relevant
both in order to relax a somewhat implausible assumption and because it might provide an
effective treatment of non-instantaneous synaptic currents provoked by each spike (see [4]).

Going from a single & to a distribution p(d) amounts to substitute the convolution
Jv(t—8)p(d)ds for v(t — 6). We will show in the following the implications of a non-trivial

p{d)-

Stability and response times The system (3) has fixed points vy given by the self-
consistency equation [3, 2] @ = 0 and vy = ®(14); we assess their stability using a local
analysis Eq. (3). To this end we study the poles of the Laplace transform v(s) of the
linearized form of v(t) in Eq. (3). The real and imaginary parts of these poles describe the
characteristic times and the oscillatory properties of the collective activity v(t), respectively.

Such poles can be grouped in two classes. The first is related to the transmission delays
(“transmission poles”), appearing only in coupled networks, and for a single fixed delay 4
they are approximately given by:

1 nmw
(t) ~ ! } —
{4) N _6ln|tI>F+z =

where n is any odd (even) integer for inhibitory (excitatory) populations and & = 9, ®|u—,.
The fixed point becomes unstable when Re(sﬁf)) > 0, which happens exactly when

(5) ‘I)’(]‘Jg) > 1,
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for an excitatory population. A sufficient condition for a weakly coupled inhibitory popula-
tion to be stable is ®'(24) > —1. The “diffusion poles” {sgd)} have negative real parts and

do not contribute to the stability conditions. Far from instability the longest —1 /Re(sg,,d))
sets the time scale of the transient of the network relaxation to the fixed point. For weak
coupling and for a single fixed delay &, in a regime of low noise in the afferent current
(drift-dominated — supra-threshold regime), {ssld)} are a perturbation of the eigenvalues A,
of L, and the longest time scale is related to:

@ ficr
{6) 537~ M (l+m).
It is worth noting how, despite the fact that there is no obvious a priori relation between
the single neuron properties and characteristic times, and the dynamics of the collective
activity, the single neuron transfer function @ emerges in a leading role in determining both
the stability of the system, and the response times.

In the case of a non-trivial delay distribution p(4) it turns out that only the transmission
poles are significantly affected by the width A and the shape of p(d) as we show in the
following.

Figure 1, left, shows for different values of A the distribution of diffusion and transmis-
sion poles (only the first three pairs) in the complex plane of the Laplace variable, for an
inhibitory population of linear (constant leakage) IF neurons {(‘LIF’) [5], in a drift-dominated
regime,

It is clearly seen in the figure that the diffusion poles (diamonds) are virtually unaffected
by the changes in A. The parameters are chosen in such a way that in the A = 0 ms case
the asynchronous, constant » state of the network is unstable, and the neural population is
easily driven to a global oscillatory state. In this case the real part of the first transmission
pole is positive.

It is seen that, starting from the unstable state (the darkest, rightmost circles for A = 0),
increasing A makes the network more stable (the real part of the transmission poles becomes
more and more negative).

Another noteworthy feature emerges from a comparison of the real parts of the transmis-
sion and diffusion poles. A ecareful inspection of the figure reveals that close to the stability
boundary (exemplified by the case A = 1 ms) the “memory” of the system is dominated by
the real part of the first transmission poles, while when the latter are far from the imaginary
axis (the cases A > 2 ms) the dominating time scale is determined by the real part of the
first diffusion poles.

The non-monotonic dependence on A of the real parts of the transmission poles is
immaterial in this case, since it affects virtually unobservable time scales. We will see in the
following that this feature strongly depends on the shape of p(d). A non-trivial dependence
on A of the imaginary part of the transmission poles is also observed in the figure.

The scenario just described, predicted by the linearized emission rate equation, is checked
through simulations in the right panel of Fig. 1. The simulated neural populations are
composed by N = 5000 inhibitory LIF neurons. The stimulation protocol is the same
for all the reported plots: The initially quiescent population receives an external stepwise
excitatory (noisy) current at t = 50 ms which remains constant throughout the simulation.
The parameters are such that the asymptotic emission rate of the asynchronous state is
v = 20 Hz. The plots show the average over 10 runs and shaded strips represent standard
deviations. Each plot corresponds to a value of A marked in the left panel.

In the topmost unstable case (A = 0 ms) after a transient the system persists in a global

oscillatory state. The frequency of the oscillation is found to be very close to Im 3(11)/ 21 as
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Figure 1: Poles distribution and sample transient responses for a recurrent inhibitory pop-
ulation of LIF neurons in a drift-dominated regime with different widths A of the uniform
distribution of delays, and the same average delay & = 5 ms. Left: distribution of poles in
the complex plane of the Laplace variable. Diamonds: first 3 conjugate pairs of diffusion
poles; Circles: first 3 conjugate pairs of transmission poles. The darker the marker, the
smaller A € {0,1,2,3,4} ms. Right: Sample transient responses for the A values corre-
sponding to the markers in the left panel (top to down + dark to light). Dotted lines
indicate for reference the first-order stationary state of the collective activity (v = 20H z).

predicted by the theory for this Hopf bilurcation.

As A increases the system asymptotically approaches an asynchronous state of constant
v, loosing memory of its transient response in an increasingly short time: For short A this is
brought about by the decrease of —1/Re s(lt), while for longer A the diffusion poles take over
and their real part, independent on A, dominates the characteristic time of the transient
response.

The latency of v(2) is determined by the peculiar initial conditions and equals the time
needed for the depolarization of each neuron, initially at rest, to reach the firing threshold
when driven only by external current (neurons of course begin to interact after firing).

Spectral properties The (stationary and transient) spectral content of v(t} is embodied
in the power spectrum P{w), a proper treatment of which requires taking into account the
effects of the finite number N of neurons in the population under consideration. Besides
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incoherent fluctuations, e.g. due to quenched randomness in the neurons’ connectivity
and/or to external input (which are taken into account in the variance o2 of the afferent
current entering the Fokker-Planck equation) two additional finite-size effects contribute:
1) For finite N, the number of spikes emitted per unit time is well described by a Poisson
process with mean and variance Nv(t), such that the fraction vy of firing neurons per unit
time is approximated by vy (t) = v(t) + /v (t)/NI(2), with T a memoryless, white noise [4].
In the mean field treatment, the fluctuating v enters the infinitesimal mean and variance of
the afferent current, so that p and ¢° are now stochastic variables (u — py and o2 = a%),
thereby making the Fokker-Planck operator itself N-dependent and stochastic (Ly). 2)
While the above transition L — Ly still describes the time evolution of an infinite number
of realizations, though driven by N-dependent fluctuating currents, the finite size of the
neurons sample has to be explicitly taken into account in the boundary condition expressing
the conservation of the total number of realizations crossing the threshold and re-appearing
at the reset potential. The latter effect was not considered in previous treatments of finite-
size effects. The combined finite-N effects result in the following modified FP equation

[9]
(1) O; p(v,t} = Ly p(v,t) + 8(v — H) %P(t)

In the framework of the local analysis, and for a non-trivial delay distribution, the resulting
expression for the power spectral density of the population activity is:

j1+f- (iwI—A)'lJ)‘r Yo

®) Pw) = - ;.
|1 - @ pliw) ~ i f- (G0 T = A) Fup(iv)|

pliw) is the Fourier transform of the delays distribution centered around the mean d; the
elements of v are the eigenfunctions of L*, evaluated at H, and the 7-dependent term
accounts for the finite-V effects on the boundary. It is found that: 1) the asymptotic
P(w) oscillates around the white-noise flat spectrum vo/N; 2) P(w) has resonant peaks
centered in the imaginary parts of the transmission poles a4 ), which are determined by the
transmission delays and are modulated by the width and the shape of p(d); they disappear
for uncoupled neurons, since in that case ® = 0 = ¢ 3) the numerator of Eq. (8} modulates
the spectrum and introduces peaks which, at least for not too large couplings, are located
at the imaginary part of the eigenvalues of L (which are multiples of 14). It turns out that,
as conjectured in [9], the latter, low-w component of the power spectrum appears only in
drift-dominated regimes and it is present even for uncoupled neurons.

Figure 2 illustrates how the power spectrum of the collective activity is affected by the
width A of a uniform p(4) for an inhibitory population of LIF neurons: both theoretical
predictions and simulation results are reported. From top to bottom {A € 0,1,2,3 ms) we
move from an unstable situation to a stable one.

?due to higher transmission poles” into ”"due to higher order transmission poles”

Starting from the latter the following feature are visible: i) the first peak at 20 Hz and
the secondary, barely recognizable, 40 Hz peak are the ones corresponding to the first two
eigenvalues of L (whose imaginary parts equal v and 214); ii) the asymptotic value of P{w)
is »p/N as predicted by the theory; iii) a prominent “transmission” peak very close to the
predicted value w/2m ~ 1/24 is clearly visible in the plot of the bottom, where one can
also recognize smaller peaks due to higher order transmission poles. As we move towards
the stability boundary (bottom to top), the spectral peaks associated with the transmission
poles keep their position and get sharpened, consistently with the predicted dependence on
A of the imaginary and real part of the poles (see Fig. 1).
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Figure 2: Power spectrum of the collective activity of an inhibitory population of LIF
neurons for a uniform p(d) and half-width A € 0,1,2,3 ms, theory (thick lines) wersus
simulation (thin lines; averaged over 10 samples, shaded strips are the error estimates).
Dotted lines: power spectrum of a white noise with variance vy/N = 20Hz/5000 = 0.004Hz.

Upon crossing the stability boundary (A = 1,0 ms), a further unpredicted peak ap-
pears, which is signalling the Hopf bifurcation describing the transition from the stable
asynchronous state to the global oscillatory state, and bringing the system out of the range
of validity of the linearized theory.

Apart from a discrepancy in the low-w region (see (9] for a brief discussion of its possible
origin), an excellent agreement between the linearized theory (when applicable) and the
simulations is apparent from the figure.
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Figure 3: Poles distribution for a recurrent inhibitory population of LIF neurons in a drift-
dominated regime with different widths A of an exponential distribution of delays. The
distribution of poles in the complex plane of the Laplace variable is illustrated as in Fig. 1.

A more realistic p(§) The choice of a uniform distribution of delays is arbitrary and one
might wander to what extent the results illustrated above depend on the shape of p(d). We
therefore repeated the analysis for a different delay distribution, more plausible from the
biological point of view. In fact it is not unreasonable to assume that i) very few spikes
come to a neuron under consideration with too short a delay (there is a lower bound on the
distance between neurons), i) beyond a threshold minimal distance the number of synaptic
contacts should be a decreasing function of the distance between target neurons and the
ones firing on it, so a p{d) is assumed to be a decreasing function of é (see [7] for a discussion
of the intra-cortical connectivity).

Figure 3 illustrates the pattern of singularities of the Laplace transform of v for an
exponential distribution of delays

o(6) = e =2 95— 5+ A),

where & and A are respectively the mean and the standard deviation of p(8), and ©(t) is
the Heaviside function.

As for the stability properties, the emerging scenario is not qualitatively changed with
respect to the uniform p{6). However, the real part of the transmission poles is now a
monotonically decreasing function of A, and it is more sensitive to changes in A, thus
emphasizing the impact of A on the stability properties of the system. Other differences
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emerging in comparing Fig. 1 and Fig. 3 are of minor phenomenological relevance.

The spectral analysis for the exponential p(d) (not shown) retains the qualitative features
emerging in the case of a uniform distribution of delays. Consistently with the greater
gensitivity to A mentioned above the high frequency damping is more effective in this case.
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