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ABSTRACT. In this note, we give another proof of the close relationship of B-algebras with
groups using the observation that the zero adjoint mapping is surjective. Moreover, we find
a condition for an algebra defined on the real numbers to be a B-algebra using the analytic
method. In addition we note certain other facts about commutative B-algebras.

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([4, 5]). It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li introduced a wide class of
abstract algebras: BC H-algebras. They have shown that the class of BCI-algebras is a
proper subclass of the class of BC H-algebras. J. Neggers and H. S. Kim ([9]) introduced
the notion of d-algebras, i.e., (I) zxx =0; (V) 02 = 0; (VI) zxy =0 and y *x = 0 imply
x =y, which is another useful generalization of BC' K-algebras, and then they investigated
several relations between d-algebras and BC K-algebras as well as some other interesting
relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H.
S. Kim ([6]) introduced a new notion, called an BH-algebra, i.e., (I), (II) z*0 = z and (VI),
which is a generalization of BCH/BCI/BCK-algebras, and defined the notions of ideals
and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded
BH-algebras. Recently J. Neggers and H. S. Kim ([11]) introduced a new notion which
appears to be of some interest, i.e., that of a B-algebra, and studied some of its properties.
M. Kondo and Y. B. Jun ([7]) proved that the class of B-algebras is equivalent in one sense
to the class of groups by using the property: = 0% (0 x ), for all x € X. J. Neggers
and H. S. Kim ([11]) argued slightly differently in taking their position. In this note, we
give another proof using that the zero adjoint mapping is surjective. Moreover, we find a
condition for an algebra defined on the real numbers to be a B-algebra using the analytic
method. In addition we note certain other facts about commutative B-algebras.

2. PRELIMINARIES.

Wy

A B-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation “x
satisfying the following axioms:
(I) x+xz =0,
(II) %0 ==z,
(IIT) (z*xy)*xz==ax*(z*(0x*y))
for all z,y, z in X.
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If we let y :=  in (III), then we have
If we let z := z in (a), then we obtain also

(b) Oxxz=2ax(zx(0xzx)).
Using (I) and (a), it follows that

(c) 0=ax% (0% (0*x)).

We have already discussed that the three axioms (I), (IT) and (III) are independent (see
[11]).
Example 2.1. Let X :={0,1,2,3} be a set with the following table:

* 0| 1] 213
0O o01]3]2]|1
141 ,0] 3|2
2012111013
31312 ]1]0

Then (X : x,0) is a B-algebra.

Example 2.2 ([11]). Let X be the set of all real numbers except for a negative integer —n.
Define a binary operation * on X by

n(z —y)
n+y

ESTRES
Then (X;#,0) is a B-algebra.
Lemma 2.3 ([11]). If (X;%,0) is a B-algebra, then y*z =y (0% (0 z)) for ally,z € X.

If we take y := 0 in Lemma 2.3, we obtain a useful formula

(d) O0%2z=0x%(0x*(0x2z)).

Proposition 2.4 ([11]). If (X;*,0) is a B-algebra, then
(IvV) wx(yxz)=(rx(0xz))*ry

for any x,y,z € X.
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3. B-ALGEBRAS AND GROUPS.

Proposition 3.1. Let (X;0,0) be a group. If we define x +y := x oy~ L, then (X;*,0) is
a B-algebra.

Proof. We know that z*xz =202z ! =0and 20 =200"' =200 = z. For any z,y, z in
X, we see that (zxy)*z = (zoy Yozl =zo(zoy) L =zx(zxy™!) = zx(2%(0xy)). O

(From the above Proposition 3.1 we can see that every group (X;o,0) determines a
B-algebra (X;*,0), called a group-derived B-algebra. It is then a question of interest to
determine whether or not all B-algebras are so group-derived. We claim that this is not the
case in general, and thus that this class of algebras contains the class of groups indirectly
via the group-derived principle we have explained in Proposition 3.1.

Proposition 3.2. Let (X;x,0) be a group-derived B-algebra. Define a map ¢ : X — X by
o(z) == 0xx, then ¢ is a surjection.

Proof. If g € X, then p(g7}) =0xg 1 =00(g7 )t =g. O

The mapping ¢ discussed in Proposition 3.2 is called a zero adjoint mapping. The
Proposition 3.2 means that if ¢ is not surjective, then the algebra (X;*,0) cannot be a
group-derived B-algebra. Hence the condition that ¢ : X — X be a surjection is certainly
necessary for the B-algebra to be group derived.

Theorem 3.3. Let (X;*,0) be a B-algebra. If the map ¢ : X — X by p(z) :=0x2x is a
surjection, then the algebra (X;*,0) is group derived.

Proof. Let (X;*,0) be a B-algebra. Assume the zero adjoint mapping ¢ : X — X is a
surjection. If z € X, then there is y € X such that z = 0+ y and hence 0 % (0 % z) =
0+ (0x(0xy))=0xy)x0=0xy =z, ie.,

(e) 0% (0*z) =z
Define a binary operation “o” on X by
xoy:=uxx*(0xy).

Then (X;%*,0) is a group. In fact, it follows that x 00 = 2 % (0% 0) = v %0 = x and
Oox =0x(0xx) =2x. Therefore 0 acts like an identity element on X. Also, z o (0*x) =
2x (0% (0xx))=(xxx)*x0=0and (Oxx)ox = (0*z)*(0xx) =0, i.e., 0z behaves like
a multiplicative inverse for the element x with respect to the operation o. Finally, in order
to establish the associative law, we obtain:

zo(yoz)=xx*(0x(yx*(0x*2))

=zx*((0x%2)*xy) [by (IIT)]
=z ((0%2) % (0% (0xy))) [by (e)]
=(z*x(0*xy))*(0x*2z) [(TIT)]
— (woy)o=.

Note that zoy ™t =z (0xy™1) =2 % (0% (0*y)) = z x y, whence (X, ;*,0) is also group
derived from the group (X;o0,0) as defined. This proves the theorem. O
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Theorem 3.4. Fvery B-algebra is group derived.

Proof. Let ¢ : X — X be the zero adjoint mapping defined by ¢(z) := 0+ x. Let t € X,
and let z = ¢(t) € X. Then we observe that

p(x) =0xx
=(txt)xzx [by (I)]
=tx(zx(0xt)) [by (IIT)]
=tx*(z*1x) [z = p(t) =0z
=t. [ by (L), (II)]

Conssequently, @ is a surjective. By applying Theorem 3.3 we conclude that every B-algebra
is group derived. [J

Remark. Let (G;o,e) be an arbitrary group. If we define z * y := yxy =2, then z xz = e
and z*e = and e * x = r~ 1. Now consider the expressions (z * y) * z = zyzry 2z~ 2 and
zx(zx(exy)) =2y t2y?) = (y lzy?)z(y L2zy?)~2. Thus, let us assume that is actually
the case that zyxy 2272 = (y~t2y?)z(y~t2y%)72--- (x) in (G;o,e). It follows that since
o(z) = exx = 27! is a surjection, (G;*, e) is group derived, i.e., there is an operation “®”
such that z+y = 2z ® y(~Y, where y) @y =y ® y(*V = e = y x y. But this means that
zl=esxz ' =e®a) =20 e, 27! =2, and hence that z+y =z ® y~!. In
fact, the condition leads to the conclusion that G is an abelian group, i.e., yzy~2 becomes
T

Recently, J. Neggers and H. S. Kim ([10]) investigated analytic T-algebras and obtained
useful formulas for finding some examples for various BC K-related algebras. We apply
the same method discussed there to the class of B-algebras. Suppose that we set z x y :=
x — ¢(z,y) where ¢ : R — R is an arbitrary function of two variables on the real numbers
R. Ifzsxx =a—¢(x,z) =0, then p(x,x) = =, while if x x0 = 2 — p(z,0) = z, then
©(x,0) = 0. If the condition (IIT) holds, then

(rxy)xz=xxy— (T *y,2)
=z —¢(@,y) —p(r*y,z)
= x—(p(x,y) —(P(‘T_Qo(xvy)vz)

and

=z — ¢,z —p(2,0%y))
=T — (p("E,Z - 50(27 _(P(Oa y)))
It follows that

(f) z—o(z,y) —p(x —o(,y),2) = v = p(zx, 2 — (2, —¢(0,9)))
If ¢ satisfies the condition (i), then (R;x*,0) is a B-algebra. We summarize:

Proposition 3.5. Let ¢ : R? — R be an arbitrary function of two variables on the real
numbers R satisfying o(z,z) = x and ¢(x,0) = 0. If the mapping ¢ satisfies the condition
(f), then (R;%,0) is a B-algebra.
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4. COMMUTATIVITY AND CENTER.

A B-algebra (X;*,0) is said to be commutative ([11]) if a % (0% b) = b* (0 * a) for any
a,be X.

Proposition 4.1. ([11]) If (X;*,0) is a commutative B-algebra, then

(8) zxy=(0*y)=*(0*z)

for any x,y € X.

Proposition 4.2. ([1]) If (X;%,0) is a B-algebra, then 0% (0% x) = x for any z € X.
Proposition 4.3. If (X;*,0) is a B-algebra with the condition (g), then X is commutative.
Proof. By applying Proposition 4.2 we obtain:

2 (05y) = (0% (0% y)) * (052)
=y« (0*x)

for any z,y € X. O

Theorem 4.4. Let (X;*,0) be a B-algebra derived from a group (X;0,0). Then (X;x,0)
is commutative if and only if (X;0,0) is commutative.

Proof. Since z xy =z oy~ ', we have

zx(0xy)=ax0oy ")
:x*yfl

=xzoy

and z % (0 xy) = y * (0 x ) reduces to the condition z oy = y oz, i.e.,  and y commute in
the group (X;o0,0).

Since xoy =z % (0*y), zoy =yox leads to x * (0% y) = y * (0 x), i.e, (X;%,0) is
commutative. [

Let (X;%,0) be a B-algebra and let g € X. Define g" := g" "1 % (0% g) (n > 1) and
g :=0. Note that g' = ¢g"* (0% g) =0x (0% g) = g.

Proposition 4.5. If (X;*,0) is a B-algebra, then for any x,y € X
(i). (xxy)*y=az*y*;

Proof. (i). Refer to [1].
(ii). Tt follows from (II1) and (T) that (z*y)*(0*xy) = z*x ((0*y)*(0*xy)) =z+x0=z. O
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Corollary 4.6. If (X;x,0) is a B-algebra then the right cancellation law holds, i.e., yxx =
y' xx implies y = y'.

Proof. Suppose that y * x = ¢’ * . Then

y=(y*z)*(0*z) [by Proposition 4.5-(ii)]
= xx)* (0*x)
=y *x((0x2)*(0%x)) [by (IIT)]
=9y *0.
=y.

O

Proposition 4.6. If (X;*,0) is a commutative B-algebra, then (0 * x) * (z * y) = y * 2°

for any x,y € X.

Proof. If X is a commutative B-algebra then

(Oxx)*x(z*xy)=((0xx)*(0xy))*xx [by (IV)]
= (y*x)xx [ Proposition 4.1]
=y’ [by Proposition 4.5-(i)]

|

Let (X;*,0) be a B-algebra. Define Z(X) := {z € X | z%(0xy) = y*(0*x),Vy € X}, and
we call it the center of X. Note that 0 € Z(X). In fact, for any x € X, x = zx0 = xx(0x0).
By applying Proposition 4.2 0 € Z(X).

Let (X;*,0) be a B-algebra. A non-empty subset N of X is said to be a subalgebra ([12])
ifxxy € N for any x,y € N.

Theorem 4.7. If (X;%,0) is a B-algebra, then the center Z(X) is a subalgebra of X.

Proof. For any x,y € X, by (IV) and Proposition 4.2 we obtain 0% (z*y) = (0% (0*y)) *x =
yxx. If o, € Z(X), then

(axB)* (0%z)=ax*((0*z)*(0*3)) [by (IID)]
=ax*x (B (0% (0x*x)) B e Z(X)]
=ax(f*2) [by Proposition 4.2]
=(ax(0xxz))«p [by (IV)]
=(xz*x0xa))*p [ € Z(X)]
=zx*(B*x(0x(0%a))) [by (IIT)]
=z (B*a) [by Proposition 4.2]
=zx* (0 (axf))

for any x € X. Hence Z(X) is a subalgebra of X. O

J. Neggers and H. S. Kim ([12]) introduced the notion of a normal subalgebra, i.e., a
non-empty subset N of X is normal if and only if (x*a)* (y*b) € N for any z*xy,axb € N.
It is not known that the notion of a normal subalgebra is equivalent to the normal subgroup
of the derived group. It is also interesting to prove or disprove that the center Z(X) of X
is a normal subalgebra of X.
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