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ON THE NUMBER OF NON-EQUIVALENT ODD 1-FACTORS OF A
COMPLETE GRAPH
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ABSTRACT. For evenn > 0, let K, be the complete graph with vertices vy, v1, - ,Un—1.
An edge v;v; is called odd or even accordingly as |¢ — j| is odd or even. An odd(even)
1-factor of K,, is a 1-factor of K,, whose edges are all odd(even). The Dihedral group
D,, acts on K, naturally, and this action induces an action of D,, on the family of all
1-factors of K,,. In this paper, by applying Burnside’s lemma, we calculate the number
of the equivalence classes of odd(even) 1-factors under the action of D,,.

1 Introduction

For even n > 0, let K,, be the complete graph with vertices vg,v1, - ,v,_1. An edge
v;v; is called odd or even accordingly as |i — j| is odd or even. An odd(even) 1-factor of K,
is a 1-factor of K, whose edges are all odd (even). Let X,, be the set of the odd 1-factors
of K,, and let Y,, be the set of the even 1-factors of K,,.

The action of the Dihedral group D,, = {po,p1, ", pn-1,00,01,""* ,0n—1} on K, is
defined by

Pi(Vk) = V(kti) (modn) for 0<i<n—1,0<k<n—1

0i(Vk) = V(ntiok) (modn) Jor 0<i<n—1,0<k<n-—1

Then this action induces the action of D,, on X,, and Y,,.
The equivalence classes of Xg are given with the next figure.

By applying Burnside’s lemma, we calculate the number of the equivalence classes of X,
and Y,, under this group action. This problem was presented by Dr. Shun-ichiro Koh who
is a physicist of Kochi University. This problem is related to Feynman diagram in quantum
mechanical many body problem.
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Notation 1. For each integer i such that 0 <i<n—1, let d = (n,i) and R} be defined
by the following formula:

0 if d is odd and n/2 =0 (mod 2)
Z & (E)s if d is odd and n/2 =1 (mod 2)

Ri = d=2s+t
$>0,t>0

d n\ /2
— |1 — ) )
<2>'X<d) if d is even
Remark 1. It is easily checked that Ry is equal to (n/2)!.
Notation 2. Let Sy and ST be defined by the following formula:

0
Sy = n—2
4
" (%)
Sto= 2 2s sl
%:25—&-7&
$>0,6>0

ifn/2=0 (mod 2)
Ix 2" ifn/2=1 (mod 2)
!

Theorem 1. For even n > 0, the number of non-equivalent odd 1-factors of K, under the
action of the Dihedral group D, is

n—1
1 n n n n
%{; R; + E(So +57)}

Remark 2. We calculated the non-equivalent odd 1-factors of K, n < 16, under the action
of the Dihedral group D,, by a computer. The numbers agreed with the numbers that are
given by Theorem 1. The results is as follows:

0 17
2 53
4 260
6 1466

Notation 3. Let n =0 (mod 4). For each integer i such that 0 <i<n—1, let d = (n,i)
and P be defined by the following formula:

d 2 ' d 2 ' s1+s
Z 2£H/_82) >? ('t/ 'i ' (g) o if d is even and n/d =0 (mod 2)
d/2:231+t1 §1:82:11:12:
d/2:282+t2
s1,t1,82,t22>0 .
" — -2 -2 $
P <dT>!! X <dT>!! X (%) ’ if d is even and n/d =1 (mod 2)
d! n\s o
Z sl (ﬁ) if d is odd
d=2s+t e
s>0,t>0
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Remark 3. It is easily checked that if n = 0 (mod 4) then P is equal to (n/2 — 1)!! x
(n/2 — 1)

Notation 4. Let n =0 (mod 4). Let Qf and QF be defined by the following formula:

n n—4
Q’(V)L — Z (Z)'( 4 )'
2511525, 155181 185!
%:251+t1 1:02:01:02
T=2s2+t2
$1,82,t1,t220
n—2
Qr = ( )u.

X 9281+s2

2

Theorem 2. Ifn =2 (mod 4) then K,, has no even 1-factors. If n =0 (mod 4) then the
number of the non-equivalent even 1-factors of K, under the action of the Dihedral group
D, s

%{; P+ 5(@0 +Q7)}

Remark 4. We calculated the non-equivarent even 1-factors of K,, n < 16, under the
action of the Dihedral group D,, by a computer. The numbers agreed with the numbers that
are given by Theorem 2. The results is as follows:

n=4 1
n==8§ 3
n=12 22
n=16 436

These computations can be done by applying Burnside’s lemma.

Theorem 3. (Burnside’s lemma) Let G be a group of permutations acting on a set S.
Then the number of orbits induced on S is given by

ﬁ S |fia(n)]

TeG
where fix(m) = {z € S|r(z) = x}.
2 0Odd 1-factors

We prove Theorem 1. We must determine the numbers of the fixed points of each
permutation p; and o; to prove the Theorem by applying Burnside’s Lemma.

Lemma 1. The number of the odd 1-factors of K, is (n/2)!. This is the number of the
fixed points of pg.

Proof. vy is able to join any vertex of {vi,vs, -+ ,v,—1}. Then the number of ways of
joining is n/2. Since the suffix of one vertex of the first edge is even and the suffix of the
other is odd, the number of ways of choosing of the second edge is (n — 2)/2 even if we
choose any vertex as one end vertex of the edge. When we choose j edges, we use j vertices
which have even suffix and j vertices which have odd suffix. Then the number of ways of
choosing of the j 4 1th edge is (n —2j5)/2 even if we choose any vertex as one end vertex of
the edge. Therefore, the number of the odd 1-factors of K, is (n/2)!. O
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Lemma 2. If (n,i)=1 then the number of the fixed points of p; is one if n = 2 (mod 4)
and is zero if n =0 (mod 4).

Proof. Let M, be the 1-factor {vavp/244|0 < a <n/2 -1} of K. If n =2 (mod 4) then
n/2 is odd and M, is the odd 1-factor of K, and p;(M,) = M,. Conversely, let H be a odd
1-factor of K, which is fixed by p; and let vgv,, be an edge of H. Since (n,i)=1, there is
an integer a such that ai = m (mod n). Then pf(vo) = vy and pf(vm) = Vmia) (mod n)-
Since p;(H) = H, we have voUm = UmVU(m+ia) (mod n)- Lhen we have m 4 ia = 0 (mod n)
and 2m = 0 (mod n) and therefore m = n/2 and vov, /2 € H. If n =0 (mod 4) then n/2 is
even. This is contradiction. Then if n =0 (mod 4) then the number of fixed points of p; is
zero. We assume that n = 2 (mod 4). Since {p¢(0)|0 <a<n-1} ={0,1,2,--- ,n—1}, H
is uniquely determined by vov,, /2 and H = {vaV/244|0 < a <n/2 —1}. Then the number
of the fixed points of p; is one. O

Lemma 3. Let (n,i) = d be greater than one. The number of the fized points of p; is given
by the following formula:

1. In the case that d is odd:

(a) if n/2 =0 (mod 2) then 0.
(b) if n/2 =1 (mod 2) then

> o G
2ssltt \2d/ -~
d=2s+t
5>0,t>0

(8) @)

P’FOOf. Let Vo = {007 Ud, V2d, "« * 7'Un—d}, 1= {Ulv Vd+1,V2d+1, " * vvn—d-i-l}a
Vo = {U27Ud+277}2d+27 to 7vn—d+2}7 ey, Vg = {Ud—lav2d—1703d—la to 7Un—1}'

Since (n,i) = d, the equation xi = m (mod n) has a solution if and only if d divides m.
Then we have p; (Vi) = Vi for 0 <k <d-—1.

Let H be an odd 1-factor of K, which is fixed by p; and let vovg be an edge of H. If
Vo € Vi and vg € Vj, then the induced subgraph H|V}, is an odd 1-factor of K, /4 which is
fixed by p;/q and it is unique odd 1-factor M, /4 by Lemma 2 . If v, € Vi, and vg € V4,
then the induced subgraph H|Vj, UV}, is an odd 1-factor of Ky, /4 which is fixed by p; /4.

We first consider the case that d is odd. Since n/d is even, the number of the vertices
in Vi whose suffixes are odd is equal to the number of the vertices in V; whose suffixes are
even for any k.

If n/2 is even then Vj is not able to make the odd 1-factor which is fixed by p; alone,
because 5 is even. Furthermore, we can not partition {Vo, V1, Va, -+, V4_1} into d/2 pairs,
since d is odd. Therefore, if n/2 is even then the number of the fixed points of p; is zero.

On the other hand, if n/2 is odd then VoUq(z) Is an odd edge. Then Vj is able to
make the unique odd 1-factor which is fixed by p; alone. Furthermore, any Vi, and Vi,
are able to make 4 odd 1-factors which are fixed by p;. The number of ways to partition
{Vo,V1,Va,-++ ,Vy4_1} into s pairs and ¢ singletons is equal to

2. If d is even then

d!
28t
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Then, the number of the odd 1-factors fixed by p; is

> i ()
2ssltl \2d/
d=2s+t
s>0,t>0

Next we consider the case that d is even.

Vo, Vo, Vy, - -+, Vy_o are the set whose elements have even suffix and Vi, V3, Vs, -+, Vi1
are the set whose elements have odd suffix. Then V}, is not able to make odd 1-factor which
is fixed by p; alone. But Vi, for k is even, and V], for [ is odd, are able to make 7 odd
1-factors fixed by p;. The number of ways to partition {Vy, V1, Va, -+, V4_1} into d/2 pairs

of the type {Veyen, Voaa} is equal to (%)!. Then, the number of the odd 1-factors fixed by

OER

We have the results. O

N

Lemma 4. The number of the fixed points of o¢ is equal to the number of the fixed points
of oaq for all1 < d <mn/2-1.

Proof. Let H be an odd 1-factor of K,, fixed by og. Then it is easily verified that py(H) is
an odd 1-factor of K, fixed by og4. Conversely, if H is an odd 1-factor of K, fixed by ooq4
then p; ' (H) is an odd 1-factor of K, fixed by op. Then we have the results. O

Similarly, we have the next lemma.

Lemma 5. The number of the fized points of o1 is equal to the number of the fixed points
of o0gq+1 for all1 <d<n/2-—1.

Lemma 6. The number of the fixed points of oy is given by the following formula:

1. ifn/2 =0 (mod 2) then 0.
_2 n—
2. ifn/2 =1 (mod 2) then <nT>' x 25

Proof. Since the axis of o passes through vy and v, /5, the odd 1-factor of K, fixed by oq
must contain the edge vovy /2. If n/2 =0 (mod 2) then the edge vovy, ) is even and the num-
ber of the fixed points of ¢ must be zero. Therefore we assume that n/2 =1 (mod 2). Let
Vi ={v1,v0n1}, Vo = {va,vn 2}, V3 = {v3, 003}, -+ , Va1 = {Vnj2-1,Vn 241} Then we
have oo(Vi) = Vi for 1 <k <n/2 —1. V1,V5,V5,---,V, o_o are the sets whose elements
have odd suffixes and Va2, Vi, Vs, - -+, V;, /21 are the sets whose elements have even suffixes.

Let H be an odd 1-factor of K, fixed by o and let v,vs be an edge of H. If o and 3
are not equal to zero then v, € Vo and vg € Voi4q or v4 € Vopy1 and vg € Vo, for some
k and [. The number of ways to partition {Vi,Va,---,V,,/2_1} into (n — 2)/4 pairs of the
type {Veven, Voad} is equal to (252)!. The number of ways to choosing the edge between
Vo and V41 is two. Then the number of the fixed points of og is

TL—2 n—2
Ix 277,
( 4 ) . '

We have the results. O
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Lemma 7. The number of the fixed points of o1 is

n
3 (3)!
2sslt!
n/2=2s+t
s>0,t>0

Proof. Let Vi = {vi,v0},Va = {vo,vn_1}, Vs = {vs,vn_2}, -, Voo = {Un2,Vn/241}-
Then we have o1(Vg) = Vi, for 1 < k < n/2. Each V} contains one vertex whose suffix
is even and one vertex whose suffix is odd. Let H be an odd 1-factor of K,, fixed by o
and let v,vg be an edge of H. Then v, and vg are contained in same V}, or v, € Vi, and
vg € Vi, for some k; and k2. The number of ways to partition {Vi, Vs, V3, - - ,Vn/g} into s
pairs and t singletons is equal to

28t

Then the number of the fixed points of oy is

We have the results. O
Then we completely proved Theorem 1.

3 Even 1-factors

Next we prove Theorem 2. We must determine the numbers of the fixed points of each
permutation p; and o; to prove the Theorem by applying Burnside’s Lemma.

Lemma 8. The number of the even 1-factors of K,, is zero if n =2 (mod 4) and is (n/2 —
DI x (n/2 =D if n =0 (mod 4). This is the number of the fized points of po.

Proof. In order to partitition {vg,ve,vs, - ,vp—2} into n/4 subsets which consist two el-
ements n/2 must be even. Then, if n = 2 (mod 4) then the number of the even 1-factors
of K, is zero. Therefore we assume that n = 0 (mod 4). The number of ways to partita-

tion {vg, va, vy, - ,Up_o} into n/4 pairs is equal to (n/2 — 1)!! and the number of ways to
partitation {vi,vs,vs, -+ ,v,—1} into n/4 pairs is equal to (n/2 — 1)!!. Therefore if n =0
(mod 4) then the number of the even 1-factors of K, is (n/2 — 1)!! x (n/2 — 1)!l. We have
the results. O

By Lemma 8 we have that if n = 2 (mod 4) then the number of the non-equivarent even
1-factors of K, is zero.
Therefore we assume from now on that n =0 (mod 4).

Lemma 9. If (n,i) =1 then the number of the fized points of p; is one.

Proof. Let M, be the 1-factor {vavy/244|0 < a < n/2 — 1} of K,,. Since n/2 is even, M,
is the even 1-factor of K,, and p;(M,) = M,,. Conversely, let H be an even 1-factor of K,
which is fixed by p; and let vgv,, be an edge of H. By the essentially the same methods,
we have H = {VUaVn/244/0 < @ < n/2 —1}. Then the number of the fixed points of p; is
one. O
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Lemma 10. Let (n,i) = d be greater than one. The number of the fized points of p; is
given by the following formula:

1. If d is odd then

2ssltt \2d/
d=2s+t
5,1>0

2. In the case that d is even:
(a) If n/d =0 (mod 2) then
Z (d/2)! x (d/2)! (n)51+52

251+525) 5,1t 185! \d
d/2:251+t1 1925152
d/2:252+t2
51,82,t1,t22>0

(b) If n/d =1 (mod 2) then

<%>!!x <%>!!x (%)%.

Proof. Let Vo = {vo,v4,v24,"*+ ,Un—a}, Vi = {V1,Vd41,V2d+1, " Vn—d+1},
Vo = {v2,Vay2,V2d42," s Un—ds2}s ~*5 Vae1 = {Va—1,V24-1,V3d—1, -+ ,Un—1}. Then we
have p;(Vx) = Vi for 0 <k <d-1.

We first consider the case that d is odd. Each Vj, for 0 < k < d—1, contains g vertices
whose suffix is even and 34 vertices whose suffixes are odd. Since g5 is even, each Vj is
able to make unique even 1-factor fixed by p; alone, Furthermore any Vi and V; are able to

make g5 even 1-factors fixed by p;. Then the number of the fixed points of p; is

> g ()
2ssltt \2d/ -~
d=2s+t
5,t>0

Next we consider the case that d is even. We first consider the case that n/d is even.
Vo, Va, Vi, -+, Vy_o contain n/d vertices whose suffixes are even and Vi,V3, Vs, -+, Vy_q
contain n/d vertices whose suffixes are odd. Since n/d is even, each V} is able to make unique
even 1-factor fixed by p; alone. Furthermore any two elements of {Vy, Vo, Vy, -+, Vy_o} and
any two elements of {V1, V3, V5, -+, Vy_1} are able to make % even 1-factors fixed by p;,

respectively. Then the number of the fixed points of p; is

3 (d/2)! x (d/2)! (n)+
+ loo 14 14,1 .

4/2=251+t, 251+82611g51E1 185! \d

d/2=2s3+t2

s1,82,t1,t2>0

Next we consider the case that n/d is odd. Since n/d is odd, Vi is not able to make
even 1-factor fixed by p; alone. But any two elements of {Vy, V2, Vg, -+, Vg_o} and any two
elements of {V1, V3, Vs,--- ,V4_1} are able to make % even 1-factors fixed by p;, respectively.
Since n = 0 (mod 4) and n/d is odd, d = 0 (mod 4). Then the number of the fixed points

of p; is
d—2 d—2 ny 4
——1n pa—— ] _
( . )( . )..x(d) .

We have the results. O
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The next two Lemmas are proved by the essentially the same methods as Lemma 4.

Lemma 11. The number of the fixed points of o is equal to the number of the fized points
of oaq for all1 < d <mn/2-1.

Lemma 12. The number of the fixed points of o1 is equal to the number of the fized points
of o9q41 for all1 <d<n/2-—1.

Lemma 13. The number of the fixed points of oq is

(3)1x (252!

Z 251525, 1t 1551t5!
%:251+t1 1:01:02:02
n24:252+t2
s1,82,t1,t2>0

s1+82

Proof. Let Vi = {vi,vn_1}, Vo = {v2,vn 2}, V3 = {vs,vn_3}, -~ 7Vn/2—1 = {vn/2—1avn/2+1}'
Then we have 0o(Vi) = Vi for 1 < k < n/2 — 1. Each of V3,V3,Vs,---,V,, /o1 contains
two vertices whose suffixes are odd and each of V3, Vy, Vg, -+, V,/5_5 contains two ver-
tices whose suffixes are odd. Then each Vj is able to make unique even 1-factor fixed by
oo alone. Furthermore any two elements of {Va, Vy,---,V, /2_2} and any two elements of
{1, V3, Vs, , Vp, /2_1} are able to make two even 1-factors fixed by g, respectively. Then
the number of the fixed points of p; is

ny| n—4y
(4)’ X ( 4 )' S1+s2
251+82 6. 1£: 155 10| x 2 ’
1 S1:01:82:12:
Py 1:t1:82Mt2
nod —2sa+ts
51,82,t1,t22>0

Lemma 14. The number of the fized points of o1 is (n/2 — 1)!l.

Proof. Let Vi = {vi,v0},Va = {vo,vn_1}, Vs = {vs,vn_2}, -, Voo = {Un2,Vn/241}-
Then we have o1(V;) = Vi for 1 < k < n/2. Each V} contains one vertex whose suffix
is even and one vertex whose suffix is odd. Then V}, is not able to make even 1-factor fixed

by o1 alone. But any two elements of {V1,V2,V3,---,V,, )2} are able to make unique even
1-factor fixed by 1. Then the number of the fixed points of o7 is (n/2 — 1)!I.
We have the results. O

Then we completely proved Theorem 2.
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