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Abstract. Let K be a non archimedean algebraically closed field of characteristic π,
complete for its ultrametric absolute value. In a recent paper by Escassut and Yang
([6]) polynomial decompositions P (f) = Q(g) for meromorphic functions f , g on K
(resp. in a disk d(0, r−) ⊂ K) have been considered, and for a class of polynomials P ,
Q, estimates for the Nevanlinna function T (ρ, f) have been derived.
In the present paper we consider as a generalization rational decompositions of mero-
morphic functions, i.e., we discuss properties of solutions f , g of the functional equation
P (f) = Q(g), where P, Q are in K(x) and satisfy a certain condition (M). We infer that
in the case, where f , g are analytic functions, the Second Nevanlinna Theorem yields
an analogue result as in the mentioned paper [6]. However, if they are meromorphic,
non trivial estimates for T (ρ, f) are more sophisticated.

1 Introduction Throughout this paper, K denotes an algebraically closed ultramet-
ric field of characteristic π, complete with respect to the topology induced by its non-
archimedean valuation, K∗ = K \ {0}. Let A(K) denote the ring of entire functions on K,
and M(K) the field of meromorphic functions in K, i.e., the field of fractions of A(K).
Moreover, for any real number r > 0, d(a, r−) = {x : |x − a| < r}, i.e. the open ball with
radius r > 0 and center a ∈ K; then similarly as above, A(d(a, r−)) is the ring of analytic
functions on d(a, r−), i.e.: the ring of analytic functions with radius of convergence ρ ≥ r.
The ring of meromorphic functions on d(a, r−) is denoted by M(d(a, r−)).
We denote by Ab(d(a, r−)) the K-subalgebra of analytic functions with bounded norm, fur-
thermore Au(d(a, r−)) = A(d(a, r−)) \ Ab(d(a, r−)). Similarly, by Mb(d(a, r−)) we denote
the field of fractions of Ab(d(a, r−)), and Mu(d(a, r−)) = M(d(a, r−)) \Mb(d(a, r−)). For
R > 0 we denote the interval I as the set I = [ρ, R[, where 0 < ρ < R, and for some ρ > 0
we write J = [ρ,∞[.

Notation in Nevanlinna Theory Let R ∈]0,∞[, f ∈ M(d(0, r−)) (resp. M(K)) such
that 0 is neither a zero nor a pole of f . Let wα(f) = n (resp. wα(f) = −n), if f has a zero
(resp. a pole) of order n at α. Then the functions Z and N are defined as

Z(ρ, f) :=
∑

wα>0,|α|≤ρ

wα(f) log
ρ

|α|

and N(ρ, f) := Z(ρ, 1/f ), moreover the Nevanlinna function is given by

T (ρ, f) := max{Z(ρ, f), N(ρ, f)}
In addition we use similar functions not respecting multiplicities of zeros (resp. poles):

Z̃(ρ, f) :=
∑

wα>0,|α|≤ρ

log
ρ

|α|
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and similarly Ñ(ρ, f) := Z̃(ρ, 1/f ).

Notation in positive characteristic. If π �= 0 we define the characteristic exponent
χ := π, otherwise we set χ := 1. Due to [6] we call the ramification index of h in
M(d(0, R−))(resp. M(K)) the unique integer t such that χt√

h belongs to M(d(0, R−))(resp.
M(K)). If π = 0, every function h in M(d(0, R−))(resp. M(K)) has ramification index
equals 0.
We note that in nonzero characteristic, the counting functions Ñ (resp. Z̃) of poles (resp.
zeros) are defined slightly differently. For more information, we refer to [4].
In the present paper we apply the Second Nevanlinna Theorem due to Boutabaa and Es-
cassut ([4], Theorem 2):

Theorem N. Let α1, . . . , αn ∈ K, with n ≥ 2, and let f ∈ M(d(0, R−)) (resp. f ∈ M(K))
of ramification index s, have no zero and no pole at 0. Let S := { χs√α1, . . . , χs√αs}. Assume
that f, χs√

f , f − αj have no zero and no pole at 0 (1 ≤ j ≤ n). Then we have:

(n − 1)T (r, f)
χs

≤
n∑

i=1

Z̃(r, f − αi) + Ñ(r, f) − log r + O(1), r ∈ I (r ∈ J)

Many Applications of the Nevanlinna Theory to Functional and Differential Equations have
been worked out in the last years, and the Theory has only recently been generalized to
fields of characteristic π (see [4] which contains the Theorem from above, resp. [8]). One
of the most famous examples, where the archimedean Theorem is due to F. Gross [7] (gen-
eralizations were firstly made by N. Toda [9], and the non-archimedean work is due to A.
Boutabaa [1]) is the equation

fn + gm = 1

A recent p-adic article on this topic deals with unbounded meromorphic solutions in a
ball ([4]). In characteristic zero, the most comprehensive work on this class of functional
equations can be found in [2].
Here we discuss properties of analytic or meromorphic solutions f , g of the functional
equation

P (f) = Q(g)(1)

where P and Q are certain rational functions on K.

We are starting with analytic functions in section 2 and receive similar conclusions as in a
recent paper due to Escassut and Yang ([6]), where P , Q are elements in K[x]. However,
the meromorphic case turns out to be more sophisticated than the analytic one, i.e., it
is more complicated to derive non trivial estimations for the Nevanlinna function T (ρ, f).
This case is worked out in section 3.

When not explicitly stated, we write P = R/S, Q = V/W , where R, S ,V , W ∈ K[x], (R,S) :=
gcd(R, S) = 1, (V, W ) = 1, and the degrees of P (resp. Q) are defined by p := deg P =
max{deg R, deg S} (resp. q := deg Q = max{deg V, deg W}).
Preparatory statements

Theorem 0.1. Let f ∈ A(K) such that f(K) ⊂ K∗ (i.e. f has no zero in K). Then f is a
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constant.

Proof. Let f(x) =
∑

j≥0 ajx
j . It is well known that the number of zeros of f in any disk

d(0, r) := {x ∈ K : |x| ≤ r} is equal to the largest integer k such that |ak|rk = supi≥0 |ai|ri

(see Theorem 23.5 in [5]). Hence, if f has no zero in K, obviously for all n > 0 : an = 0.�

Corollary 0.2. If f , g ∈ A(K) have the same zeros respecting multiplicity, then f
g is a

constant. �

Theorem 0.3. ([3]) Let f be in M(d(0, r−)) with f(0) �= 0,∞. Then f belongs to
Mb(d(0, r−)) if and only if T (ρ, f) is bounded in [0, r[.

Theorem 0.4. ([3]) Let f b in M(d(0, r−)) and let P ∈ K[x] be of degree n. Then
T (ρ, P (f)) = nT (ρ, f) + O(1).

Remark 0.5. ([4], [6]) There is a well defined mapping

χ
√ : x �→ χ

√
x

which is a homomorphism on K and can be extended to a homomorphism on K[x] (or even
to one on K(x)) in the following way: Let R =

∑n
i=0 aix

i = µ(x− α1) . . . (x−αn) in K[x],
then we define

χ
√ : χ

√
P (x) :=

n∑
i=0

χ
√

aix
i = χ

√
µ(x − χ

√
α1) . . . (x − χ

√
αn)

Lemma 0.6. ([2], [4]) Suppose π �= 0. Let r > 0 and f ∈ M(d(0, r−))(resp. f ∈ M(K)).
Then χ

√
f belongs to M(d(0, r−))(resp. M(K)) if and only if f ′ ≡ 0. Moreover, there exists

a unique t ∈ N such that χt√
f in M(d(0, r−))(resp. M(K)) and ( χt√

f)′ �= 0.

2 Decompositions of analytic functions First, we apply Theorem 2.9 ([6]) to the
question (1) for entire f , g. In section 2.2 we prove a somewhat similar result with appro-
priate conditions, particularly tailored to our ”rational” problem. Indeed this does not only
yield a quite more general result (see examples 2.2.6, 2.2.8), but also an analogue result for
elements f , g in A(d(0, r−)).

2.1 An Application of a previous paper ([6])

Remark 2.1.1. Let f , g be in A(K) (resp A(d(0, r−))), satisfying (1). Any pole b of P (f)
is a zero of S(f), hence a zero of W (g) of the same order. In the meromorphic case, this
conclusion is wrong.

Theorem 2.1.2. Let f , g ∈ A(K) solve (1), then there exists a constant λ ∈ K∗ such that

S(f) = λW (g)

Proof. Since f , g are analytic functions and S(f) and W (g) have the same zeros of the
same order, S(f)/W (g) is a constant by Corollary 0.2. �

Thus our problems reads

R(f) = λS(g), λ ∈ K∗(2)
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Although λ is an undetermined constant, we are able to apply the following Theorem
(Theorem 2.9 in [6]) to it, worked out for decompositions A(f) = B(g) for f , g, where A,
B are polynomials (in order to avoid confusion, we write A, B instead of P , Q used in [6]):

Theorem 2.1.3. ([6]) Let A, B be in K[x] with A′B′ not identically zero, such that
2 ≤ min{deg A,deg B}. Assume that there exist k distinct zeros c1, . . . , ck of A′ such that
A(ci) �= A(cj)∀i �= j and A(ci) �= B(d) for every zero d of B′(i = 1, . . . , k). Assume
that there exist two nonconstant functions f , g ∈ M(K) such that A(f) = B(g), and let
t = ν(f). Then q ≤ p and f satisfies

Ñ(ρ, f) ≥ k deg B − deg A

χt deg B
T (ρ, f) + log ρ + O(1)

Moreover, if p
2 < q, then k = 1 and c1 is a simple root of A′.

Theorem 2.1.4. Let P = R/S, Q = V/W , where R, S, V , W are in K[x], (R,S) = 1,
(V, W ) = 1. Let c1, . . . , ck be zeros of R′ such that R(ci) �= R(cj)∀i �= j. Moreover, let the
degree of V satisfy l = k − deg V + 1 > 0. Then, if f, g ∈ A(K) \K solve P (f) = Q(g), we
have

0 ≥ l deg R − deg V

χt deg V
T (ρ, f) + log ρ + O(1)

i.e.: deg V (deg R + 1) > (k + 1) deg R.

Proof. Due to Theorem 2.1.2 we have R(f) = λV (g) for some λ ∈ K∗; set A := R, B := λV .
Now, obviously there exist at least l distinct roots cj1 , . . . , cjl

of A′, such that A(cjr ) �= B(d)
for any zero d of B (r = 1, . . . , l with l = k−deg V +1 > 0), and ∀i �= j, (i, j ∈ {j1, . . . , jl}) :
A(ci) �= A(cj). Trivially, Ñ(ρ, f) is identically zero for non constant analytic f . �

Remark 2.1.5. Unfortunately the condition of Theorem 2.1.4 implies
deg V ≤ deg R−1, which follows from deg V ≤ k < deg R, since k ≤ deg R′. This inequality
together with the statement of Theorem 2.1.4 tells us therefore:

(k + 1) deg R

deg R + 1
< deg V < deg R

In the next section, however, we present conditions for P , Q, where not necessarily deg V <
deg R, such that (1) has only non constant entire solutions. Also, we consider the case
where f , g are unbounded analytic functions inside a disk d(0, r−).

Corollary 2.1.6. Let P, Q be in K(x) with P ′Q′ not identically zero and let p =
deg(R), q = deg(V ) with 2 ≤ min(p, q) and p

2 < q. Assume that there exist q distinct
zeros ci, (1 ≤ i ≤ q) of R′ such that R(ci) �= R(cj) ∀i �= j. If two functions f, g ∈ A(K)
satisfy P (f) = Q(g), then f and g are constants.

Proof. Assume that two functions f, g ∈ A(K) satisfy P (f) = Q(g). By Theorem 2.1.2
there exists λ ∈ K such that R(f) = λV (g). Let d1, . . . , dn be the distinct zeros of V ′. We
notice that n ≤ q−1. In order to apply Theorem 2.10 in [6], we only have to check that there
exists a zero ck of R′ satisfying R(ck) �= λV (dj) for every j = 1, . . . , n. Suppose it is not
true. Then, up to a reordering, we can assume that R(c1) = λV (d1), . . . , R(c1) = λV (dn).
Since q > n and since R(ci) �= R(cj) ∀i �= j, we then have R(cq) �= λV (dj) ∀j = 1, . . . , n.
Thus, we can apply Corollary 2.10 in [6] to the polynomial A := R and B := λV . �
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2.2 Generalizations of [6]

Remark 2.2.1. We further distinguish some cases: Suppose f , g are non constant entire
solutions (resp. unbounded analytic solutions in a disk d(a, r−)) of (1), then by using growth
at infinity (resp. growth, when ρ → r− ) we have

• Case 1: deg V > deg W , then obviously deg R > deg S

• Case 2: deg V < deg W , then obviously deg R < deg S,

• Case 3: deg V = deg W , then obviously deg R = deg S,

furthermore we obtain in any case, when ρ → ∞ (resp. when ρ → r− )

pT (ρ, f) = qT (ρ, g) + O(1)(3)

which follows from the functional equation (1):
T (ρ, P (f)) = max{Z(ρ, P (f)), N(ρ, P (f))}, and since Z(ρ, P (f)) = Z(ρ,R(f)),
N(ρ, P (f)) = Z(ρ, S(f)), we have by Theorem 0.4, T (ρ, P (f)) = max{r, s}T (ρ, f)+O(1) =
pT (ρ, f) + O(1).

In the present paper our statements on rational decompositions of meromorphic functions
always concern a specific class of rational functions P , Q, admitting certain decompositions
themselves (see Lemma 2.2.2, below). They are described by the following condition to
which we always refer:

Condition (M) Let P,Q ∈ K(x) and denote the zeros of P ′ by c1, . . . ck.
P , Q are said to satisfy Condition (M), if

1. P ′Q′ �= 0

2. P = R/S, (R,S) = 1, Q = V/W , V , W monic, (V, W ) = 1 (R, S, V , W ∈ K[x])

3. k > 0, and for any i ∈ {1, . . . , k} we have

(Q(d) �= P (ci)) ∧ (W (d) �= 0) ,

for any zero d of V ′ − W ′P (ci),

4. P (ci) �= P (cj) whenever i �= j,

5. Finally, if v = w we assume ∀i ∈ {1, . . . , k} : P (ci) �= 1.

Remark on Condition (M). Let f , g be non constant entire functions. If we set S ∈ K∗,
it easily follows that also W ∈ K∗, moreover P,Q ∈ K[x] and (like before, denote the zeros
of P ′ by c1, . . . ck) satisfy:

1. P ′Q′ �= 0

2. k > 0, and for any i ∈ {1, . . . , k} we have Q(d) �= P (ci) for any zero d of Q′,

3. P (ci) �= P (cj) whenever i �= j

On this condition Theorem 2.1 and 2.9 are based in [6]. In this sense, our paper can be
considered as a generalization to part of [6].
Now we are ready to state the basic Lemma:
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Lemma 2.2.2. Let P , Q satisfy Condition (M). Then for any i ∈ 1, . . . , k, P −P (ci) resp.
(Q − P (ci))W we have the following factorizations:

P (x) − P (ci) = (x − ci)siRi(x), si ≥ 2, Ri(ci) �= 0(4)

and

(Q(x) − P (ci))W (x) =
q∏

j=1

(x − bi,j)(5)

Furthermore, the set {bi,j} consists of qk distinct elements.

Proof. Let i ∈ {1, . . . , k} be arbitrary, but fixed. Since P ′(ci) = 0 we can clearly write
P (x) − P (ci) = (x − ci)siRi(x), with Ri(ci) �= 0, and si ≥ 2; indeed, suppose si = 1, then
for the derivative we have P ′(x) = (x − ci)R′

i(x) + Ri(x), so that P ′(ci) = Ri(ci), which is
a contradiction.
In any case, we have deg((Q−P (ci))W ) = deg(Q) = max{deg V, deg W} = q: In Case 1 and
Case 2 this is obvious, and in Case 3 we infer this by the additional condition P (ci) �= 1 and
V , W being monic polynomials. Thus we can write (Q(x) − P (ci))W (x) =

∏q
j=1(x − bi,j);

furthermore for any fixed i, bi,j �= bi,j′ , since for any d with W (d) = 0 or Q(d) − P (ci) = 0
we have V ′(d) − W ′(d)P (ci) �= 0.
Now, let (i, j) �= (i′, j′), then ϕ(x) := (Q(x)−P (ci))− (Q(x)−P (ci′ )) = P (ci)−P (ci′ ) �= 0
is a constant function different from zero; on the other hand, assume bi,j = bi′,j′ , then by
the right side of decomposition (5) we infer ϕ(x) = 0, which contradicts our assumption
and thus bi,j �= bi′,j′ . �

Let Ri (i = 1, . . . , k) be the rational functions due to the notation of Lemma 2.2.2. The
following lemma presents upper bounds for their degrees (i = 1, . . . , k):

Lemma 2.2.3. Let P , Q satisfy condition (M). Then for any i ∈ {1, . . . , k}, Ri can
be written in the way Ri = Ai

Bi
with (Ai, Bi) = 1, where Bi = S. Moreover we have

deg Ai ≤ max{deg R, deg S} − si = p − si.

Proof. We may write Ri = Ai

Bi
and from (5) we get

(x − ci)si
Ai(x)
Bi(x)

=
R(x) − P (ci)S(x)

S(x)

(R,S) = 1 clearly implies (R(x) − P (ci)S(x), S(x)) = 1, thus Bi = S and deg Ai =
deg(R(x) − P (ci)S(x)) − si.

• Case 1: deg(R(x) − P (ci)S(x)) = r, i.e. deg Ai = deg(R(x) − P (ci)S(x)) − si =
r − si = p − si.

• Case 2: we get exactly in the same way as before, switching the roles of r and s:
deg(R(x)−P (ci)S(x)) = s, i.e. deg Ai = deg(R(x)−P (ci)S(x))−si = s−si = p−si.

• Case 3: Obviously R might be not monic; we conclude deg Ai = deg(R(x)−P (ci)S(x))−
si ≤ deg S − si = deg R − si = deg P − si.

�

Particularly for the case where K has nonzero characteristic, we note two useful Lemmas:

Lemma Π1. If for P , Q in K(x), P ′Q′ �= 0 and f , g in ∈ M(K)\K (resp. Mu(d(0, r−)))
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satisfy (1), then f ′ ≡ 0 ⇔ g′ ≡ 0. Obviously, t = ν(f) = ν(g).

Proof. Say f ′ = 0, then by the derivative of (1) we can see that g′ = 0: Firstly, M(K)
(resp. M(d(0, r−))) is a field, secondly Q′ is not identically zero by our assumption, i.e. it
vanishes at finitely many points only; and since g takes infinitely many values, Q′(g) is not
identically zero. Conversely, by the same argument if f ′ �= 0, then g′ �= 0. �

Lemma Π2. Let P , Q satisfy Condition (M) and f ′ ≡ 0. Then Condition (M) is satisfied
by P1 := χ

√
P , Q1 := χ

√
Q. Moreover if f, g ∈ M(K) (resp. M(d(0, r−))) satisfy (1), then

P1(f1) = Q1(g1), where f1 := χ
√

f , g1 := χ
√

g. Thus by repeating the same process t times,
where t is the unique integer from Lemma 0.6, we derive Pt(ft) = Qt(gt) and Condition
(M) is satisfied by. Pt, Qt (where we denote similarly ft := χt√

f , gt := χt√g).

Proof. Use Remark 0.5. �

Theorem 2.2.4. Let f , g ∈ A(K) be non constant solutions of (1), where P , Q satisfy
condition (M) and let t := ν(f) = ν(g). Then

0 ≥ (
kq − p

χtq
)T (ρ, f) + log ρ + O(1),(6)

i.e., qk − p < 0.

Theorem 2.2.5. Let f , g ∈ Au(d(0, r−)) be solutions to (1), where P , Q satisfy condition
(M) and let t := ν(f) = ν(g). Then

0 ≥ (
kq − p

χtq
)T (ρ, f) + O(1),(7)

i.e., qk − p ≤ 0.

For the proof of these two theorems we refer to section 4, where a unified proof including
analogue statements on meromorphic functions (see section 3) is given.

2.3 Examples Let deg R = deg S = deg V = deg W = 2, then due to Remark 2.1.5
Theorem 2.1.4 can not be applied. But 2.2.4 works: To demonstrate this explicitly, we
consider the following example:

Example 2.2.6. Let K = Cp, let P (x) = R(x)
x2 , deg R = 2, Q(x) = V (x)

W (x) = x2

x2+x+1 . Write

R(x) = ax2 + bx + c, a �= 0, b �= 0, a−c
b =

√
3. Then

P ′(x) =
−bx2 + x(2a − 2c) + b

(x2 + 1)2
=

−bx2 + 2(b
√

3)x + b

(x2 + 1)2
= −b

x2 − 2
√

3x − 1
(x2 + 1)2

and P ′ has two distinct roots

c1 =
√

3 + 2, c2 =
√

3 − 2

which yields

P (c1) =
(4
√

3 + 7)b + (4 + 2
√

3)c
4 + 2

√
3

, P (c2) =
(4
√

3 − 7)b + (4 − 2
√

3)c
4 − 2

√
3

We may set P (c1) = 2
3 , P (c2) = − 4

3 . Thus, the only zero d of V ′−P (c1)W ′ = x(2−2P (c1))−
P (c1) is d = P (c1)

2(1−P (c1))
= 1, furthermore W (d) = W (1) �= 0 and 1 �= 2

3 = P (c1) �= Q(d) = 1
3 ;
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similarly, the only zero d of V ′ −P (c2)W ′ = x(2− 2P (c2))−P (c2) is d = P (c2)
2(1−P (c2))

= − 2
7 ,

furthermore W (d) = W (− 2
7 ) �= 0 and 1 �= − 4

3 = P (c2) �= Q(d) = 4
39 .

By applying Theorem 2.2.4, we conclude that there are no non constant, entire solutions f ,
g of the equation

(
√

3
2 − 1

3 )f2 + f − (
√

3
2 + 1

3 )
f2

=
g2

g2 + g + 1

Note that in the case b = 0 the problem turns out to be almost trivial (use Theorem 2.1.2).
Theorem 2.2.5 can be applied, too, since kq − p = 4 − 2 = 2, and we get, that there are no
unbounded elements f , g in A(d(0, r−)) having the above decomposition.

Example 2.2.5 shows that in the following case condition (M) does not yield an empty set
of rational functions P , Q:

Corollary 2.2.7. Let P = R/S, Q = V/W , where R, S, V , W are polynomials over K, V,
W, monic, (R,S)= 1, (V,W)= 1, each of which having degree two. Let P ′ have two distinct
zeros ci (i = 1, 2) such that P (c1) �= P (c2) and P (ci) �= 1 (i = 1, 2). Assume that for any
i, deg(V ′ − P (ci)W ′) > 0 and let di be its unique zero. Also, suppose P (ci) �= Q(di) and
W (di) �= 0 (i = 1, 2). Then for a pair (f, g) ∈ A(K) × A(K) having the decomposition
P (f) = Q(g) it follows that (f, g) ∈ K2. �

Similarly to Example 2.2.6 we show now, that there exist rational functions P , Q, deg R =
deg V = 2, deg S = 2 which satisfy Condition (M).

Example 2.2.8. Let K = Cp. For f , g ∈ A(K)(resp. A(d(0, r−))), we consider the
functional equation

af2 + bf + c

f3
=

g2

g3 − 6g2 + 11g + 6

where a, b, c in K are chosen in a way, that Condition (M) is satisfied: We write R =
ax2 + bx + c, S(x) = x3, V (x) = x2, W (x) = (x − 1)(x − 2)(x − 3). Clearly we have to
choose c �= 0, such that (R(x), x3) = 1. Whenever a �= 0, the derivative P ′ is

P ′(x) =
(−a(x2 + 2b/ax + 3c/a))

x4

For c = b2

3a , P ′ has a single zero of multiplicity two only: c1 = − b
a ; furthermore P (c1) = −a2

3b .
We set t := −P (c1) = a2

3b . Now the reader can easily verify that we may choose t in such a
way that

1. V ′ − P (c1)W ′ = 3tx2 + (2 − 12t)x + 11t = 0 has one single solution of multiplicity
two, d = 6t−1

3t ,

2. d /∈ {1, 2, 3} (i.e., W (d) �= 0)

3. P (c1) �= Q(d).

Since p = q = 3, k = 1, Theorem 2.2.4 assures us that there are no non constant entire func-
tions f , g satisfying the functional equation from above. However, elements in Au(d(0, r−))
with this specific decomposition might exist.

Corollary 2.2.9. Let P = R/S, Q = V/W , where R, S, V , W are polynomials over K,
(V, W, monic, (R,S)= 1, (V,W)= 1), R, V having degree 2, deg W = 3. Let P ′ have a
zero c of multiplicity 2, and let V ′ − P (c)W ′ have a zero of multiplicity 2. If P (c) �= Q(d),
then (1) has no non constant entire solutions. �
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3 Decompositions of meromorphic functions Let us have a look at the functional
equation (1) again, f and g now being meromorphic functions in all of K (resp. in
Mu(d(0, r−))) and P , Q in K(x).
What is new and has to be precisely considered, is that f , g might have poles in K. This
is the reason for some differences to the preceding case. We note:

1. There are not such cases 1, 2, 3, as in Remark 2.2.1 (for the ”analytic case”): the fact,
that f , g might have poles yields more ”degrees of freedom” for the decomposition
(1), i.e.: deg R > deg S ⇒ deg V > deg W

2. If deg V = deg W , then if g has a pole at b ∈ K, Q(g) has no pole at b; this means,
in this case we cannot get an estimation of Ñ(ρ, g) by calculating Ñ(ρ,Q(g)).

3. Finally, Remark 2.1.1 tells us, that estimation (14) in the proof of Theorem 2.2.4-2.2.5
turns worse, compared with the analytic case.

The aim of this section is to establish statements along the lines of Theorem 2.2.4 and 2.2.5
for rational decompositions (1) of two distinct meromorphic functions f , g. To begin with,
we repeat a statement of [8], presenting a precise asymptotic formula for the Nevanlinna
function of a rational function composed with a meromorphic one (this is a generalization
of Theorem 0.4 and the analogue formula in Remark 2.2.1):

Proposition 3.1.1. Let f ∈ M(K) \ K (resp. f ∈ Mu(d(0, r−)))), L ∈ K(x), where
L = A/B, and A, B in K[x], (A,B) = 1 and deg A = k,deg B = q. Then we have

T (ρ, L(f)) = max{k, q}T (ρ, f) + O(1)(8)

For the proof in the case f ∈ M(K)\K we refer to [8], where a little more general statement
is shown. For f being meromorphic in a disk, the proof is analogue, since the only non
elementary facts used are the Jensen’s Formula and the analogue statement Theorem 0.4
for L ∈ K[x].

Thus we infer the same asymptotic formula for T (ρ, g) as in the analytic case (Remark
2.2.1):

Proposition 3.1.2. If f ∈ M(K)\K (resp. f ∈ Mu(d(0, r−))), and f , g satisfy (1), then

qT (ρ, g) = pT (ρ, f) + O(1)

�

Definitions and Notation 3.1.3. In this section we distinguish following cases with
respect to the degrees of R, S, V and W and assign to each of them a certain rational
number Λ(P,Q, f, g):

1. Case. v = w: Λ(P,Q, f, g) := p
q

2. Case. v < w, r ≥ s: Λ(P,Q, f, g) := min{ γ(R), p
q }

3. Case. v > w, r ≤ s: Λ(P,Q, f, g) := min{ γ(S), p
q }

4. Case. v > w, r > s: Λ(P,Q, f, g) := min{ γ(S) + 1, p
q }

5. Case. v < w, r < s: Λ(P,Q, f, g) := min{ γ(R) + 1, p
q }
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where for L ∈ K[x], γ(L) denotes the number of distinct zeros of L in K.
Λ arises in following estimation of Ñ(ρ, g) by T (ρ, f):

Proposition 3.1.4. If f, g ∈ M(K) (resp. M(d(0, r−))) satisfy (1), then we have

Ñ(ρ, g) ≤ Λ(P,Q, f, g)T (ρ, f) + O(1)(9)

The proof is given in section 4.
Similarly to Theorem 2.2.4 and 2.2.5 we state now

Theorem 3.1.5. Let f , g ∈ M(K) \ K, let P , Q ∈ K(x) satisfy condition (M), and let
Θ(P ) :=

∑k
i=1(si − 2) > 0, i.e., at least one zero cj of P − P (cj) has multiplicity greater

than 2. If f and g are solutions to equation (1), then,

Ñ(ρ, g) ≥
(

qΘ(P ) − p(kγ(W ) + 1)
χtq

)
T (ρ, f) + log ρ + O(1)

Theorem 3.1.6. Let f , g Mu(d(0, r−)), let P , Q ∈ K(x) satisfy condition (M), and let
Θ(P ) :=

∑k
i=1(si − 2) > 0, i.e., at least one zero cj of P − P (cj) has multiplicity greater

than 2. If f and g are solutions to equation (1), then,

Ñ(ρ, g) ≥
(

qΘ(P ) − p(kγ(W ) + 1)
χtq

)
T (ρ, f) + O(1)

The proofs can be found in section 4.

Corollary 3.1.7. Let f , g ∈ M(K) \ K, let P , Q ∈ K(x) satisfy condition (M). If f and
g are solutions to equation (1), then, we have

qΘ(P ) < p(kγ(W ) + 1) + qΛ(P,Q, f, g)

Corollary 3.1.8. Let f , g Mu(d(0, r−)), let P , Q ∈ K(x) satisfy condition (M). If f and
g are solutions to equation (1), then, we have

qΘ(P ) ≤ p(kγ(W ) + 1) + qΛ(P,Q, f, g)

Proof of the Corollaries 3.1.6-3.1.7. Both follow from Theorem 3.1.5 resp. Theorem 3.1.6
by Proposition 3.1.4 (i.e. the asymptotic formula for Ñ(ρ, g)) and the growth of the log ρ-
term. �

4 The Proofs In this section, we give a unified proof of Theorems 2.2.4, 2.2.5, 3.1.5 and
3.1.6. At first we show that (9) holds true:

Proof of Proposition 3.1.4. In any case we have Ñ(ρ, g) ≤ p
q T (ρ, f) + O(1) which imme-

diately follows from Proposition 3.1.2. In certain cases, basic considerations improve this
asymptotic formula:

1. Case. As mentioned in the beginning of section 3, in this case poles of g are cancelling
in Q(g), so no better result for T (ρ, f) than the one from above can be achieved.
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2. Case. Taking the reciprocal value of (1) we see that

Ñ(ρ, g) + Z̃(ρ, V (g)) = Z̃(ρ,R(f)),

because w > v means that 1/Q(g) has a pole if and only if g has a pole or V (g) has a
zero. Likewise we have 1/P (f) has a pole if and only if S(f) has a zero, since a pole
of f implied a zero of 1/P (f). Using Proposition 3.1.2 we derive

Ñ(ρ, g) ≤ Z̃(ρ,R(f)) ≤ γ(R)T (ρ, f) + O(1)

3. Case. Can be worked out like the 2. Case. Indeed, by taking the reciprocal value of
(1), R and S merely change their roles.

4. Case. Obviously any pole of P (f) either is a pole of f or a zero of S(f), similarly any
pole of Q(g) either is a pole of g or a zero of W (g), thus we infer

Ñ(ρ, g) + Z̃(ρ,W (g)) = Ñ(ρ, f) + Z̃(ρ, S(f)),

which means

Ñ(ρ, g) ≤ (1 + γ(S))T (ρ, f) + O(1)

5. Case. Taking the reciprocal value of (1) we conclude as in the preceding case, with
the roles of R, S exchanged.

�

Proof of Theorems 2.2.4, 2.2.5, 3.1.5 and 3.1.6. First, let us suppose f and g to be in
A(K) \ K (resp. Au(d(0, r−))) and assume π = 0. By Lemma 2.2.2 we have certain
decompositions (4) and (5) for any fixed i, thus by inserting f and g therein we derive by
means of (1)

P (f) − P (ci) = (f − ci)siRi(f) =
1

W (g)

q∏
j=1

(g − bi,j) = Q(g) − P (ci)(10)

Applying the second Nevanlinna Theorem N to g we derive

(qk − 1)T (ρ, g) ≤
k∑

i=1

q∑
j=1

Z̃(ρ, g − bi,j) + Ñ(ρ, g) − log ρ + O(1) (ρ → ∞)(11)

wherein of course Ñ(ρ, g) = 0; for g we may assume g(0) �= bi,j whenever (i, j) ∈ {1, . . . k}×
{1, . . . , q}.
By means of (5) we easily obtain for any fixed i

Z̃(ρ, (Q(g) − P (ci))W (g)) =
q∑

j=1

Z̃(ρ, g − bi,j)(12)

Inserting g in (12) and in (11) yields

(qk − 1)T (ρ, g) ≤
k∑

i=1

Z̃(ρ, (Q(g) − P (ci))W (g)) − log ρ + O(1)(13)
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By (3) we know that T (ρ, g) = p
q T (ρ, f) + O(1), furthermore by Lemma 2.2.3 we can write

Ri(x) =
Ai(x)
Bi(x)

, deg(Ai) ≤ p − si

and obviously Ñ(ρ,Bi(f)) = Ñ(ρ, f) = 0, thus by Lemma 2.2.3,

Z̃(ρ,Ri(f)) = Z̃(ρ,Ai(f)) + Ñ(ρ,Bi(f)) ≤ (p − si)T (ρ, f) + O(1)

For any i, any zero of W (g) is a pole of Ri(f) of same order: this follows from equation (10)
and the fact that R, S have no common zeros. Therefore Z̃(ρ,Ri(f)W (g)) = Z̃(ρ,Ri(f)).
Thus we can finally estimate any term of the sum on the right side of (13) by

Z̃(ρ, (Q − P (ci))W (g)) = Z̃(ρ, (f − ci)siRi(f)W (g)) ≤(14)

≤ Z̃(ρ, (f − ci)) + Z̃(ρ,Ri(f)) ≤
≤ T (ρ, f) + (p − si)T (ρ, f) + O(1)

and (6), (7) easily follow.
It immediately follows (consider the growth of the log ρ term) that for f ∈ A(K) \ K we
have qk < p in Theorem 2.2.4. Moreover, by Theorem 0.3 we receive qk ≤ p in Theorem
2.2.5.
Let now π �= 0: By Lemma Π1 and Π2 we see that we may apply the Nevanlinna Theorem
N in the same way for gt having ramification index 0. So we may write in the same way as
we derived for characteristic 0:

0 ≥ (
kq − p

χtq
)T (ρ, ft) + log ρ + O(1),

since the numbers k, p, q are the same for Pt, Qt. Due to Lemma Π2 the ramification index
of f and g are equal and we immediately get T (ρ, ft) = T (ρ,f)

χt which finishes the proof of
the Theorems 2.2.4, 2.2.5.
The proof of the Theorems 3.1.5, 3.1.6 is similar to the one of Theorem 2.2.4 and Theorem
2.2.5:
Suppose π = 0. Obviously, formulas (10), (11), (12) for f and g hold true. Since g might
have poles, instead of (11) we must write now

(qk − 1)T (ρ, g) ≤
k∑

i=1

Z̃(ρ, (Q(g) − P (ci))W (g)) + Ñ(ρ, g) − log ρ + O(1)(15)

Now we need to estimate (12): For any i = 1, . . . , k, we receive

Z̃(ρ,Ri(f)) ≤ Z̃(ρ,Ai(f)) + Ñ(ρ, f) ≤ (p − si + 1)T (ρ, f) + O(1),

thus,

Z̃(ρ, (Q(g) − P (ci))W (g)) = Z̃(ρ, (f − ci)siRi(f)W (g)) ≤(16)

≤ Z̃(ρ, (f − ci)) + Z̃(ρ,Ri(f)) + Z̃(ρ,W (g)) ≤
≤ T (ρ, f) + (p − si + 1)T (ρ, f) + γ(W )T (ρ, g) + O(1) =

=
(

p − (si − 2) +
pγ(W )

q

)
T (ρ, f) + O(1)
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Summing up over i we derive

k∑
i=1

Z̃(ρ, (Q(g) − P (ci))W (g)) ≤ (kp − Θ(P ) +
kpγ(W )

q
)T (ρ, f) + O(1)

And this estimation put into (15) yields the maintained result.
If K has characteristic π �= 0, the proof is similar to the one of the Theorems 2.2.4-2.2.5 in
the same situation. Note that Ñ(ρ, g) = Ñ(ρ, gt). �
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