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A NOTE ON THE PEARCE-PEČARIĆ INEQUALITIES
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Abstract. We discuss two inequalities appeared in the paper by Pearce and Pečarić
in 1997. These inequalities are related to Hua’s one. We first generalize one of them
in the normed space setting. We next point out that the other is false and correct it
in two directions.

0 Introduction. In [3], C. Pearce and J. Pečarić present two inequalities as generaliza-
tions of Hua’s inequaliy:

Theorem A ([3, Theorem 2.1]). Let f be a nondecreasing convex function on [0,∞). If
α > 0 and δ, z1, . . . , zn, w1, . . . , wn ∈ C, then

f

(∣∣∣δ − n∑
i=1

ziwi

∣∣∣) +
1
α

n∑
i=1

|wi|f(α|zi|) ≥ α+
∑n

i=1|wi|
α

f

(
α|δ|

α+
∑n

i=1|wi|
)
.(1)

When f is strictly convex and wi �= 0 for i = 1, . . . , n, the equality holds in (1) if and only
if

zj =
δwj

(α +
∑n

i=1|wi|)|wj | (j = 1, . . . , n).

Theorem B ([3, Theorem 2.2]). If α > 0, a1, . . . , an ∈ R and δ, z1, . . . , zn ∈ C, then∣∣∣δ − n∑
i=1

aizi

∣∣∣2 +
α

2

(
n∑

i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2) ≥ α|δ|2
α+

∑n
i=1ai

2
.(2)

In (2), the equality holds if and only if aj = Re(λzj) for j = 1, . . . , n, where λ is a complex
number,

∑n
i=1 λ

2zi
2 is real and nonnegative and

n∑
i=1

aizi =
∑n

i=1ai
2δ

α+
∑n

i=1ai
2
.

In this note, we give these theorems careful thought. In Section 1, we describe general
results based on a formulation in [4]. Using this formulation, we show a general form of
Theorem A in Section 2. Moreover, we deduce Dragomir’s inequality ([1]) and compare it
with (2). As a consequence, we see that Theorem B is false. In Sections 3, we show the
following two improvements of Theorem B:

Theorem 1. If α > 0, δ, a1, . . . , an, z1, . . . , zn ∈ C and (a1, . . . , an) �= (0, . . . , 0), then∣∣∣δ − n∑
i=1

aizi

∣∣∣2 +
α

2

(
κ

n∑
i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2) ≥ α|δ|2
α+ 2(1+κ)

,(3)

where κ =
√∑n

i=1|ai−1|2. In (3), the equality holds if and only if
n∑

i=1

aizi =
2(1+κ)δ
α+2(1+κ)

,
n∑

i=1

zi =
2δ

α+2(1+κ)
and

∣∣∣ n∑
i=1

zi

∣∣∣2 =
n∑

i=1

|zi|2.
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Theorem 2. If α > 0, δ, a1, . . . , an, z1, . . . , zn ∈ C (n ≥ 2) and (a1, . . . , an) �= (0, . . . , 0),
then ∣∣∣δ − n∑

i=1

aizi

∣∣∣2 +
α

2

(
n∑

i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2) ≥ α|δ|2
2α+

(√
2

∑n
i=1|ai|2+

√
αn

)2 .(4)

When two vectors (a1, . . . , an), (1, . . . , 1) in Cn are linearly independent, the equality holds
in (4) if and only if z1 = · · · = zn = δ = 0.

1 General Theory. We begin with a formulation in [4], which is the essence of many
genaralizations of Hua’s inequality.

Theorem C ([4, Corollary 2]). Let (G,+) be a semigroup, and let ϕ and ψ be nonneg-
ative functions on G. Suppose ϕ is subadditive on G and there is a positive constant λ
such that ϕ(x) ≤ λψ(x) for x ∈ G. Let f be a nondecreasing convex function on [0,∞). If
a, b ∈ G, then

f
(
ϕ(a)

)
+ λf

(
ψ(b)

) ≥ (1 + λ)f
(ϕ(a+ b)

1 + λ

)
.(5)

When f is strictly convex, the equality holds in (5) if and only if

ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(b) = λψ(b) and ϕ(a) = ψ(b).(6)

The proof is very simple and will be important in the later discussion, so we state it
here.

Proof. By the hypothesis on ϕ and ψ, we have

ϕ(a+ b) ≤ ϕ(a) + ϕ(b) ≤ ϕ(a) + λψ(b).

Since f is nondecreasing and convex, we obtain

f
(ϕ(a+ b)

1 + λ

)
≤ f

(ϕ(a) + λψ(b)
1 + λ

)
≤ f(ϕ(a)) + λf(ψ(b))

1 + λ
,

which implies (5). The condition (6) for equality is easily obtained by considering the case
that all the above inequalities become equalities.

Corollary 1. Let (G,+) be a semigroup, and let ϕ and ψ be nonnegative functions on G.
Suppose ϕ is subadditive on G and there is a positive constant λ such that ϕ(x) ≤ λψ(x)
for x ∈ G. Suppose p, q > 1 and 1/p+ 1/q = 1. If a, b ∈ G, then

ϕ(a)p + ψ(b)p ≥ ϕ(a+ b)p

(1 + λq)p−1
.(7)

In (7), the equality holds if and only if

ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(b) = λψ(b) and λqϕ(a)p = ψ(b)p.(8)

Proof. Since ϕ(x) ≤ λq
(
λ1−qψ(x)

)
for x ∈ G, we can replace ψ and λ in Theorem C by

λ1−qψ and λq, respectively. Moreover, we consider the case f(t) = tp, where f is surely
nondecreasing and strictly convex on [0,∞). Then (5) becomes

ϕ(a)p + λq
(
λ1−qψ(b)

)p ≥ (
1 + λq

)(ϕ(a+ b)
1 + λq

)p

,

which is equivalent to (7). Also, (6) becomes (8).
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Corollary 2. Let (G,+) be a semigroup, and let ϕ1, ϕ2, ψ be nonnegative functions on
G. Suppose ϕ1, ϕ2 are subadditive on G and there are positive constants λ1, λ2 such that
ϕk(x) ≤ λkψ(x) for x ∈ G and k = 1, 2. Suppose p, q > 1 and 1/p + 1/q = 1. If a, b ∈ G,
then

ϕ1(a)p + ϕ2(a)p + ψ(b)p ≥
(
ϕ1(a+b) + ϕ2(a+b)

)p(
2 + (λ1+λ2)q

)p−1 .(9)

In (9), the equality holds if and only if

ϕk(a+ b) = ϕk(a) + ϕk(b), ϕk(b) = λkψ(b) (k = 1, 2)

and ϕ1(a) = ϕ2(a) =
ψ(b)

(λ1 + λ2)q−1
.

(10)

Proof. Put µ = (λ1+λ2)q−1. Then ϕk(x) ≤ µλk

(
ψ(x)/µ

)
for x ∈ G and k = 1, 2. We apply

Theorem C, replacing ϕ, ψ, λ by ϕk, ψ/µ, µλk, respectively, and putting f(t) = tp. Then
we have

ϕk(a)p + µλk

(ψ(b)
µ

)p

≥ (1 + µλk)
(
ϕk(a+ b)
1 + µλk

)p

.(11)

Summing these inequalities as k = 1, 2 yields

ϕ1(a)p + ϕ2(a)p + µ1−p(λ1+λ2)ψ(b)p ≥ (1+µλ1)
(
ϕ1(a+ b)
1 + µλ1

)p

+ (1+µλ2)
(
ϕ2(a+ b)
1 + µλ2

)p

.

(12)

By the convexity of f(t) = tp,

(1+µλ1)
(
ϕ1(a+b)
1 + µλ1

)p

+ (1+µλ2)
(
ϕ2(a+b)
1 + µλ2

)p

2 + µλ1 + µλ2
≥

(
ϕ1(a+b) + ϕ2(a+b)

2+µλ1+µλ2

)p

,(13)

and so the right side of (12) is greater than or equal to that of (9). While the left side of
(12) is equal to that of (9). Thus we proved (9).

By the above argument, the equality holds in (9) precisely when the inequality signs in
(11) and (13) become equality signs, namely when

ϕk(a+b) = ϕk(a) + ϕk(b), ϕk(b) = µλk
ψ(b)
µ

, ϕk(a) =
ψ(b)
µ

(k = 1, 2)

and
ϕ1(a+b)
1 + µλ1

=
ϕ2(a+b)
1 + µλ2

.

It is easy to see that these equations are equivalent to (10).

2 Pearce-Pečarić Theorems. We first generalize Theorem A as follows:

Theorem 3. Let X be a real or complex normed space with dual X∗ and let f be a nonde-
creasing convex function on [0,∞). If α > 0, δ ∈ C, x1, . . . , xn ∈ X and h1, . . . , hn ∈ X∗,
then

f

(∣∣∣δ − n∑
i=1

hi(xi)
∣∣∣) +

1
α

n∑
i=1

‖hi‖f
(
α‖xi‖

) ≥ α+
∑n

i=1‖hi‖
α

f
( α|δ|
α+

∑n
i=1‖hi‖

)
.(14)
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When f is strictly convex, the equality holds in (14) if and only if

hj(xj) =
δ‖hj‖

α+
∑n

i=1‖hi‖ and |hj(xj)| = ‖hj‖ ‖xj‖ (j = 1, . . . , n).(15)

We prove it by using the method in the proof of Theorem C.

Proof. By the triangle inequality and the well-known functional inequality, we have

|δ| =
∣∣∣∣(δ − n∑

i=1

hi(xi)
)

+
n∑

i=1

hi(xi)
∣∣∣∣ ≤

∣∣∣δ − n∑
i=1

hi(xi)
∣∣∣ +

n∑
i=1

∣∣hi(xi)
∣∣

≤
∣∣∣δ − n∑

i=1

hi(xi)
∣∣∣ +

n∑
i=1

‖hi‖ ‖xi‖.

Since f is nondecreasing and convex, it follows that

f

(
α|δ|

α+
∑n

i=1‖hi‖
)

≤ f

(
α |δ − ∑n

i=1hi(xi)| +
∑n

i=1‖hi‖(α‖xi‖)
α+

∑n
i=1‖hi‖

)

≤ αf
(|δ − ∑n

i=1hi(xi)|
)

+
∑n

i=1‖hi‖f
(
α‖xi‖

)
α+

∑n
i=1‖hi‖ .

This proves (14).
Suppose f is strictly convex and the equality holds in (14). By the above argument, we

see ∣∣∣∣(δ − n∑
i=1

hi(xi)
)

+
n∑

i=1

hi(xi)
∣∣∣∣ =

∣∣∣δ − n∑
i=1

hi(xi)
∣∣∣ +

n∑
i=1

∣∣hi(xi)
∣∣,(16)

|hj(xj)| = ‖hj‖ ‖xj‖ (j = 1, . . . , n),(17) ∣∣∣δ − n∑
i=1

hi(xi)
∣∣∣ = α‖x1‖ = · · · = α‖xn‖.(18)

In (16), the triangle inequality becomes equality, and so there is a complex number ξ,
|ξ| = 1, such that

δ−
n∑

i=1

hi(xi) =
∣∣∣δ− n∑

i=1

hi(xi)
∣∣∣ ξ and hj(xj) = |hj(xj)| ξ (j = 1, . . . , n).

By (17) and (18),

δ −
n∑

i=1

hi(xi) = α‖x1‖ ξ and hj(xj) = ‖hj‖ ‖x1‖ ξ (j = 1, . . . , n).

Hence δ = α‖x1‖ξ +
∑n

i=1‖hi‖ ‖x1‖ ξ =
(
α+

∑n
i=1‖hi‖

)(‖x1‖ ξ
)

and so

hj(xj) = ‖hj‖
(‖x1‖ξ

)
=

δ‖hj‖
α+

∑n
i=1‖hi‖ (j = 1, . . . , n).

Thus we obtain (15).
Conversely, suppose (15) holds. Then

f

(∣∣∣δ − n∑
j=1

hj(xj)
∣∣∣) = f

(∣∣∣δ − n∑
j=1

δ‖hj‖
α+

∑n
i=1‖hi‖

∣∣∣) = f

(
α|δ|

α+
∑n

i=1‖hi‖
)
.
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If hj �= 0, then

‖hj‖ f
(
α‖xj‖

)
= ‖hj‖ f

(
α
|hj(xj)|
‖hj‖

)
= ‖hj‖ f

(
α|δ|

α+
∑n

i=1‖hi‖
)
,

while, if hj = 0, the initial and terminal sides are clearly equal. These equations show the
equality in (14). Thus Theorem 3 was proved.

Remark. Theorem 3 can be proved by using Theorem C directly.

Let us consider the caseX = C. For each i = 1, . . . , n, pick wi ∈ C and define hi ∈ C∗ by
hi(z) = wiz for z ∈ C. Then ‖hi‖ = |wi|. Applying Theorem 3 with xi = zi (i = 1, . . . , n),
we obtain Theorem A.

Next, we discuss Theorem B. The inequality in Theorem B is similar to Dragomir’s one:

Theorem D ([1]). If α > 0 and δ, a1, . . . , an, z1, . . . , zn ∈ C, then

∣∣∣δ − n∑
i=1

aizi

∣∣∣2 + α
n∑

i=1

|zi|2 ≥ α|δ|2
α+

∑n
i=1|ai|2 .(19)

In (19), the equality holds if and only if zj = δaj/
(
α+

∑n
i=1|ai|2

)
for j = 1, . . . , n.

For the sake of completeness, we prove it. Our proof depends on Theorem A.

Proof. We first consider the case that ai �= 0 for all i = 1, . . . , n. In Theorem A, take
p = q = 2, and repalce zi, wi by zi/ai, ai

2, respectively. The theorem follows immediately.
In general case, we discard the ith terms ai, zi such that ai = 0. Since the remaining ones
are applicable to the first case, it follows that∣∣∣δ − ∑

ai �=0

aizi

∣∣∣2 + α
∑

ai �=0

|zi|2 ≥ α|δ|2
α+

∑
ai �=0|ai|2 .(20)

Clearly, the left side of (20) is less than or equal to that of (19). While the right side of
(20) is equal to that of (19). Thus (19) was proved. The condition for equality is easily
obtained.

Let us compare (2) and (19). Since (19) is true by the above proof, we doubt whether
the case n ≥ 2 of (2) is true. Indeed, take α = 1, δ = 4, a1 = 2, a2 = · · · = an = 0 and
z1 = 2, z2 = −1, z3 = · · · = zn = 0. Then∣∣∣δ − n∑

i=1

aizi

∣∣∣2 +
α

2

(
n∑

i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2) = 3 <
16
5

=
α|δ|2

α+
∑n

i=1 ai
2
.

We conclude that Theorem B is false.

Remark. Suppose a1, . . . , an ∈ C and (a1, . . . , an) �= (0, . . . , 0). We can easily show that
(2) holds for all α > 0 and all δ, z1, . . . , zn ∈ C if and only if the inequality∣∣∣ n∑

i=1

aizi

∣∣∣2 ≤ 1
2

n∑
i=1

|ai|2
(

n∑
i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2)(21)

holds for all z1, . . . , zn ∈ C (cf. [3, Proposition 2.1]). In case n = 2, a1, a2 satisfy the
inequality (21), namely

∣∣a1z1 + a2z2
∣∣2 ≤ 1

2
(|a1|2+|a2|2

)(|z1|2+|z2|2+|z1+z2|2
)
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for all z1, z2 ∈ C, if and only if

|a1|2 + |a2|2 ≤ 4 Re(a1a2).(22)

Thus (22) is the necessary and sufficient condition that (2) with n = 2 holds for all α > 0,
δ, z1, z2 ∈ C. We note that there exist a1, a2 ∈ C which do not satisfy (22).

3 Proofs. We prove a general form of Theorem 1.

Theorem 4. Let X be a real or complex normed space with dual X∗. Suppose p, q > 1 and
1/p+ 1/q = 1. If α > 0, δ ∈ C, x ∈ X, g, h ∈ X∗ and g �= 0, then

∣∣δ − g(x)
∣∣p + α

(‖g−h‖ ‖x‖p+ |h(x)|p) ≥ |δ|p(
1 + α1−q(1+‖g−h‖))p−1 .(23)

In (23), the equality holds if and only if

g(x) =
δ (1+‖g−h‖)

αq−1+1+‖g−h‖, h(x) =
δ

αq−1+1+‖g−h‖ and |h(x)| = ‖x‖.(24)

Proof. Take α > 0, δ ∈ C, x ∈ X and g, h ∈ X∗ (g �= 0). We first observe that

|g(z)| ≤ (1+‖g−h‖)1/q
(‖g−h‖ ‖z‖p + |h(z)|p)1/p(25)

for all z ∈ X . This follows from

|g(z)| ≤ |g(z) − h(z)| + |h(z)| ≤ ‖g − h‖ ‖z‖+ |h(z)|
and

|g(z)|p ≤ (
1+‖g−h‖)p

(‖g−h‖ ‖z‖+ |h(z)|
1 + ‖g − h‖

)p

≤ (
1+‖g−h‖)p−1(‖g−h‖ ‖z‖p + |h(z)|p).

Put G = X , and define nonnegative functions ϕ, ψ on G by

ϕ(z) = |g(z)|, ψ(z) = α1/p
(‖g−h‖ ‖z‖p+|h(z)|p)1/p

for z ∈ G. Clearly, ϕ is subadditive on G. If we set λ = (1+‖g−h‖)1/q
/
α1/p, then (25)

implies ϕ(z) ≤ λψ(z) for z ∈ G. Choose y ∈ X so that g(y) = δ (This is possible because
g �= 0). Now, apply Corollary 1 with a = y − x and b = x. The result is

∣∣g(y) − g(x)
∣∣p + α

(‖g−h‖ ‖x‖p+|h(x)|p) ≥ |g(y)|p(
1 + (1+‖g−h‖)/αq/p

)p−1 .

This proves (23).
Suppose that the equality holds in (23). By (8) in Corollary 1, we see

|δ| = |δ − g(x)| + |g(x)|,(26)

|g(x)| =
(1 + ‖g−h‖)1/q

α1/p
α1/p

(‖g−h‖ ‖x‖p + |h(x)|p)1/p
,(27)

1 + ‖g−h‖
αq/p

|δ − g(x)|p = α
(‖g−h‖ ‖x‖p + |h(x)|p).(28)
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Here (27) says that the equality holds in (25), and so

|g(x)| = |g(x)−h(x)| + |h(x)|, |g(x)−h(x)| = ‖g−h‖ ‖x‖, ‖x‖ = |h(x)|.(29)

Combining (28) and the third equation in (29), we easily see that

|δ − g(x)| = αq−1|h(x)|.(30)

Moreover, by (26) and the first equation in (29), we find complex numbers ξ, η, |ξ| = |η| = 1,
such that

δ − g(x) = |δ − g(x)| ξ, g(x) = |g(x)| ξ,(31)
g(x) − h(x) = |g(x) − h(x)| η, h(x) = |h(x)| η.(32)

We now assume g(x) �= 0. Then ξ = η, because (32) implies g(x) = |g(x)| η. Hence, by
(30), (31) and (32),

δ − g(x) = αq−1|h(x)| ξ = αq−1|h(x)| η = αq−1h(x).(33)

While, by (29) and (32),

g(x) − h(x) = ‖g−h‖ ‖x‖ η = ‖g−h‖ |h(x)| η = ‖g−h‖ h(x).(34)

From (33) and (34), we easily get the first and second equations in (24). The third one in
(24) has been obtained in (29). Thus we proved (24) in case g(x) �= 0. If g(x) = 0, then
h(x) = 0 by (32), ‖x‖ = 0 by the third equation of (29) and δ = 0 by (30). Thus (24) also
holds in case g(x) = 0.

It is a routine work to see that (24) implies the equality in (23).

Pick α > 0, δ, a1, . . . , an, z1, . . . , zn ∈ C as in Theorem 1. In Theorem 4, take X to
be the n-dimensional complex Euclidean space Cn, set p = q = 2, replace α by α/2, put
x = (z1, . . . , zn) ∈ Cn = X and define g, h ∈ (Cn)∗ = X∗ by

g(x1, . . . , xn) =
n∑

i=1

aixi, h(x1, . . . , xn) =
n∑

i=1

xi,

for all (x1, . . . , xn) ∈ Cn = X . Noting ‖g−h‖ =
√∑n

i=1|ai−1|2 = κ, we arrive at Theorem
1.

Next, we prove Theorem 2.

Proof of Theorem 2. Take α > 0 and δ, a1, . . . , an, z1, . . . , zn ∈ C (n ≥ 2). We first con-
sider the case that two vectors (a1, . . . , an), (1, . . . , 1) in Cn are linearly independent. Put
G = Cn, and define nonnegative functions ϕ1, ϕ2, ψ on G by

ϕ1(x1, . . . , xn) =
∣∣∣ n∑
i=1

aixi

∣∣∣, ϕ2(x1, . . . , xn) =
√
α

2

∣∣∣ n∑
i=1

xi

∣∣∣, ψ(x1, . . . , xn) =

√
α

2

n∑
i=1

|xi|2

for (x1, . . . , xn) ∈ Cn = G. It is clear that ϕ1 and ϕ2 are subadditive on G. If we set

λ1 =

√
2
α

n∑
i=1

|ai|2, λ2 =
√
n,
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then the Cauchy-Schwarz inequality shows

ϕ1(x1, . . . , xn) ≤
n∑

i=1

|ai||xi| ≤
√

n∑
i=1

|ai|2
√

n∑
i=1

|xi|2 = λ1ψ(x1, . . . , xn),

ϕ2(x1, . . . , xn) ≤
√
α

2

n∑
i=1

|xi| ≤
√
α

2
√
n

√
n∑

i=1

|xi|2 = λ2ψ(x1, . . . , xn)

for (x1, . . . , xn) ∈ G. We use the linear independence of (a1, . . . , an) and (1, . . . , 1) to find
a vector (w1, . . . , wn) ∈ Cn such that

n∑
i=1

aiwi = δ and
n∑

i=1

wi = 0.(35)

Now, apply Corollary 2 with p = q = 2 and a = (w1−z1, . . . , wn−zn), b = (z1, . . . , zn).
The result is∣∣∣ n∑

i=1

aiwi −
n∑

i=1

aizi

∣∣∣2 +
α

2

∣∣∣ n∑
i=1

wi −
n∑

i=1

zi

∣∣∣2 +
α

2

n∑
i=1

|zi|2

≥
(|∑n

i=1 aiwi| +
√
α/2 |∑n

i=1wi|
)2

2 +
(√

(2/α)
∑n

i=1|ai|2 +
√
n
)2 .

This is (4) by (35).
Suppose that two vectors (a1, . . . , an), (1, . . . , 1) are linearly independent and the equal-

ity holds in (4). By (10) in Corollary 2, we see

|δ| =
∣∣∣δ − n∑

i=1

aizi

∣∣∣ +
∣∣∣ n∑
i=1

aizi

∣∣∣, ∣∣∣ n∑
i=1

aizi

∣∣∣ =

√
2
α

n∑
i=1

|ai|2
√
α

2

n∑
i=1

|zi|2,

0 =
√
α

2

∣∣∣− n∑
i=1

zi

∣∣∣ +
√
α

2

∣∣∣ n∑
i=1

zi

∣∣∣,
√
α

2

∣∣∣ n∑
i=1

zi

∣∣∣ =
√
n

√
α

2

n∑
i=1

|zi|2,

∣∣∣δ − n∑
i=1

aizi

∣∣∣ =
√
α

2

∣∣∣− n∑
i=1

zi

∣∣∣ =

√
α

2

n∑
i=1

|zi|2
/(√

2
α

n∑
i=1

|ai|2 +
√
n

)
.

The third and fourth equations imply z1 = · · · = zn = 0. Hence the fifth equation yields
δ = 0. Conversely, if z1 = · · · = zn = δ = 0, then both sides of (4) are equally zero. Thus
the statement on equality was proved.

Finally we must consider the case that vectors (a1, . . . , an), (1, . . . , 1) are linearly de-
pendent. In this case, we can select a sequence

{
(ak,1, . . . , ak,n)

}
k=1,2,...

of vectors in Cn

such that
ak,1 → a1, . . . , ak,n → an (k → ∞)

and for each k, two vectors (ak,1, . . . , ak,n), (1, . . . , 1) are linearly indepnedent. Then the
preceeding argument shows that for each k,

∣∣∣δ − n∑
i=1

ak,izi

∣∣∣2 +
α

2

(
n∑

i=1

|zi|2 +
∣∣∣ n∑
i=1

zi

∣∣∣2) ≥ α|δ|2
2α+

(√
2

∑n
i=1|ak,i|2+

√
αn

)2 .

Letting k → ∞, we obtain (4). The proof is finished.

Remark. In [2], we may find another development of Hua-type inequalities.
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