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Abstract. Under the existence of nuisance parameters, we consider a class of tests
S which contains the likelihood ratio, Wald and Rao’s score tests as special cases. To
investigate the influence of nuisance parameters, we derive the second order asymptotic
expansion of the distribution of T ∈ S under a sequence of local alternatives. This
result and concrete examples illuminate some interesting features of effects due to
nuisance parameters. Optimum properties for a modified likelihood ratio test proposed
in Mukerjee [8] are shown under the criteria of second order local maximinity.

1. Introduction. In multivariate analysis, the second order asymptotic powers of various
test statistics have been investigated by Hayakawa [5], and Harris and Peers [4]. Under the
absence of nuisance parameters, results on optimality are now known for the likelihood ratio
(LR) test in terms of second order local maximinity and Rao’s score (R) test in terms of
third order local average power (Mukerjee [9]). Under the existence of nuisance parameters,
Eguchi [3] studied the effect of the composite null hypothesis from a geometric point of
view. Mukerjee [8] suggested a test that is superior to the usual LR test with regard to
second order local maximinity. The test proposed in Mukerjee [8] is motivated from the
principle of conditional likelihood and also from that of adjusted likelihood.

In time series analysis, under a set-up involving an unknown scalar parameter, Taniguchi
[12] considered the problem of second order comparison of tests. He worked with a large
class of tests that contains LR, R and Wald’s (W) tests as special cases. Taniguchi [13]
showed that the local powers of all the modified tests which are second order asymptotically
unbiased are identical up to n−1/2. Also Taniguchi [14] considered the problem of third order
comparison of tests, and suggested a Bartlett-type adjustment for the tests in the class and
then, on the basis of such adjusted versions, explored the point-by-point maximization of
third order power.

Bartlett-type adjustment procedure has been elucidated in various directions. Cordeiro
and Ferrari [2] gave a general formula of Bartlett-type adjustment to order n−1 for the test
statistic whose asymptotic expansion is a finite linear combination of chi-squared distribu-
tion with suitable degrees of freedom. Kakizawa [6] considered the extension of Cordeiro
and Ferrari’s [2] adjustment to the case of order n−k, where k is an integer k ≥ 1. Rao
and Mukerjee [10] compared various Bartlett-type adjustments for the R statistic. Rao and
Mukerjee [11] addressed the problem of comparing the higher order power of tests in their
original forms and not via their bias-corrected or Bartlett-type adjusted versions.

In this paper, under the existence of nuisance parameters, we consider the second order
properties of a class of tests S which contains LR, R and W tests as special cases. If
nuisance parameters are present, sensitivity of test statistics to perturbation of the nuisance
parameters becomes important. It is shown that the powers and sizes of T ∈ S are equally
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sensitive to perturbation of the nuisance parameter. In Section 3 we compare the second
order local power. It is seen that the local average powers of all T ∈ S are identical. It is
shown that optimality properties hold for a modified test of the LR test in terms of second
order local maximinity. Section 4 provides a decomposition formula of local powers for
LR, R and W test statistics under local orthogonality for parameters. The decomposition
consists of the sum of the three parts; one is the local power for the case of known nuisance
parameters, another represents sensitivity to perturbation of nuisance parameters and the
other part can be interpreted as an effect of nuisance parameters in test statistics. In Section
5, we discuss the local unbiasedness of T ∈ S . The results and their examples illuminate
some interesting features of effects due to nuisance parameters. The proofs of theorems are
relegated to Section 6.

2. Asymptotic expansion of a class of tests. Let Xn = (X1, . . . , Xn) be a col-
lection of m-dimensional random vectors forming a stochastic process. Let pn(xn; θ),
xn ∈ Rnm, be the probability density function of Xn, where θ = (θ1, . . . , θp+q)′ ∈ Θ
an open subset of Rp+q. Let θ1 = (θ1, . . . , θp)′ be the p-dimensional parameter of inter-
est and θ2 = (θp+1, . . . , θp+q)′ be the q-dimensional nuisance parameter. We consider the
problem of testing the hypothesis H : θ1 = θ10, where θ10 = (θ10 , . . . , θ

p
0)′, against the

alternative A : θ1 �= θ10. For this problem we introduce a class of test S which contains
LR, W and R tests as special cases. In the presence of nuisance parameters, the powers and
sizes of T ∈ S are affected by the true but unknown nuisance parameter. Therefore we
investigate the influence of perturbation by the sequence of local alternatives θ = θ0 + c−1

n ε
where θ′0 = (θ′10, θ

′
20), θ20 = (θp+1

0 , . . . , θp+q
0 )′ and ε = (ε1, . . . , εp+q)′. As in Li [7], we

shall use Greek letters {α, β, γ, . . . } as indices that run from 1 to p+ q, the set of English
letters {i, j, k, . . . , q} as indices that run from 1 to p, and the set of {r, s, t, . . . , z} as in-
dices that run from p+ 1 to p+ q. The indices i, r and α will serve two purposes, first to
denote a typical term in a sum and second to indicate the range of a sum. For example,
aαX

α =
∑p+q

α=1 aαX
α, aiX

i =
∑p

i=1 aiX
i and arX

r =
∑p+q

r=p+1 arX
r.

We make the following assumptions:

(A-1) ln(θ) = log pn(Xn; θ) is continuously four times differentiable with respect to θ.

(A-2) The partial derivative ∂α = ∂/∂θα and the expectation Eθ with respect to pn(xn; θ)
are interchangeable.

(A-3) For an appropriate sequence {cn} satisfying cn → +∞ as n → +∞, the asymptotic
moments (cumulants) of

Zα(θ) = c−1
n ∂αln(θ),

Zαβ(θ) = c−1
n [∂α∂βln(θ) − Eθ{∂α∂βln(θ)}],

possess the following asymptotic expansions

Eθ{Zα(θ)Zβ(θ)} = I(αβ)(θ) +O(c−2
n ),

Eθ{Zα(θ)Zβγ(θ)} = Jα,βγ(θ) +O(c−2
n ),

Eθ{Zα(θ)Zβ(θ)Zγ(θ)} = c−1
n Kα,β,γ(θ) +O(c−3

n ),

and J-th-order (J ≥ 2) cumulants of Zα(θ) and Zαβ(θ) are all O(c−J+2
n ).

(A-4) (i) I(αβ)(θ) is continuously two times differentiable with respect to θ.
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(ii) Jα,βγ(θ) and Kα,β,γ(θ) are continuously differentiable functions.

(A-5) (i) I(θ) = {I(αβ)(θ)} is positive definite for all θ ∈ Θ.

(ii) L(θ) = {−c−2
n ∂α∂βln(θ)} is positive definite almost surely for all θ ∈ Θ.

Let θ̂ = (θ̂1, . . . , θ̂p+q)′ be the global maximum likelihood estimator of θ and θ̃2 =
(θ̃p+1, . . . , θ̃p+q)′ be the restricted maximum likelihood estimator of θ2 given θ1 = θ10. The
partition θ′ = (θ′1, θ

′
2) induces the following corresponding partitions

θ̂ =
(
θ̂1
θ̂2

)
, ε =

(
ε1
ε2

)
, I(θ) =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
, L(θ) =

(
L11(θ) L12(θ)
L21(θ) L22(θ)

)
.

Let

g(θ) = {gαβ(θ)} =
(
I11·2(θ) I12(θ)

0 I22(θ)

)
,

where I11·2(θ) = I11(θ) − I12(θ){I22(θ)}−1I21(θ).
We consider the transformation

Wi(θ) = Zi(θ) − I(ir)(θ)grs(θ)Zs(θ), Wr(θ) = Zr(θ),

Wαβ(θ) = Zαβ(θ) − Jγ,αβ(θ)Iγδ(θ)Zδ(θ),

where Iαβ(θ) and gαβ(θ) are the (α, β) component of the inverse matrix of I(θ) and g(θ),
respectively. Henceforth we use the simpler notations Zα, Wα, I(αβ), Kα,β,γ, etc. if Zα(θ),
Wα(θ), I(αβ)(θ), Kα,β,γ(θ), etc. are evaluated at θ = θ0. Any function evaluated at the
point θ = θ̂ will be distinguished by the addition of a circumflex. Similarly any function
evaluated at the point θ1 = θ10, θ2 = θ̃2 will be distinguished by the addition of a tilde.
For the testing problem H : θ1 = θ10 against the alternative A : θ1 �= θ10, we introduce the
following class of tests:

S = {T | T = gijWiWj + c−1
n a1g

iαgjβWαβWiWj + 2c−1
n giαgrsWαrWiWs

+ c−1
n aijk

2 WiWjWk − c−1
n giαgjβgrsKα,β,rWiWjWs

− c−1
n giαgrtgsu(Kα,r,s + Jα,rs)WiWtWu + c−1

n ai
3Wi + op(c−1

n ),

under H, where a1, a
ijk
2 and ai

3 are nonrandom constants}.

(1)

This class S is a very natural one. We can show that famous tests based on the maximum
likelihood estimator belong to S .

Example 1. (i) The likelihood ratio test LR = 2(l̂n − l̃n) belongs to S . In fact, from
Bickel and Ghosh [1], the expansion for the r-th component of c−1

n (θ̂2 − θ̃2) is given
by

c−1
n (θ̂r − θ̃r) = ηr + c−1

n ĝrsẐsαη
α +

1
2
c−1
n ĝrs(K̂s,α,β + Ĵs,αβ [3])ηαηβ + op(c−1

n ),(2)

where ηi = c−1
n (θ̂i − θi

0), η
r = −ĝrsÎ(si)η

i and Ĵα,βγ [3] = Ĵα,βγ + Ĵβ,γα + Ĵγ,αβ.
Expanding LR in a Taylor series at θ = θ̂ and noting (2), we obtain

2(l̂n − l̃n) = ĝijη
iηj − c−1

n Ẑαβη
αηβ − c−1

n

(
1
3
K̂α,β,γ + Ĵα,βγ

)
ηαηβηγ + op(c−1

n ).(3)
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By Taylor expansion around θ0,

ĝij = gij + gikg
kαgjlg

lβ(Kα,β,γ + Jα,βγ + Jβ,γα)(θ̂γ − θγ
0 ) + op(c−1

n ).(4)

Furthermore, the stochastic expansion of c−1
n (θ̂α − θα

0 ) is given by

c−1
n (θ̂α − θα

0 ) = gβαWβ + c−1
n IαβgδγWβγWδ

− 1
2
c−1
n Iαα′

gββ′
gγγ′

(Kα′,β′,γ′ + Jα′,β′γ′)WβWγ + op(c−1
n ).

(5)

Inserting (4) and (5) in (3) and noting Ẑαβ = Wαβ + op(1), we have

2(l̂n − l̃n) = gijWiWj + c−1
n giαgjβWαβWiWj + 2c−1

n giαgrsWαrWiWs

− 1
3
c−1
n giαgjβgkγKα,β,γWiWjWk

− c−1
n giαgjβgrsKα,β,rWiWjWs

− c−1
n giαgrtgsu(Kα,r,s + Jα,rs)WiWtWu + op(c−1

n ).

Hence, LR belongs to S with the coefficients a1 = 1, aijk
2 = −giαgjβgkγKα,β,γ/3 and

ai
3 = 0.

Similarly, we can get results (ii)–(v):

(ii) Wald’s test W1 = ĝijη
iηj belongs to S with the coefficients a1 = 2, aijk

2 = giαgjβgkγJα,βγ

and ai
3 = 0.

(iii) A modified Wald’s test W2 = g̃ijη
iηj belongs to S with the coefficients a1 = 2,

aijk
2 = −giαgjβgkγ(Kα,β,γ + Jα,βγ) and ai

3 = 0.

(iv) Rao’s score test R1 = ĝijZ̃iZ̃j belongs to S with the coefficients a1 = 0, aijk
2 =

−giαgjβgkγ(Kα,β,γ + 2Jα,βγ) and ai
3 = 0.

(v) A modified version of Rao’s score test R2 = g̃ijZ̃iZ̃j belongs to S with the coefficients
a1 = 0, aijk

2 = 0 and ai
3 = 0.

Furthermore, it is shown that modified versions of the four tests W1, W2, R1 and R2

which are based on the observed information belong to S . Let {lij(θ)} = L11·2(θ) =
L11(θ) − L12(θ){L22(θ)}−1L21(θ) and {lij(θ)} be the (i, j) component of the inverse
matrix of L11·2(θ).

(vi) A modified version of Wald’s test W3 = l̂ijη
iηj belongs to S with the coefficients

a1 = 1, aijk
2 = giαgjβgkγJα,βγ and ai

3 = 0.

(vii) A modified version of Wald’s test W4 = l̃ijη
iηj belongs to S with the coefficients

a1 = 1, aijk
2 = −giαgjβgkγ(Kα,β,γ + 2Jα,βγ) and ai

3 = 0.

(viii) A modified version of Rao’s score test R3 = l̂ijZ̃iZ̃j belongs to S with the coefficients
a1 = 1, aijk

2 = −giαgjβgkγ(Kα,β,γ + 2Jα,βγ) and ai
3 = 0.

(ix) A modified version of Rao’s score test R4 = l̃ijZ̃iZ̃j belongs to S with the coefficients
a1 = 1, aijk

2 = giαgjβgkγJα,βγ and ai
3 = 0.



SECOND ORDER ASYMPTOTIC PROPERTIES 69

(x) The test LR∗ = LR + c−1
n g̃iαg̃rs(K̃α,r,s + J̃α,rs)Z̃i proposed in Mukerjee [8] belongs to

S with the coefficients a1 = 1, aijk
2 = −giαgjβgkγKα,β,γ/3 and ai

3 = giαgrs(Kα,r,s +
Jα,rs).

Li [7] compared the sensitivities of LR, W2 and R2 statistics to nuisance parameters. In
the one-parameter case, Taniguchi [14] discussed the third order asymptotic properties of
a class of tests S1. Rao and Mukerjee [11] studied a wider class S2(⊃ S1) which enables
us to compare the various Bartlett-type adjustments available for the members of S1. Our
class S contains S1 and S2, hence the class S is sufficiently rich.

Remark 1. Test statistics in Example 1 are based on the maximum likelihood estimator.
From (2) and (3), these statistics can be written as

T = ĝijη
iηj + c−1

n b1Ẑαβη
αηβ + c−1

n (b2K̂α,β,γ + b3Ĵα,βγ)ηαηβηγ

+ c−1
n b4ĝ

rs(K̂α,r,s + Ĵα,rs)ηα + op(c−1
n ),

(6)

where the coefficient (b1, b2, b3, b4) ∈ R4. For these statistics,

b1 = −1, b2 = −1/3, b3 = −1, b4 = 0, for LR,
b1 = −1, b2 = −1/3, b3 = −1, b4 = 1, for LR∗,
b1 = 0, b2 = 0, b3 = 0, b4 = 0, for W1,
b1 = 0, b2 = −1, b3 = −2, b4 = 0, for W2,
b1 = −1, b2 = 0, b3 = 0, b4 = 0, for W3,
b1 = −1, b2 = −1, b3 = −3, b4 = 0, for W4,
b1 = −2, b2 = −1, b3 = −3, b4 = 0, for R1,
b1 = −2, b2 = 0, b3 = −1, b4 = 0, for R2,
b1 = −1, b2 = −1, b3 = −3, b4 = 0, for R3,
b1 = −1, b2 = 0, b3 = 0, b4 = 0, for R4.

(7)

Inserting (4) and (5) in (6), we obtain

T = gijWiWj + c−1
n (b1 + 2)giαgjβWαβWiWj + 2c−1

n giαgrsWαrWiWs

+ c−1
n giαgjβgkγ{b2Kα,β,γ + (b3 + 1)Jα,βγ}WiWjWk

− c−1
n giαgjβgrsKα,β,rWiWjWs

− c−1
n giαgrtgsu(Kα,r,s + Jα,rs)WiWtWu

+ c−1
n b4g

iαgrs(Kα,r,s + Jα,rs)Wi + op(c−1
n ).

(8)

The class S in (1) is motivated from (8).

First, we give the second-order asymptotic expansion of the distribution function of
T ∈ S under a sequence of local alternatives. This result can be applied to the i.i.d. case,
multivariate analysis and time series analysis. Let Gµ,ν(z) is the distribution function for
a non-central chi-square variate with degree of freedom µ and non-centrality parameter ν.

Theorem 1. The distribution function of T ∈ S under a sequence of local alternatives
θ = θ0 + c−1

n ε has the asymptotic expansion

Pθ0+c−1
n ε[T < z] = Gp,∆(z) + c−1

n

3∑
j=0

mjGp+2j,∆(z) + o(c−1
n ),
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where

m3 =
1
6
Kα,β,γd

αdβdγ +
1
2
aijk
2 gii′gjj′gkk′di′dj′dk′

,

m2 = −1
2
aijk
2 gii′gjj′gkk′di′dj′dk′

+
1
2
BαβKα,β,γd

γ +
1
2
aijk
2 [3]gilgjkd

l,

m1 =
1
2
Jα,βγd

αdβdγ − 1
2
(Kα,β,r + Jα,βr + Jβ,αr)dαdβ(dr − εr)

− 1
2
BαβKα,β,γd

γ − 1
2
aijk
2 [3]gilgjkd

l

− 1
2
grs(Kα,r,s + Jα,rs)dα +

1
2
ai
3gijd

j ,

m0 = −1
6
(Kα,β,γ + 3Jα,βγ)dαdβdγ

+
1
2
(Kα,β,r + Jα,βr + Jβ,αr)dαdβ(dr − εr)

+
1
2
grs(Kα,r,s + Jα,rs)dα − 1

2
ai
3gijd

j ,

(9)

∆ = gijε
iεj, dα = gijg

jαεi, aijk
2 [3] = aijk

2 + ajki
2 + akij

2 and

{Bαβ} = {Iαβ} −
(

0 0
0 (I22)−1

)
.

Second, we consider the sensitivity of T ∈ S to the change ε2 in the nuisance parameter.
Test statistics that are less sensitive to such changes are generally more desirable because
their sizes and powers are less affected by the estimation of the nuisance parameter. Then
we have

Theorem 2. (i) For T ∈ S , the sensitivity of the distribution function of T to nuisance
parameters is given by

Pθ0+c−1
n ε[T < z] − Pθ10+c−1

n ε1,θ20
[T < z]

=
1
2
c−1
n (Kα,β,r + Jα,βr + Jβ,αr)dαdβεr{Gp+2,∆(z) −Gp,∆(z)} + o(c−1

n ).

(ii) If

gii′g
i′αgjj′g

j′α(Kα,β,r + Jα,βr + Jβ,αr) = 0,(10)

is satisfied, then the distribution function of T ∈ S is asymptotically independent of
ε2 with an error o(c−1

n ).

Remark 2. Note that

∂rgij(θ) = gii′(θ)gi′α(θ)gjj′ (θ)gj′α(θ){Kα,β,r(θ) + Jα,βr(θ) + Jβ,αr(θ)}.
If gij(θ) is independent of θ2, then the condition (10) holds.

Remark 3. In the case of i.i.d. observations, Li [7] gave factorizations of LR, W2 and R2

test statistics as quadratic forms and compared density functions of these factors. Then
he showed that the powers and sizes of these statistics are equally sensitive to nuisance
parameters. Form (i) in Theorem 2, we can see that the powers and sizes of all T ∈ S are
equally sensitive to nuisance parameters. Hence, our results agree with that of Li [7].
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Example 2. Suppose that Xi, i = 1, . . . , n are i.i.d. random variables distributed as
N1(µ, σ2).

(i) If θ1 = σ2 and θ2 = µ, then g11(σ2, µ) = (2σ4)−1. Hence, the condition (10) holds.

(ii) If θ1 = µ and θ2 = σ2, then g11(µ, σ2) = (σ2)−1. Hence, the condition (10) does not
hold.

Example 3. Consider the nonlinear regression model

Xt = α+ β cos(t − 1)λ+ ut, t = 1, . . . , n,(11)

where θ1 = β, θ2 = (α, λ), λ = 2πl/n (l an integer), {ut} is a sequence of i.i.d. N(0, σ2)
random variables. Then it follows that

I(θ) =

⎛
⎝ 1/(2σ2) 0 β/(4lσ2)

0 1/σ2 β/(lσ2)
β/(4lσ2) β/(lσ2) β2(8π2l2 − 3)/(12l2σ2)

⎞
⎠ .(12)

For our model (11) we calculate g11(θ). From (12)

g11(θ) =
1

2σ2
− 3

4σ2(8π2l2 − 15)

which implies that the condition (10) does not hold.

3. Comparison of power. Taking ε1 = 0 in (9), it can be seen that all T ∈ S have
sizes α+ o(c−1

n ). Hence, it would be meaningful to compare T ∈ S in terms of power up to
o(c−1

n ). From Theorem 1, we can see that there is no test which is second order uniformly
most powerful in S . Thus we attempt to compare the tests in S on the basis of their
second order power. First, we derive the explicit formula to compare the local power of
T ∈ S . Note that the first order powers of all T ∈ S are identical and independent of ε2.
Write the power function of T ∈ S under θ0 +c−1

n ε as PT (ε) = P1(ε1)+c−1
n PT

2 (ε)+o(c−1
n ).

From Theorem 1, we can state

Theorem 3. For T1 and T2 ∈ S with the coefficient (a11, a
ijk
21 , a

i
31) and (a12, a

ijk
22 , a

i
32),

respectively,

PT1
2 (ε) − PT2

2 (ε) =
2∑

j=0

m′
j{Gp+2j,∆(z) −Gp+2j+2,∆(z)},

where

m′
2 =

1
2
(aijk

21 − aijk
22 )gii′gjj′gkk′di′dj′dk′

,

m′
1 =

1
2
(aijk

21 [3] − aijk
22 [3])gilgjkd

l,

m′
0 =

1
2
(ai

31 − ai
32)gijd

j .

Note that m′
2, m

′
1 and m′

0 are independent of ε2. From Theorem 3 we have
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Corollary 1. For T1 and T2 ∈ S with the coefficient (a11, a
ijk
21 , a

i
31) and (a12, a

ijk
22 , a

i
32),

respectively,

PT1
2 (ε1, 0) − PT2

2 (ε1, 0) =
2∑

j=1

m′
j{Gp+2j,∆(z) −Gp+2j+2,∆(z)},

where m′
2, m

′
1 and m′

0 are the same as Theorem 3.

Example 4. Suppose that Xi, i = 1, . . . , n are i.i.d. random variables distributed as

N2

(
µ,

(
1 ρ
ρ 1

))
.

Then parametric orthogonality holds. If θ1 = ρ and θ2 = µ, then

g11(ρ, µ) =
1 + ρ2

(1 − ρ2)2
, K1,1,1(ρ, µ) = − 6ρ+ 2ρ3

(1 − ρ2)3
, J1,11(ρ, µ) = −K1,1,1(ρ, µ),

g22(ρ, µ) =
2

1 + ρ
, K1,2,2(ρ, µ) =

2
(1 + ρ)2

, J1,22(ρ, µ) = 0.
(13)

For test statistics T1 and T2 in (7) with the coefficient (b11, b21, b31, b41) and (b12, b22, b32, b42),
respectively,

m′
2 = − 3ρ+ ρ3

(1 − ρ2)3
{(b21 − b22) − (b31 − b32)}(ε1)3,

m′
1 = −3

3ρ+ ρ3

(1 − ρ2)(1 + ρ2)
{(b21 − b22) − (b31 − b32)}ε1,

m′
0 =

1
2(1 + ρ)

(b41 − b42)ε1.

Based on the above we can compare the second order power among Wi (i = 1, 2, 3, 4), Ri

(i = 1, 2, 3, 4), LR and LR∗.

(i) (i)-1 If ρ > 0 and ε1 > 0, then

PW4
2 (ε) = PR1

2 (ε) = PR3
2 (ε) < PW2

2 (ε) = PR2
2 (ε) < PLR

2 (ε)

< PW1
2 (ε) = PW3

2 (ε) = PR4
2 (ε).

(i)-2 If ρ < 0 and ε1 > 0, then

PW1
2 (ε) = PW3

2 (ε) = PR4
2 (ε) < PLR

2 (ε) < PW2
2 (ε) = PR2

2 (ε)

< PW4
2 (ε) = PR1

2 (ε) = PR3
2 (ε).

(ii) LR versus LR∗,

PLR
2 (ε) − PLR∗

2 (ε) = − 1
2(1 + ρ)

ε1{Gp,∆(z) −Gp+2,∆(z)}

implies, for ε1 > 0, PLR
2 (ε) < PLR∗

2 (ε) and PLR∗
2 (−ε1, ε2) < PLR

2 (−ε1, ε2) unless
ρ = −1.
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From (13) in Example 4, it is seen that cumulants g11, K1,1,1 and J1,11 tend to ∞ as
ρ→ ±1, and g22 and K1,2,2 tend to ∞ as ρ→ −1. Hence, we need to inspect second order
power functions if ρ is close to ±1. Note the relation

Gp,∆(z) −Gp+2,∆(z) = 2fp+2,∆(z),(14)

where fp,∆(z) is the probability density function of non-central chi-square variate with p
degree of freedom and non-centrality parameter ∆. From (13) and (14) it follows that
second order powers of all test statistics in Example 1 converge to 0 as ρ → ±1 at each
fixed ε1.

In Figure 1, we plotted PLR
2 (solid line), PLR∗

2 (dotted line), PR1
2 (dashed line) and PW1

2

(dash-dotted line) of Example 4 with α = 0.05, ε1 = 1 and −1 < ρ < 1. Figure 1 illustrates
that second order powers of these statistics converge to 0 as ρ→ ±1.

In Figure 2, we plotted PLR
2 (solid line), PLR∗

2 (dotted line), PR1
2 (dashed line) and PW1

2

(dash-dotted line) of Example 4 with α = 0.05, ε1 = 0.1 and −1 < ρ < 1. We can see that
the extreme points is close to ±1 in comparison with Figure 1.

Figures 1 and 2 are about here.

Example 5. Let {Xt} be a Gaussian MA(1) process with the spectral density

fθ(λ) =
σ2

2π
|1 − ψeiλ|2.

If θ1 = ψ and θ2 = σ2, then,

g11(ψ, σ2) =
1

1 − ψ2
, K1,1,1(ψ, σ2) = − 6ψ

(1− ψ2)2
, J1,11(ψ, σ2) =

4ψ
(1 − ψ2)2

,

g22(ψ, σ2) =
1

2σ4
, K1,2,2(ψ, σ2) = J1,22(ψ, σ2) = 0.

(15)

Note that g22(K1,2,2 + J1,22) = 0. For test statistics T1 and T2 in (7) with the coefficient
(b11, b21, b31, b41) and (b12, b22, b32, b42), respectively,

m′
2 = − ψ

(1 − ψ2)2
{3(b21 − b22) − 2(b31 − b32)}(ε1)3,

m′
1 = − 3ψ

(1 − ψ2)
{3(b21 − b22) − 2(b31 − b32)}ε1,

m′
0 = 0.

Based on the above we can compare the second order power among Wi (i = 1, 2, 3, 4), Ri

(i = 1, 2, 3, 4), LR and LR∗.

(i) If ψ > 0 and ε1 > 0, then

PW4
2 (ε) = PR1

2 (ε) = PR3
2 (ε) < PR2

2 (ε) < PLR
2 (ε) = PLR∗

2 (ε) = PW2
2 (ε)

< PW1
2 (ε) = PW3

2 (ε) = PR4
2 (ε).

(ii) If ψ < 0 and ε1 > 0, then

PW1
2 (ε) = PW3

2 (ε) = PR4
2 (ε) < PLR

2 (ε) = PLR∗
2 (ε) = PW2

2 (ε) < PR2
2 (ε)

< PW4
2 (ε) = PR1

2 (ε) = PR3
2 (ε).
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From (15) in Example 5, it is seen that cumulants g11, K1,1,1 and J1,11 tend to ∞ as
ψ → ±1. Hence, we need to examine second order powers if ψ is close to ±1. From (14)
and (15) it follows that second order powers of all test statistics in Example 1 converge to
0 as ψ → ±1 at each fixed ε1.

In Figure 3, we plotted PLR
2 (solid line), PR1

2 (dashed line) and PW1
2 (dotted line) of

Example 5 with α = 0.01, ε1 = 6.5 and −1 < ψ < 1. From Figure 3 we observe that second
order powers of these statistics converge to 0 as ψ → ±1.

In Figure 4, we plotted PLR
2 (solid line), PR1

2 (dashed line) and PW1
2 (dotted line) of

Example 5 with α = 0.01, ε1 = 0.65 and −1 < ψ < 1. We can see that the extreme points
is close to ±1 in comparison with Figure 3.

Figures 3 and 4 are about here.

Example 6. Let {Xt} be a Gaussian AR(1) process with the spectral density

fθ(λ) =
σ2

2π
1

|1 − ρeiλ|2 .

If θ1 = ρ and θ2 = σ2, then

g11(ρ, σ2) =
1

1 − ρ2
, K1,1,1(ρ, σ2) =

6ρ
(1 − ρ2)2

, J1,11(ρ, σ2) = − 2ρ
(1− ρ2)2

,

g22(ρ, σ2) =
1

2σ4
, K1,2,2(ρ, σ2) = J1,22(ρ, σ2) = 0.

(16)

Note that g22(K1,2,2 + J1,22) = 0. For test statistics T1 and T2 in (7) with the coefficient
(b11, b21, b31, b41) and (b12, b22, b32, b42), respectively,

m′
2 = − ρ

(1 − ρ2)2
{3(b21 − b22) − (b31 − b32)}(ε1)3,

m′
1 = − 3ρ

(1 − ρ2)
{3(b21 − b22) − (b31 − b32)}ε1,

m′
0 = 0.

Based on the above we can compare the second order power among Wi (i = 1, 2, 3, 4), Ri

(i = 1, 2, 3, 4), LR and LR∗.

(i) If ρ > 0 and ε1 > 0, then

PW2
2 (ε) < PLR

2 (ε) = PLR∗
2 (ε) = PW1

2 (ε) = PW3
2 (ε) = PW4

2 (ε)

= PR1
2 (ε) = PR3

2 (ε) = PR4
2 (ε) < PR2

2 (ε).

(ii) If ρ < 0 and ε1 > 0, then

PR2
2 (ε) < PLR

2 (ε) = PLR∗
2 (ε) = PW1

2 (ε) = PW3
2 (ε) = PW4

2 (ε)

= PR1
2 (ε) = PR3

2 (ε) = PR4
2 (ε) < PW2

2 (ε).

From (16) in Example 6, it is seen that cumulants g11, K1,1,1 and J1,11 tend to ∞ as
ρ→ ±1. Hence, we need to examine second order powers if ρ is close to ±1. From (14) and
(16) it follows that second order powers of all test statistics in Example 1 converge to 0 as
ρ→ ±1 at each fixed ε1.
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In Figure 5, we plotted PLR
2 (solid line), PR2

2 (dashed line) and PW2
2 (dotted line) of

Example 6 with α = 0.01, ε1 = 3 and −1 < ρ < 1. From Figure 5 it is seen that second
order powers of these statistics converge to 0 as ρ→ ±1.

In Figure 6, we plotted PLR
2 (solid line), PR2

2 (dashed line) and PW2
2 (dotted line) of

Example 6 with α = 0.01, ε1 = 0.8 and −1 < ρ < 1. We can see that the extreme points is
close to ±1 in comparison with Figure 5.

Figures 5 and 6 are about here.

Next we consider the criterion of average power PT
2 (ε1, ε2) + PT

2 (−ε1, ε2). Then from
Theorem 1 it is easily seen that for each T ∈ S ,

PT
2 (ε1, ε2) + PT

2 (−ε1, ε2) = (Kα,β,r + Jα,βr + Jβ,αr)dαdβεr{Gp,∆(z) −Gp+2,∆(z)}.
It is, therefore, clear that the average powers of all T ∈ S are identical up to c−1

n . However,
even in this situation, with a more detailed analysis it is possible to compare tests in S
in a meaningful way under suitable choice of criterion. Under the absence of nuisance
parameters, Mukerjee [9] showed that LR statistic is optimal in terms of second-order local
maximinity. However, in the presence of nuisance parameters, optimality properties do
not generally hold for LR test in terms of second-order local maximinity. We can see the
optimality of LR∗ statistic in terms of second-order local maximinity. For each fixed ∆, let

PT
ε2

(∆) = minPT
2 (ε), PLR∗

ε2
(∆) = minPLR∗

2 (ε),

where the minimum is taken over ε1 such that gijε
iεj = ∆. Then we can get the following

result.

Theorem 4. For T ∈ S whose coefficients do not satisfy z(aijk
2 [3]gjk + giαBβγKα,β,γ) +

(p + 2){ai
3 − giαgrs(Kα,r,s + Jα,rs)} = 0 (the coefficients of LR∗ satisfy aijk

2 [3]gjk =
−giαBβγKα,β,γ and ai

3 = giαgrs(Kα,r,s + Jα,rs)), there exists a positive ∆0 such that

PT
ε2

(∆) < PLR∗
ε2

(∆),

whenever 0 < ∆ < ∆0.

Example 7. (i) In Example 4, W1, W3 and R4 are most powerful in Example 1 except
LR∗ at each fixed ε1 > 0 and ρ > 0 with an error o(c−1

n ). Hence, we compare W1

and LR∗ tests in terms of second-order local maximinity. Note that the condition (10)
holds. From Theorem 1 and Example 4,

PLR∗
2 (ε) =

3ρ+ ρ3

(1 − ρ2)3
(ε1)3

{
1
3
G5,∆(z) −G3,∆(z) +

2
3
G1,∆(z)

}
,

PW1
2 (ε) =

3ρ+ ρ3

(1 − ρ2)3
(ε1)3

{
−2

3
G7,∆(z) +G5,∆(z) −G3,∆(z) +

2
3
G1,∆(z)

}

+
2(3ρ+ ρ3)

(1 − ρ2)(1 + ρ2)
ε1{−G5,∆(z) +G3,∆(z)}

+
1

2(1 + ρ)
ε1{G3,∆(z) −G1,∆(z)},

where ∆ = (ε1)2(1 + ρ2)/(1 − ρ2)2. If ρ = 1/2, ∆ ≤ 1 and α = 0.05, then

PLR∗
ε2

(∆) = PLR∗
2

{
− (1 − ρ2)∆1/2

(1 + ρ2)1/2
, ε2

}
,

PW1
ε2

(∆) = PW1
2

{
− (1 − ρ2)∆1/2

(1 + ρ2)1/2
, ε2

}
.
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Thus we can see

PW1
ε2

(∆) < PLR∗
ε2

(∆),

whenever 0 < ∆ ≤ 1.

(ii) If ρ < 0 and ε1 > 0, then R1, R3 and W4 are most powerful in Example 1 except LR∗

with an error o(c−1
n ). Hence, we compare R1 and LR∗ tests in terms of second-order

local maximinity. Then

PR1
2 (ε) =

3ρ+ ρ3

(1 − ρ2)3
(ε1)3

{
4
3
G7,∆(z) −G5,∆(z) −G3,∆(z) +

2
3
G1,∆(z)

}

+
4(3ρ+ ρ3)

(1 − ρ2)(1 + ρ2)
ε1{G5,∆(z) −G3,∆(z)}

+
1

2(1 + ρ)
ε1{G3,∆(z) −G1,∆(z)}.

If ρ = −1/2, ∆ ≤ 1 and α = 0.05, then

PLR∗
ε2

(∆) = PLR∗
2

{
(1 − ρ2)∆1/2

(1 + ρ2)1/2
, ε2

}
,

PR1
ε2

(∆) = PR1
2

{
− (1 − ρ2)∆1/2

(1 + ρ2)1/2
, ε2

}
.

Thus we can see

PR1
ε2

(∆) < PLR∗
ε2

(∆),

whenever 0 < ∆ ≤ 1.

Example 8. (i) In Example 5, W1, W3 and R4 are most powerful in Example 1 at each
fixed ε1 > 0 and ψ > 0 with an error o(c−1

n ). Hence, we compare W1 and LR∗ test in
terms of second-order local maximinity. For MA(1) model in Example 5, the condition
(10) holds. From Theorem 1, we obtain

PLR∗
2 (ε) =

ψ

(1 − ψ2)2
(ε1)3{G5,∆(z) − 2G3,∆(z) +G1,∆(z)},

PW1
2 (ε) =

ψ

(1 − ψ2)2
(ε1)3{−G7,∆(z) + 2G5,∆(z) − 2G3,∆(z) +G1,∆(z)}

+
3ψ

1 − ψ2
ε1{−G5,∆(z) +G3,∆(z)},

where ∆ = (ε1)2/(1 − ψ2). If ψ = 1/2, ∆ ≤ 1 and α = 0.01, then we have

PLR∗
ε2

(∆) = PLR∗
2

{
(1 − ψ2)1/2∆1/2, ε2

}
,

PW1
ε2

(∆) = PW1
2

{
−(1 − ψ2)1/2∆1/2, ε2

}
.

Hence,

PW1
ε2

(∆) < PLR∗
ε2

(∆),

whenever 0 < ∆ ≤ 1.
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(ii) If ψ < 0 and ε1 > 0, then R1, R3 and W4 are most powerful in Example 1 at each
fixed ε1 > 0 and ψ > 0 with an error o(c−1

n ). Hence, we compare R1 and LR∗ test in
terms of second-order local maximinity. From Theorem 1, we get

PR1
2 (ε) =

ψ

(1 − β2)2
(ε1)3{2G7,∆(z) −G5,∆(z) − 2G3,∆(z) +G1,∆(z)}

+
6ψ

1 − ψ2
ε1{G5,∆(z) −G3,∆(z)}.

If ψ = −1/2, ∆ ≤ 1 and α = 0.01, then

PLR∗
ε2

(∆) = PLR∗
2

{
−(1 − ψ2)1/2∆1/2, ε2

}
,

PR1
ε2

(∆) = PR1
2

{
−(1 − ψ2)1/2∆1/2, ε2

}
.

Hence,

PR1
ε2

(∆) < PLR∗
ε2

(∆),

whenever 0 < ∆ ≤ 1.

4. Effect of nuisance parameters. In this section, we consider the case where the
nuisance parameter θ2 = θ20 is known. Let θ̄1 = (θ̄1, . . . , θ̄p)′ be the maximum likelihood
estimator of θ1 under θ2 = θ20. Any function evaluated at the point θ1 = θ̄1, θ2 = θ20 will
be distinguished by the addition of a horizontal bar. Then the corresponding statistics with
that in Example 1 are given by

LR0 = LR∗
0 = 2(l̄n − ln),

W10 = Ī(ij)τ
iτ j , W20 = I(ij)τ

iτ j , W30 = L̄(ij)τ
iτ j , W40 = L(ij)τ

iτ j ,

R10 = Īij
0 ZiZj , R20 = Iij

0 ZiZj , R30 = L̄ij
0 ZiZj , R40 = Lij

0 ZiZj ,

(17)

where τ i = c−1
n (θ̄i−θi

0), {L(ij)(θ)} = L11(θ), and Iij
0 (θ) and Lij

0 (θ) are the (i, j) component
of the inverse matrix of I11(θ) and L11(θ), respectively.

The stochastic expansions of test statistics in (17) are given by

T0 = Iij
0 ZiZj + c−1

n (b1 + 2)Iik
0 I

jl
0 W

′
klZiZj

+ c−1
n Iii′

0 Ijj′
0 Ikk′

0 {b2Ki′,j′,k′ + (b3 + 1)Ji′,j′k′}ZiZjZk + op(c−1
n ),

where the coefficient (b1, b2, b3) is the same as in (7) and W ′
ij = Zij − Jk,ijI

kl
0 Zl. Hence, we

consider the following class of tests:

S0 = {T0 | T0 = Iij
0 ZiZj + c−1

n a1I
ik
0 I

jl
0 W

′
klZiZj

+ c−1
n aijk

2 ZiZjZk + op(c−1
n ),

under H, where a1 and aijk
2 are nonrandom constants}.

For simplicity we assume the local parametric orthogonality at θ = θ0, namely

(A-6) Iir = 0 i = 1, . . . , p, r = p+ 1, . . . , p+ q.
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Then the class S can be written as

S = {T | T = Iij
0 ZiZj + c−1

n a1I
ik
0 I

jl
0 WklZiZj + 2c−1

n Iij
0 g

rsWjrZiZs

+ c−1
n aijk

2 ZiZjZk − c−1
n Iik

0 I
jl
0 g

rsKk,l,rZiZjZs

− c−1
n Iij

0 g
rtgsu(Kj,r,s + Jj,rs)ZiZtZu + c−1

n ai
3Zi + op(c−1

n ),

under H, where a1, a
ijk
2 and ai

3 are nonrandom constants}.
Thus the comparison between T and T0 with the same coefficient will illustrate what

influence nuisance parameters exert on the performance of test statistics. Then we have the
following theorem.

Theorem 5. (i) Under (A-6), for T ∈ S and T0 ∈ S0 with the same coefficient, the
distribution functions of T are decomposed into

Pθ0+c−1
n ε[T < z] = Pθ10+c−1

n ε1,θ20
[T0 < z]

+
1
2
c−1
n (Ki,j,r + Ji,jr + Jj,ir)εiεjεr{Gp+2,∆(z) −Gp,∆(z)}

+
1
2
c−1
n {I(ij)aj

3 − grs(Ki,r,s + Ji,rs)}εi{Gp+2,∆(z) −Gp,∆(z)} + o(c−1
n ).

(18)

(ii) If

Ki,j,r + Ji,jr + Jj,ir = 0,(19)
grs(Ki,r,s + Ji,rs) = 0,(20)

are satisfied, then the distribution function of T ∈ S with ai
3 = 0 is equal to that of

T0 ∈ S0 with the same coefficient as T up to order c−1
n .

Remark 4. The condition (19) agree with (10) in Theorem 2 under (A-6). If the condition
(20) holds, then LR test is second order asymptotically unbiased. Therefore, the third
term of the right hand in (18) can be interpreted as second order local bias in the usual
likelihood ratio test (see Mukerjee [8]). In Section 5, we will observe that this term can
also be interpreted as an effect of nuisance parameters in test statistics. Thus, we provide
a decomposition formula of local powers for test statistics under local orthogonality for
parameters.

Example 9. This example relates to the ratio of independent exponential means. Let

p(x1, x2;µ1, µ2) = (µ1µ2)−1 exp{−(µ−1
1 x1 + µ−1

2 x2)}, x1, x2 > 0.

(i) If θ1 = µ1/µ2 and θ2 = (µ1µ2)1/2, then parametric orthogonality holds and g11(θ) =
(θ1)−2/2 and g22(K1,2,2 + J1,22) = 0. Hence, the conditions (19) and (20) hold.

(ii) If θ1 = (µ1µ2)1/2 and θ2 = µ1/µ2, then parametric orthogonality holds and g11(θ) =
2(θ1)−2 and g22(K1,2,2 + J1,22) = (θ1)−1. Hence, the condition (19) holds and (20)
does not hold.

Example 10. Let {Xt} be a Gaussian ARMA(1, 1) process with the spectral density

fθ(λ) =
σ2

2π
|1 − ψeiλ|2
|1 − ρeiλ|2 .
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(i) If θ1 = σ2 and θ2 = (ρ, ψ)′, then parameter orthogonality holds,

g11(σ2, ρ, ψ) = (2σ4)−1, I22(σ2, ρ, ψ) =
[

(1 − ρ2)−1 −(1 − ρψ)−1

−(1 − ρψ)−1 (1 − ψ2)−1

]
,

K1,2,2(σ2, ρ, ψ) =
2σ−2

1 − ρ2
, J1,22(σ2, ρ, ψ) = − σ−2

1 − ρ2
,

K1,3,3(σ2, ρ, ψ) =
2σ−2

1 − ψ2
, J1,33(σ2, ρ, ψ) = − σ−2

1 − ψ2
,

K1,2,3(σ2, ρ, ψ) = − 2σ−2

1 − ρψ
, J1,23(σ2, ρ, ψ) =

σ−2

1 − ρψ
.

Hence, the condition (19) hold, and grs(K1,r,s+J1,rs) = 2σ−2 shows that the condition
(20) does not hold.

(ii) If θ1 = (ρ, ψ)′ and θ2 = σ2, then parameter orthogonality holds,

I11·2(ρ, ψ, σ2) =
[

(1 − ρ2)−1 −(1 − ρψ)−1

−(1 − ρψ)−1 (1 − ψ2)−1

]
,

and g33(Ki,3,3 + Ji,33) = 0. Hence, the conditions (19) and (20) hold.

5. Unbiased test. We discuss the local unbiasedness of T ∈ S . Under the absence of
nuisance parameters, LR test is locally unbiased. However, under the existence of nuisance
parameters, LR test is not generally locally unbiased. From Theorem 1, among the test
statistics in Example 1, LR∗ test is the only one which is second order asymptotically
unbiased unless gijg

jαgrs(Kα,r,s + Jα,rs) = 0. If gijg
jαgrs(Kα,r,s + Jα,rs) = 0, then LR =

LR∗ + op(c−1
n ). Hence, LR test is locally unbiased. Since T ∈ S is not generally unbiased,

we consider modification of T ∈ S to T ∗ = h(θ̂1)T + c−1
n AiZ̃i so that T ∗ is second order

asymptotically unbiased, where h(θ1) is a smooth function and Ai is a nonrandom constant.
The following theorem asserts that this is accomplished by choosing Ai and hi(θ1) = ∂ih(θ1)
satisfy appropriate conditions.

Theorem 6. Suppose that h(θ1) is a continuously two times differentiable function with
h(θ10) = 1 and Ai is a nonrandom constant. Then, for T ∈ S , the modified test T ∗ =
h(θ̂1)T + c−1

n AiZ̃i is second order asymptotically unbiased if hi = hi(θ10) and Ai satisfy

(i) hi = − 1
p+2 (gijg

jαBβγKα,β,γ + gijgkla
jkl
2 [3]),

(ii) Ai = giαgrs(Kα,r,s + Jα,rs) − ai
3.

For h(θ1) and Ai satisfying (i) and (ii), respectively, in Theorem 6, from Theorem 1, we
can get the asymptotic expansion of the distribution function of T ∗.

Theorem 7. Suppose that h(θ1) and Ai satisfy (i) and (ii), respectively, in Theorem 6.
Then, for T ∈ S , the distribution function of the modified test T ∗ = h(θ̂1)T + c−1

n AiZ̃i

under a sequence of local alternatives θ = θ0 + c−1
n ε has the second order asymptotic

expansion

Pθ0+c−1
n ε[T

∗ < z] = Gp,∆(z) + c−1
n

3∑
j=0

m∗
jGp+2j,∆(z) + o(c−1

n ),
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where

m∗
3 =

1
6
Kα,β,γd

αdβdγ − 1
2(p+ 2)

gijB
αβKα,β,γd

γdidj

+
1
2
aijk
2 gii′gjj′gkk′di′dj′dk′ − 1

2(p+ 2)
aijk
2 [3]gii′gjkgj′k′di′dj′dk′

,

m∗
2 =

1
2(p+ 2)

gijB
αβKα,β,γd

γdidj

− 1
2
aijk
2 gii′gjj′gkk′di′dj′dk′

+
1

2(p+ 2)
aijk
2 [3]gii′gjkgj′k′di′dj′dk′

,

m∗
1 =

1
2
Jα,βγd

αdβdγ − 1
2
(Kα,β,r + Jα,βr + Jβ,αr)dαdβ(dr − εr),

m∗
0 = −1

6
(Kα,β,γ + 3Jα,βγ)dαdβdγ

+
1
2
(Kα,β,r + Jα,βr + Jβ,αr)dαdβ(dr − εr).

(21)

If p = 1, then

aijk
2 gii′gjj′gkk′ − 1

(p+ 2)
aijk
2 [3]gii′gjkgj′k′ = 0.(22)

In this case we observe that the coefficients m∗
3, m

∗
2, m

∗
1 and m∗

0 in (21) are independent of
T ∈ S , and hence all the powers of the modified tests T ∗ are identical up to second order.
On the other hand, if p ≥ 2, then uniform results are not available.

Example 11. Consider the ARMA(1, 1) model in Example 10 (ii). For test statistics in
(7),

aijk
2 gi1gj1gk1 = b2K1,1,1 + (b3 + 1)J1,11

=
2ρ

(1 − ρ2)2
(3b2 − b3 − 1),

(23)

and

1
4
aijk
2 [3]gi1gjkg11 =

3
4
b2K1,i,jg

ijg11 +
1
4
(b3 + 1)J1,ij [3]gijg11

=
3
4
b2

{
6ρ

(1 − ρ2)2
+

4ψ
(1 − ρ2)(1 − ρψ)

}

+
1
4
(b3 + 1)

12ρ3ψ − 10ρ2ψ2 − 8ρ2 + 4ψ2 + 2
(1 − ρ2)2(1 − ρψ)(ρ− ψ)

.

(24)

(23) and (24) show that (22) does not holds.

We give factorizations of T ∈ S as quadratic forms. By direct computation, T ∈ S
can be factorized as

T = gijTiTj + op(c−1
n ),
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where

Ti = Wi +
1
2
c−1
n a1gijg

jαgkβWαβWk + c−1
n gijg

jαgrsWαrWs

+
1
2
c−1
n gija

jkl
2 WkWl − 1

2
c−1
n gijg

jαgkβgrsKα,β,rWkWs

− 1
2
c−1
n gijg

jαgrtgsu(Kα,r,s + Jα,rs)WtWu +
1
2
c−1
n gija

j
3 + op(c−1

n ).

Then the asymptotic mean of Ti under θ = θ0 is given by

Eθ0 [Ti] =
1
2
c−1
n gijgkla

jkl
2 − 1

2
c−1
n gijg

jαgrs(Kα,r,s + Jα,rs)

+
1
2
c−1
n gija

j
3 + o(c−1

n ).

Similarly, we consider factorizations of T0 ∈ S0 as quadratic forms. The asymptotic mean
of Ti0 under θ = θ0, where T0 = Iij

0 Ti0Tj0 + op(c−1
n ), is given by

Eθ0 [Ti0] =
1
2
c−1
n I(ij)I(kl)a

jkl
2 + o(c−1

n ).

Under (A-6), Ai in Theorem 6 can be written as

c−1
n Ai = 2Iij

0 (Eθ0 [Tj0] − Eθ0 [Tj ]) + o(c−1
n ).

Note that the third term of the right hand in (18) is given by Eθ0 [Ti]−Eθ0 [Ti0]. Therefore,
this term (and hence Ai) can be interpreted as a effect of nuisance parameters in T ∈ S .

6. Proofs. In this section, we give the proofs of theorems.
Proof of Theorem 1. Since the actual calculation procedure is formidable, we give a
sketch of the derivation. First, we evaluate the characteristic function of T ,

ψn(ξ, ε) = Eθ0+c−1
n ε[exp(tT )], T ∈ S ,

where t = (−1)1/2ξ. Let D(θ) = {Dαβ(θ)} be the unique lower triangular matrix with
positive diagonal such that

D(θ)D′(θ) =
(
I11·2(θ) 0

0 I22(θ)

)
.

We consider the transformation

Y α = DαβWβ ,

where Dαβ(θ) is the (α, β) component of the inverse matrix of D(θ).
Denoting Ln(xn) = pn(xn; θ0 + c−1

n ε)/pn(xn; θ0), we have

ψn(ξ, ε) =
∫

exp{tT (xn)}Ln(xn)pn(xn; θ0)dxn

= Eθ0 [exp{tT + logLn(xn)}].
(25)
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We expand logLn(xn) in a Taylor series in c−1
n ε, leading to

logLn(xn) = Wiε
i + gαrg

rsWsε
α − 1

2
I(αβ)ε

αεβ +
1
2
c−1
n Wαβε

αεβ

+
1
2
c−1
n Jγ,αβg

δγWδε
αεβ − 1

6
c−1
n (Kα,β,γ + Jα,βγ [3])εαεβεγ + op(c−1

n )

= Dijε
iY j + gαrg

rsDstε
αY t − 1

2
I(αβ)ε

αεβ +
1
2
c−1
n Wαβε

αεβ

+
1
2
c−1
n Jγ,αβg

δγDδζε
αεβY ζ − 1

6
c−1
n (Kα,β,γ + Jα,βγ [3])εαεβεγ + op(c−1

n ).

(26)

Inserting (26) in exp{tT + logLn(xn)} we obtain, after further expansion and collection of
terms,

exp{tT + logLn(xn)} = exp

{
t

p∑
i=1

(Y i)2 +Dijε
iY j + gαrg

rsDstε
αY t − 1

2
I(αβ)ε

αεβ

}

× {
1 + c−1

n q1(Y α,Wβγ)
}

+ op(c−1
n ),

(27)

where q1(·, ·) is a polynomial. In view of the assumption (A-3) we can easily evaluate
the asymptotic cumulants of (Y α,Wβγ). Since Eθ{Y α(θ)Wβγ(θ)} = o(c−1

n ), we derive
the second order Edgeworth expansion of the distribution of Y α. Thus the second order
Edgeworth expansion of the distribution of Y α is given by

Pθ0(Y
α < yα) =

∫ yα

−∞
f(yα)

{
1 +

1
6
c−1
n

p+q∑
β,γ,δ=1

CβγδHβγδ(yα)
}
dyα + o(c−1

n )

=
∫ yα

−∞
q(yα)dyα + o(c−1

n ),

(28)

where

f(yα) =
1

(2π)(p+q)/2
exp

{
−1

2

p+q∑
α=1

(yα)2
}
,

Cαβγ = Dα1αg
α1α2Dβ1βg

β1β2Dγ1γg
γ1γ2Kα2,β2,γ2 ,

and Hβγδ(yα) are the Hermite polynomials. Note that

t

p∑
i=1

(yi)2 +Dijε
iyj + gαrg

rsDstε
αyt − 1

2
I(αβ)ε

αεβ − 1
2

p+q∑
α=1

(yα)2

=
tgijε

iεj

1 − 2t
− 1

2

p∑
i=1

{(1 − 2t)1/2yi − (1 − 2t)−1/2Djiε
j}2

− 1
2

p+q∑
r=p+1

{yr − gαsg
stDtrε

α}2.



SECOND ORDER ASYMPTOTIC PROPERTIES 83

From (25), (27) and (28) it follows that

ψn(ξ, ε) =
∫

exp

{
t

p∑
i=1

(yi)2 +Dijε
iyj + gαrg

rsDstε
αyt − 1

2
I(αβ)ε

αεβ

}

× {
1 + c−1

n q1(yγ , 0)
}
q(yδ)dyζ + o(c−1

n )

= exp
(
tgijε

iεj

1 − 2t

)
(1 − 2t)−p/2

⎧⎨
⎩1 + c−1

n

3∑
j=0

mj(1 − 2t)−j

⎫⎬
⎭ + o(c−1

n ).

(29)

Inverting (29) by Fourier inverse transform we can prove Theorem 1.

Proof of Theorem 2.

(i) Note that dα is independent of ε2. From Theorem 1, for T ∈ S we have

Pθ0+c−1
n ε[T < z] − Pθ10+c−1

n ε1,θ20
[T < z]

=
1
2
c−1
n (Kα,β,r + Jα,βr + Jβ,αr)dαdβεr{Gp+2,λ(z) −Gp,λ(z)}+ o(c−1

n ),

which leads to (i).

(ii) From dα = gijg
jαεi, clearly

(Kα,β,r + Jα,βr + Jβ,αr)dαdβεr = gii′g
i′αgjj′g

j′α(Kα,β,r + Jα,βr + Jβ,αr)εiεjεr.

Hence, we get (ii) in Theorem 2.

Proof of Theorem 3 and Corollary 1. From Theorem 1 we can see that

m3 =
1
2
aijk
2 gii′gjj′gkk′di′dj′dk′

+ C3,

m2 = −1
2
aijk
2 gii′gjj′gkk′di′dj′dk′

+
1
2
aijk
2 [3]gilgjkd

l + C2,

m1 = −1
2
aijk
2 [3]gilgjkd

l +
1
2
ai
3gijd

j + C1,

m0 = −1
2
ai
3gijd

j + C0,

(30)

where C0, C1, C2 and C3 are independent of a1, a
ijk
2 and ai

3 and hence are the same for all
test statistics in S . Theorem 3 and Corollary 1 follow from (30).

Proof of Theorem 4. Let aijk
2 and ai

3 be the coefficients of T ∈ S . Then, we can rewrite

PT
2 (ε) = Q1,i′j′k′ (aijk

2 )εi′εj′εk′
+Q2,ijrε

iεjεr

+
1
2
gli(giαBβγKα,β,γ + aijk

2 [3]gjk)εl{Gp+2,∆(z) −Gp+4,∆(z)}

+
1
2
gij{ai

3 − giαgrs(Kα,r,s + Jα,rs)}εj{Gp,∆(z) −Gp+2,∆(z)}.
(31)

Note that |εi| ≤ (∆/λ)1/2, where λ is the smallest eigenvalue of I11·2. By (31)

PT
2 (ε) ≤ Ψ1(∆, a

ijk
2 )∆3/2 + Ψ2r(∆)∆ | εr |

+
1
2
gli(giαBβγKα,β,γ + aijk

2 [3]gjk)εl{Gp+2,∆(z) −Gp+4,∆(z)}

+
1
2
gij{ai

3 − giαgrs(Kα,r,s + Jα,rs)}εj{Gp,∆(z) −Gp+2,∆(z)},
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where

Ψ1(∆, a
ijk
2 ) =

p∑
i′,j′,k′=1

∣∣∣Q1,i′j′k′ (aijk
2 )

∣∣∣λ−3/2, Ψ2r(∆) =
p∑

i,j=1

|Q2,ijr|λ−1.

Hence, we obtain

PT
ε2

(∆) ≤ Ψ1(∆, a
ijk
2 )∆3/2 + Ψ2r(∆)∆ | εr | +M (∆),(32)

where

M(∆) = min
gijεiεj=∆

[
1
2
gli(giαBβγKα,β,γ + aijk

2 [3]gjk)εl{Gp+2,∆(z) −Gp+4,∆(z)}

+
1
2
gij{ai

3 − giαgrs(Kα,r,s + Jα,rs)}εj{Gp,∆(z) −Gp+2,∆(z)}
]
.

Similarly, we have

PLR∗
ε2

(∆) ≥ −Ψ1(∆,−giαgjβgkγKα,β,γ/3)∆3/2 − Ψ2r(∆)∆ | εr | .(33)

From (32) and (33),

PLR∗
ε2

(∆) − PT
ε2

(∆) ≥ −
{
Ψ1(∆, a

ijk
2 ) + Ψ1(∆,−giαgjβgkγKα,β,γ/3)

}
∆3/2

− 2Ψ2r(∆)∆ | εr | −M (∆).

Hence, for T ∈ S whose coefficients do not satisfy z(aijk
2 [3]gjk + giαBβγKα,β,γ) + (p +

2){ai
3 − giαgrs(Kα,r,s + Jα,rs)} = 0, there exists a positive ∆0 such that

PLR∗
ε2

(∆) − PT
ε2

(∆) > 0,

whenever 0 < ∆ < ∆0.

Proof of Theorem 5. The distribution function of T0 ∈ S0 under a sequence of local
alternatives θ1 = θ10 + c−1

n ε1 has the asymptotic expansion

Pθ10+c−1
n ε1,θ20

[T0 < z] = Gp,∆(z) + c−1
n

3∑
j=0

mj0Gp+2j,∆(z) + o(c−1
n ),

where

m30 =
(

1
6
Ki,j,k +

1
2
ai′j′k′
2 I(i′i)I(j′j)I(k′k)

)
εiεjεk,

m20 = −1
2
ai′j′k′
2 I(i′i)I(j′j)I(k′k)ε

iεjεk +
1
2
Iij
0 Ki,j,kε

k +
1
2
aijk
2 [3]I(il)I(jk)ε

l,

m10 =
1
2
Ji,j,kε

iεjεk − 1
2
Iij
0 Ki,j,kε

k − 1
2
aijk
2 [3]I(il)I(jk)ε

l,

m00 = −1
6
(Ki,j,k + 3Ji,jk)εiεjεk.

(34)

Note that, under (A-6), dr = 0 and

{Bαβ} =
(

(I11)−1 0
0 0

)
.
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Then the coefficients m3, m2, m1 and m0 in Theorem 1 can be written as

m3 = m30,

m2 = m20,

m1 = m10 +
1
2
(Ki,j,r + Ji,jr + Jj,ir)εiεjεr

+
1
2
{ai

3I(ij) − grs(Kj,r,s + Jj,rs)}εj ,

m0 = m00 − 1
2
(Ki,j,r + Ji,jr + Jj,ir)εiεjεr

− 1
2
{ai

3I(ij) − grs(Kj,r,s + Jj,rs)}εj .

(35)

The comparison of (34) and (35) leads to Theorem 5.

Proof of Theorem 6 and 7. Note that Z̃i = Wi + op(1). Expand T ∗ as

T ∗ = h(θ̂1)T + c−1
n AiZ̃i

= (1 + c−1
n hiη

i)T + c−1
n AiWi + op(c−1

n ).
(36)

Inserting (5) in (36) we obtain

T ∗ = gijWiWj + c−1
n a1g

iαgjβWαβWiWj + 2c−1
n giαgrsWαrWiWs

+ c−1
n a∗ijk

2 WiWjWk − c−1
n giαgjβgrsKα,β,rWiWjWs

− c−1
n giαgrtgsu(Kα,r,s + Jα,rs)WiWtWu + c−1

n a∗i
3 Wi + op(c−1

n ),

where

a∗ijk
2 = aijk

2 + hlg
ligjk.

a∗i
3 = ai

3 +Ai.
(37)

This implies T ∗ ∈ S , and hence a necessary and sufficient condition for its locally unbi-
asedness is that the coefficients in (37) satisfy

(i) a∗ijk
2 [3]gilgjk + glig

iαBβγKα,β,γ = 0,

(ii) a∗i
3 gij − gjig

iαgrs(Kα,r,s + Jα,rs) = 0.

Note that

a∗ijk
2 [3]gilgjk = aijk

2 [3]gilgjk + (hl′g
l′igjk + hl′g

l′jgki + hl′g
l′kgij)gilgjk

= aijk
2 [3]gilgjk + (p+ 2)hl.

Solving (i) and (ii) with respect to hi and Ai, we obtain the relations in Theorem 6. Theo-
rem 7 follows from the above argument and Theorem 1.
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Figure 1: For the bivariate normal model with correlation coefficient θ1 = ρ, both means
θ2 = µ and both variances 1 in Example 4, second order powers of LR, LR∗, R1 and W1

statistics are plotted. PLR
2 (ε) (solid line), PLR∗

2 (ε) (dotted line), PR1
2 (ε) (dashed line) and

PW1
2 (ε) (dash-dotted line) with α = 0.05 and ε1 = 1.
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Figure 2: For the bivariate normal model with correlation coefficient θ1 = ρ, both means
θ2 = µ and both variances 1 in Example 4, second order powers of LR, LR∗, R1 and W1

statistics are plotted. PLR
2 (solid line), PLR∗

2 (dotted line), PR1
2 (dashed line) and PW1

2

(dash-dotted line) with α = 0.05 and ε1 = 0.1.
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Figure 3: For MA(1) model in Example 5, second order powers of LR, W1 and R1 statistics
are plotted. PLR

2 (solid line), PW1
2 (dotted line) and PR1

2 (dashed line) with α = 0.01 and
ε1 = 6.5.
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Figure 4: For MA(1) model in Example 5, second order powers of LR, W1 and R1 statistics
are plotted. PLR

2 (solid line), PW1
2 (dotted line) and PR1

2 (dashed line) with α = 0.01 and
ε1 = 0.65.
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Figure 5: For AR(1) model in Example 6, second order powers of LR, W2 and R2 statistics
are plotted. PLR

2 (solid line), PW2
2 (dotted line) and PR2

2 (dashed line) with α = 0.01 and
ε1 = 3.
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Figure 6: For AR(1) model in Example 6, second order powers of LR, W2 and R2 statistics
are plotted. PLR

2 (solid line), PW2
2 (dotted line) and PR2

2 (dashed line) with α = 0.01 and
ε1 = 0.8.


