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ABSTRACT. Under the existence of nuisance parameters, we consider a class of tests
. which contains the likelihood ratio, Wald and Rao’s score tests as special cases. To
investigate the influence of nuisance parameters, we derive the second order asymptotic
expansion of the distribution of T' € . under a sequence of local alternatives. This
result and concrete examples illuminate some interesting features of effects due to
nuisance parameters. Optimum properties for a modified likelihood ratio test proposed
in Mukerjee [8] are shown under the criteria of second order local maximinity.

1. Introduction. In multivariate analysis, the second order asymptotic powers of various
test statistics have been investigated by Hayakawa [5], and Harris and Peers [4]. Under the
absence of nuisance parameters, results on optimality are now known for the likelihood ratio
(LR) test in terms of second order local maximinity and Rao’s score (R) test in terms of
third order local average power (Mukerjee [9]). Under the existence of nuisance parameters,
Eguchi [3] studied the effect of the composite null hypothesis from a geometric point of
view. Mukerjee [8] suggested a test that is superior to the usual LR test with regard to
second order local maximinity. The test proposed in Mukerjee [8] is motivated from the
principle of conditional likelihood and also from that of adjusted likelihood.

In time series analysis, under a set-up involving an unknown scalar parameter, Taniguchi
[12] considered the problem of second order comparison of tests. He worked with a large
class of tests that contains LR, R and Wald’s (W) tests as special cases. Taniguchi [13]
showed that the local powers of all the modified tests which are second order asymptotically
unbiased are identical up to n='/2. Also Taniguchi [14] considered the problem of third order
comparison of tests, and suggested a Bartlett-type adjustment for the tests in the class and
then, on the basis of such adjusted versions, explored the point-by-point maximization of
third order power.

Bartlett-type adjustment procedure has been elucidated in various directions. Cordeiro
and Ferrari [2] gave a general formula of Bartlett-type adjustment to order n=! for the test
statistic whose asymptotic expansion is a finite linear combination of chi-squared distribu-
tion with suitable degrees of freedom. Kakizawa [6] considered the extension of Cordeiro
and Ferrari’s [2] adjustment to the case of order n=%, where k is an integer k > 1. Rao
and Mukerjee [10] compared various Bartlett-type adjustments for the R statistic. Rao and
Mukerjee [11] addressed the problem of comparing the higher order power of tests in their
original forms and not via their bias-corrected or Bartlett-type adjusted versions.

In this paper, under the existence of nuisance parameters, we consider the second order
properties of a class of tests . which contains LR, R and W tests as special cases. If
nuisance parameters are present, sensitivity of test statistics to perturbation of the nuisance
parameters becomes important. It is shown that the powers and sizes of T' € . are equally
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sensitive to perturbation of the nuisance parameter. In Section 3 we compare the second
order local power. It is seen that the local average powers of all T' € . are identical. It is
shown that optimality properties hold for a modified test of the LR test in terms of second
order local maximinity. Section 4 provides a decomposition formula of local powers for
LR, R and W test statistics under local orthogonality for parameters. The decomposition
consists of the sum of the three parts; one is the local power for the case of known nuisance
parameters, another represents sensitivity to perturbation of nuisance parameters and the
other part can be interpreted as an effect of nuisance parameters in test statistics. In Section
5, we discuss the local unbiasedness of T' € .. The results and their examples illuminate
some interesting features of effects due to nuisance parameters. The proofs of theorems are
relegated to Section 6.

2. Asymptotic expansion of a class of tests. Let X,, = (X1,...,X,) be a col-
lection of m-dimensional random vectors forming a stochastic process. Let p,(x,;0),
x, € R™, be the probability density function of X,,, where § = (§,... ,0P%9) € ©
an open subset of RPT9. Let 6; = (0',...,0P)" be the p-dimensional parameter of inter-
est and f = (#PT1,...  #PT7)" be the g-dimensional nuisance parameter. We consider the
problem of testing the hypothesis H : 61 = 619, where 619 = (6,...,605), against the
alternative A : 0y # 019. For this problem we introduce a class of test . which contains
LR, W and R tests as special cases. In the presence of nuisance parameters, the powers and
sizes of T' € & are affected by the true but unknown nuisance parameter. Therefore we
investigate the influence of perturbation by the sequence of local alternatives 6 = 0y + c;, e
where 6 = (814, 6%), 620 = (07T, ... 079 and € = (e!,... ,ePT9). As in Li [7], we
shall use Greek letters {a, 3,7, ...} as indices that run from 1 to p + ¢, the set of English
letters {i,7,k,...,q} as indices that run from 1 to p, and the set of {r,s,¢,...,z} as in-
dices that run from p + 1 to p + g. The indices 4, » and « will serve two purposes, first to
denote a typical term in a sum and second to indicate the range of a sum. For example,
Ao X = Ziql X ;X" =" a;X"and a, X" = figﬂ a, X",
We make the following assumptions:
(A-1) 1,(0) = log p,(X,,;0) is continuously four times differentiable with respect to 6.

(A-2) The partial derivative 0, = 0/00 and the expectation Ey with respect to p,(x,;0)
are interchangeable.

(A-3) For an appropriate sequence {c,} satisfying ¢, — +00 as n — 400, the asymptotic
moments (cumulants) of

Za(0) = 1 0aln(0),
Zap(0) = ¢ [0a05ln(0) — Eo{0aOsln(0)}],

possess the following asymptotic expansions

Eo{Za(0)Z5(0)} = I(ap)(0) + Olc®),
Ep{Za(0)Zp+(0)} = Ja,5+(0) + O(c;,?),
Ep{Za(0)Z5(0)Z+(0)} = ¢, Ka,p(0) + O(c;”),

and J-th-order (J > 2) cumulants of Z,(0) and Z,5(0) are all O(c;,7*2).

(A-4) (i) I(ap)(0) is continuously two times differentiable with respect to 6.
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(ii) Ja,pv(6) and Ko, g,(0) are continuously differentiable functions.

(A-5) (i) 1(0) = {I(ap)(0)} is positive definite for all 6 € ©.
(ii) L(0) = {—c,20,0pl,(0)} is positive definite almost surely for all 6 € ©.
Let § = (6,...,6PT9) be the global maximum likelihood estimator of 6 and 6, =

(§p+1, ..., 0rta )’ be the restricted maximum likelihood estimator of 03 given 6y = 619. The
partition 6 = (0, 6%) induces the following corresponding partitions

i=(5) =(2) o=(5 10 wo=(06 =6)
Let
o16) = (anoi)) = (20 20 ).

where 111.2(9) = 111(9) — 112(9){122(9)}_1121(9).
We consider the transformation

Wl(e) = Z’L(a) - I(w) (a)grs(a)zs(a)’ Wr(e) = ZT(H),
Wap(0) = Zap(6) — J,ap(0)17°(6)Z5(6),

where 1%() and g*#(6) are the (, 3) component of the inverse matrix of 1(6) and g(6),
respectively. Henceforth we use the simpler notations Zn, Wa, I(ag), Ka,p~, etc. if Zo(0),
Wa(0), Iap)(0), Kap~(0), etc. are evaluated at 6 = 6. Any function evaluated at the

point 8 = 6 will be distinguished by the addition of a circumflex. Similarly any function
evaluated at the point #; = 6019, 02 = 05 will be distinguished by the addition of a tilde.
For the testing problem H : 61 = 01 against the alternative A : 61 # 019, we introduce the
following class of tests:

S =A{T | T = g"W,W; + ¢, a19"* gPWasWiW; + 2¢,, 1 g g™ W, Wi W
—1 ijk —1 i, jB re
(1) + ey tay " WiW Wi — et g™ g7 g Ko g Wi W W
= 9" g (Kars + Jars) WiW Wy + ¢, ab Wi + 0p(c; ),
under H, where a;,ay " and a} are nonrandom constants}.
This class . is a very natural one. We can show that famous tests based on the maximum

likelihood estimator belong to ..

Example 1. (i) The likelihood ratio test LR = 2(I,, — I,,) belongs to .. In fact, from
Bickel and Ghosh [1], the expansion for the r-th component of ¢, (62 — 63) is given

by
—1/pr nr T —1ars 7 «a I _ ATS (T 7 e —
(2) Cn1(9 -0 ) =n + Cn 19 ( ZSOén + 50n 1g (Ks7a76 + Js,aﬁ[?’])n ﬂﬂ + Op(cnl)v

where i = ¢ (0 = 63), 0" = —§" Lo and Jog[3] = Jagy + Joa + Jyap.
Expanding LR in a Taylor series at 6§ = 6 and noting (2), we obtain

7 7 ~ i 7 —174 a — 1~ 7 a —
(38) 200 = In) = gign'’ = & Zagn®n’ — ! <§Kaﬁﬁ+']a,m> n 0+ op(ey ).
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By Taylor expansion around 6y,

(4) 9ij = 9ij + 919" 919" (Kopy + Ja s + Jp.7a) (07 = 63) + 0p(c; ).
Furthermore, the stochastic expansion of ¢;*(§* — %) is given by

L (0% = 03) = ¢PW5 + ¢ TP gV Ws, W

(5) 1
-3 ;lfaa 86’ W’Y (Kar gyt + Jor gy )Wﬁwy‘f'op(c;l)'

Inserting (4) and (5) in (3) and noting Zas = Wag + 0,(1), we have

2ln — 1n) = GIW W, 4 ;1 g PP W g Wi W + 265, 9" g™ W o Wi W
1
= 30 079" Ko WiW; Wi

1nggj,ﬁgrs a,ﬂ,rWinVVs
1glagrtggu(Ka,r,S + Ja,rs)WthWu + Op(cr_Ll)'

Hence, LR belongs to . with the coefficients a1 = 1, adt = —giogiP MK, 5. /3 and
al = 0.

Similarly, we can get results (ii)—(v):

Wald’s test Wy = g4 17 belongs to . with the coefficients a; = 2, a”k = gmgjﬁg’”Ja,m
and a} = 0.

A modified Wald’s test Wo = g;;n'n’ belongs to . with the coefficients a; = 2,
05" = —g" g7 g" (Ko gy + Ja,sy) and af = 0.

Rao’s score test Ry = gijZiZj belongs to . with the coefficients a; = 0, a”k =

—gmgjﬂgkv(Ka,ﬁﬁ +2Ja,,) and aé =0.

A modified version of Rao’s score test Ry = §% Z; Z; belongs to . with the coefficients
a; =0, agjk =0 and a} = 0.

Furthermore, it is shown that modified versions of the four tests Wy, W5, Ry and Ro
which are based on the observed information belong to .. Let {l;;(0)} = L11.2(0) =
L11(0) — L12(0){La2(0)} "1 L21(0) and {I¥(0)} be the (i,) component of the inverse
matrix of Lll,g(e).

A modified version of Wald’s test W3 = lAijninj belongs to . with the coefficients
a1 =1, % = giogiPgh1 ], 5, and al = 0.

A modified version of Wald’s test Wy = lNijninj belongs to . with the coefficients
a1 =1, ai* = —gi*giPg* (K, g + 2Ja.5) and ajy = 0.

A modified version of Rao’s score test Ry = [id ZZJ belongs to . with the coefficients
a1 =1, ai* = —gi*giPg* (K, g + 2Ja.5) and ajy = 0.

A modified version of Rao’s score test Ry = [ ZZJ belongs to . with the coefficients
ar =1, af* = g*g/0g* I, g and aj = 0.
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(x) The test LR* = LR 4 ¢; ' §°*3"% (K o.r.s + Ju,rs)Z; proposed in Mukerjee [8] belongs to
.7 with the coefficients a; = 1, af* = —g**¢iPg" K, 5.,/3 and a} = ¢"*¢™* (Kyr.s +
Ja,rs)~

Li [7] compared the sensitivities of LR, W3 and Ry statistics to nuisance parameters. In
the one-parameter case, Taniguchi [14] discussed the third order asymptotic properties of
a class of tests .#1. Rao and Mukerjee [11] studied a wider class .#5(D 1) which enables
us to compare the various Bartlett-type adjustments available for the members of .. Our
class . contains . and %, hence the class . is sufficiently rich.

Remark 1. Test statistics in Example 1 are based on the maximum likelihood estimator.
From (2) and (3), these statistics can be written as

T = giyn'n’ + ¢, '01Zapn™n” + ¢,  (b2Ka 8,y + b3 Ja,sy )00

Q S
+ C;1b4§TS(Ka,r,s + Jars)n® + O;D(Cr_Ll)’

where the coefficient (by, ba, b3, bs) € R*. For these statistics,

(=
[y
|
|
—_
=
N

:—1/3’ b3: —17 b4:07 fOI‘ LR,
b1 = —].7 bg = —]./3, b3 = —].7 b4 = ]., for LR*,

b1 = 0, bg = U, b3 = 0, b4 = 0, for Wl,
b1 = 0, bg = —1, bg = —2, b4 = 0, for Wg,
(7) b1 = —1, bg = O, bg = 0, b4 = 0, for Wg,
b1 = —1, bg = —1, bg = —3, b4 = 0, for W4,
b1 = —27 bg = —]., b3 = —37 b4 = 0, for R1,
b1 = —27 bg = U, b3 = —].7 b4 = 0, for RQ,
b1 = —].7 bg = —]., b3 = —37 b4 = 0, for Rg,
b1 = —1, bg = O, bg = 0, b4 = 0, for R4.

Inserting (4) and (5) in (6), we obtain

T = g 9W,W; + c; (b1 + 2)g" g P WasWiW; + 2¢;, 1 g™ g™ W W W
+¢, 99 g (b2 Ky + (b3 + 1) a0 YW W W
(8) — ' 9" 9" Ko g e WiW,; W
— ' 99" g (Kars + Jars) WiW Wy
+ ¢ 049" 9" (K ars + Jars) Wi +0p(cit).

The class . in (1) is motivated from (8).

First, we give the second-order asymptotic expansion of the distribution function of
T € % under a sequence of local alternatives. This result can be applied to the i.i.d. case,
multivariate analysis and time series analysis. Let G, . (z) is the distribution function for
a non-central chi-square variate with degree of freedom p and non-centrality parameter v.

Theorem 1. The distribution function of T € . under a sequence of local alternatives
0 = 0y + ¢, ‘e has the asymptotic expansion

3
Py s T <2l =Gpalz) + et Z m;Gpiaja(z) +o(c, '),
j=0
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where
1 agfy | L ik i i
ms = EKa,,B,'yd d”d” + 342 Gii G G d’ d? d”

1 4 PR B 1

my = —gazjkgngj'gkk'd & d* + 5B PKapnd + §a23k[3]9izgjkdlv
1 1

m1 = 3 Jo,pyd A — S (Kopr + Jopr + Jpar)d*d*(d — ")

1 L 4
— 5B Kapqd — 5“2Jk[3}9iz9jkdl
1 L
- igrs(Kom’,s + ']Oz,TS)da + §aggijd]’
1
mo = —=(Ka,p~ + 3Ja,p,)d*d°d

+ = (Kapir + Japr + Jg,ar)d*d’(d" — ")

N =N = O

1 . .
+ gTS(Koz,r,s + Joz,rs)da - §alggijd];

o . ik G
A =gjeted, d* = g;j97%", a5 [3] = a” + ad™" + a3 and

== (g )

Second, we consider the sensitivity of T' € . to the change €5 in the nuisance parameter.
Test statistics that are less sensitive to such changes are generally more desirable because
their sizes and powers are less affected by the estimation of the nuisance parameter. Then

we have

Theorem 2. (i) ForT € .7, the sensitivity of the distribution function of T' to nuisance
parameters is given by

P90+C771€[T < Z] - P91o+c771€17920 [T < Z]
= 560 Kapr+ Japr + Jp.ar)d*d°{Gpaza(2) = Gpal2)} +ole):
(ii) If
(10) 919" 955197 “(Kapr + Japr + Jgar) =0,

1s satisfied, then the distribution function of T € . is asymptotically independent of
g9 with an error o(c;!).

Remark 2. Note that
8rgij (0) = Giv (e)gi,a(e)gjj’ (e)gj,a(e){Kaﬁ,r(e) + Ja,ﬂr(e) + Jﬂ,ar(e)}-
If g;;(0) is independent of #, then the condition (10) holds.

Remark 3. In the case of i.i.d. observations, Li [7] gave factorizations of LR, W2 and Rs
test statistics as quadratic forms and compared density functions of these factors. Then
he showed that the powers and sizes of these statistics are equally sensitive to nuisance
parameters. Form (i) in Theorem 2, we can see that the powers and sizes of all T € . are
equally sensitive to nuisance parameters. Hence, our results agree with that of Li [7].
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Example 2. Suppose that X;, ¢ = 1,... ,n are i.i.d. random variables distributed as
N (/1'7 02)'

(i) If ; = 02 and 0y = p, then g11(0?, ) = (20*)~L. Hence, the condition (10) holds.

(ii) If 61 = p and Oy = o2, then g11(p,0%) = (62)~1. Hence, the condition (10) does not
hold.

Example 3. Consider the nonlinear regression model
(11) Xi = a+ [feos(t — 1)\ + uy, t=1,...,n,

where 01 = 3, 02 = (a, \), A = 2rl/n (I an integer), {u;} is a sequence of i.i.d. N(0,0?)
random variables. Then it follows that

1/(202) 0 B/ (4lo?)
(12 = "o e 3/(10%)
B/(4lo?) B/(lo®) B*(8m21* —3)/(121%0?)

For our model (11) we calculate ¢g11(6). From (12)

1 3

= — — ——

911(6) 202  402%(872%(2 — 15)
which implies that the condition (10) does not hold.

3. Comparison of power. Taking ¢; = 0 in (9), it can be seen that all T € . have
sizes a+ o(c;!). Hence, it would be meaningful to compare T’ € . in terms of power up to
o(c;1). From Theorem 1, we can see that there is no test which is second order uniformly
most powerful in .. Thus we attempt to compare the tests in . on the basis of their
second order power. First, we derive the explicit formula to compare the local power of
T € .. Note that the first order powers of all T € . are identical and independent of es.
Write the power function of T' € . under 6y +c;; ‘e as PT(¢) = Py(e1)+¢; ' PL (e) +o(c; ).
From Theorem 1, we can state

Theorem 3. For Ty and Ty € ¥ with the coefficient (au,a?lk,aél) and (alg,aggk,agQ),
respectively,

2
Pli(e) = P%(e) = Y m/{Gpy2ja(2) — Gprajiaa(2)},

=0
where
1 .. . g
m/2 — §(a12]1k _ aéék)gngj/gkk/dl I dk ,
1, ik ijk
m) = (a3 [3] — a3y’ [3])gugrd,

2

my = 5(%@1 - a:im)gijdj'

Note that mj, m} and m{, are independent of £5. From Theorem 3 we have
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Corollary 1. For Ty and Ty € . with the coefficient (a11, a3, a%,) and (a12, a5y, aby),
respectively,

2
Ple (€1,0) — Psz (e1,0) = Zm;‘{Gp—&-Qj,A(Z) = Gpraj2,a(2)},
j=1

where mb, my and my, are the same as Theorem 3.

Example 4. Suppose that X;, i =1,...,n are i.i.d. random variables distributed as

Then parametric orthogonality holds. If #; = p and 03 = p, then

1+ p? 6p + 2p°
gulpp) = =3, Kialpp) = —7——3, Jrulp,n) = —Kiaa(p, p),
(13) (1-p%) (1-p%)
) =7 K ) = 7T o J ) =0.
g22(p, 1) T+ 1,2,2(p, 1) e 1,22(p, 1)

For test statistics 71 and T» in (7) with the coefficient (b11, ba1, bs1, ba1) and (b12, bao, b3z, baa),
respectively,

3p+p°
my = _ﬁ{(bzl — by2) — (bs1 — bs2)}(e1)?,
3p+p?
I
1
m6 = m(b;ll — b42)51.

Based on the above we can compare the second order power among W; (i = 1,2,3,4), R;
(1=1,2,3,4), LR and LR*.

(i) (1)-1 If p > 0 and &1 > 0, then
PV (e) = Py (e) = Py (e) < Py (e) = Py (e) < Py(e)
<B'(e) = B (e) = B (e).
(i)-2 If p < 0 and €1 > 0, then
P (e) = Py (e) = By (e) < Py (e) < By'* () = B (e)
<P (e) = Py (e) = P (e).
(ii) LR versus LR*,

« 1
PMR(e) — PMR () = —— e {Gya(2) = G
> (€) ' (e) 2(1—|—p)€1{ p.a(2) pr2.a(2)}
implies, for e; > 0, Py®(e) < PFR(e) and PIR (—e1,e5) < PFR(—e1,e5) unless
p=—1.
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From (13) in Example 4, it is seen that cumulants g11, K311 and Jq 11 tend to oo as
p — £1, and go2 and K 22 tend to oo as p — —1. Hence, we need to inspect second order
power functions if p is close to £1. Note the relation

(14) Gp,a(z) = Gpio,a(2) = 2fpr2,a(2),

where f, A(z) is the probability density function of non-central chi-square variate with p
degree of freedom and non-centrality parameter A. From (13) and (14) it follows that
second order powers of all test statistics in Example 1 converge to 0 as p — 41 at each
fixed 1.

In Figure 1, we plotted P® (solid line), PR (dotted line), Pi*" (dashed line) and P)"*
(dash-dotted line) of Example 4 with a = 0.05, e; = 1 and —1 < p < 1. Figure 1 illustrates
that second order powers of these statistics converge to 0 as p — £1.

In Figure 2, we plotted Py® (solid line), PR (dotted line), Py** (dashed line) and Py"*
(dash-dotted line) of Example 4 with o = 0.05, ¢ = 0.1 and —1 < p < 1. We can see that
the extreme points is close to +1 in comparison with Figure 1.

Figures 1 and 2 are about here.

Example 5. Let {X,} be a Gaussian M A(1) process with the spectral density

2 .
JoN) = 5|1 e P.

If 6, = ¢ and 6, = 02, then,

1 6 4
5) gu(y,0°) = T2 Kii1(¢,0%) = —ﬁ, Jin(¥,0%) = ﬁ,
15
g22(1h,0%) = 251" K122(,0%) = J122(4,0%) = 0.

Note that g*?(K1 2,2 + J1,22) = 0. For test statistics 71 and 75 in (7) with the coefficient
(b11,b21,b31,b41) and (b12, baz, bs2, baa), respectively,

m'2 = —ﬁ{?)(bgl — bgg) — 2(b31 — b32)}(51)37
= _(137%{3(1)21 — b22) — 2(ba1 — ban) e,
mg = 0.

Based on the above we can compare the second order power among W; (i = 1,2,3,4), R;
(1=1,2,3,4), LR and LR*.

(i) If ¢ > 0 and &1 > 0, then
P (e) = B (e) = P (e) < Py (e) < PyR(e) = Py (e) = B (e)
<B'(e) =R (e) = B (e).
(ii) If ¥ < 0 and 1 > 0, then

BV () = B3 (e) = Pi(e) < PYR(e) = PI™"(e) = PYV*(e) < PJ2(e)
< PYVi(e) = P (e) = P ().
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From (15) in Example 5, it is seen that cumulants g11, K311 and Ji 11 tend to oo as
1 — +1. Hence, we need to examine second order powers if ¢ is close to £1. From (14)
and (15) it follows that second order powers of all test statistics in Example 1 converge to
0 as ¢ — £1 at each fixed ¢;.

In Figure 3, we plotted Pi® (solid line), Py** (dashed line) and P)"' (dotted line) of
Example 5 with a = 0.01, £ = 6.5 and —1 < ¢ < 1. From Figure 3 we observe that second
order powers of these statistics converge to 0 as ¥ — +1.

In Figure 4, we plotted Py® (solid line), Py* (dashed line) and P,"* (dotted line) of
Example 5 with o = 0.01, e = 0.65 and —1 < ¢» < 1. We can see that the extreme points
is close to +1 in comparison with Figure 3.

Figures 3 and 4 are about here.

Example 6. Let {X;} be a Gaussian AR(1) process with the spectral density

o? 1
A= ———
folY) 27 |1 — peir|?
If 9, = p and 03 = 02, then
6p 2p
2 2 2
gll(p7a ) = ; K17171(p’0- ) IR Jl,ll(p7a ) = T 7T oo
(16) 1—p? (1—p?)? (1—p%)?
1
g22(p,0°) = 2571 Ki22(p,0°) = J122(p,0°) = 0.

Note that g*?(Kj 2.2 + J1,22) = 0. For test statistics 77 and T% in (7) with the coefficient
(b11,b21,b31,b41) and (b12, bao, baa, baz), respectively,

m'2 = —ﬁ{i’)(bm —baa) — (ba1 — b32)}(51)37
, 3

mi = — (1 —pp2) {3(b21 — b22) - (b31 - b32)}51a

mg = 0.

Based on the above we can compare the second order power among W; (i = 1,2,3,4), R;
(1=1,2,3,4), LR and LR*.

(i) If p > 0 and 1 > 0, then
P2 (e) < Py (e) = Py (e) = B (e) = B (e) = Py (e)
= PR (e) = PI(e) = P(e) < P2 (o).
(ii) If p < 0 and &1 > 0, then
P (e) < Py e) = By () = B (e) = PV (e) = PV (e)

— Pfi(e) = Pi*(e) = P (e) < P¥2(e).

From (16) in Example 6, it is seen that cumulants gi1, K1 1,1 and Ji,11 tend to oo as
p — £1. Hence, we need to examine second order powers if p is close to £1. From (14) and
(16) it follows that second order powers of all test statistics in Example 1 converge to 0 as
p — £1 at each fixed ¢;.
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In Figure 5, we plotted PI® (solid line), Py (dashed line) and P,"? (dotted line) of
Example 6 with a = 0.01, 1 = 3 and —1 < p < 1. From Figure 5 it is seen that second
order powers of these statistics converge to 0 as p — +1.

In Figure 6, we plotted Pi® (solid line), P52 (dashed line) and P,"? (dotted line) of
Example 6 with a = 0.01, £y = 0.8 and —1 < p < 1. We can see that the extreme points is
close to =1 in comparison with Figure 5.

Figures 5 and 6 are about here.

Next we consider the criterion of average power Pi (e1,e2) + P4 (—€1,€2). Then from
Theorem 1 it is easily seen that for each T € .,

PQT(EI’ €2) + PQT(_51752) = (Ka,g,r + Japr + Jﬂ,ar)dadﬁgr{GP,A(Z) - Gp+2,A(Z)}'

It is, therefore, clear that the average powers of all T € . are identical up to c,,*. However,
even in this situation, with a more detailed analysis it is possible to compare tests in .
in a meaningful way under suitable choice of criterion. Under the absence of nuisance
parameters, Mukerjee [9] showed that LR statistic is optimal in terms of second-order local
maximinity. However, in the presence of nuisance parameters, optimality properties do
not generally hold for LR test in terms of second-order local maximinity. We can see the
optimality of LR* statistic in terms of second-order local maximinity. For each fixed A, let

PE(A) =min P{(¢), PXR(A)=min PY* (e),
where the minimum is taken over €; such that gijsisj = A. Then we can get the following
result.

Theorem‘ 4. Eor T € .7 whose coefficients do not satisfy z(a;jk[3]gjk + gmBﬂjKawgﬁ) +
(p + 2){as — "9 (Ka,r,s + Jans)} = 0 (the cocfficients of LR* satisfy agjk[3]gjk =
—gw‘BBVKa,gﬁ and afy = §"*9"° (Kars + Jars)), there exists a positive Ay such that

PL(A) < PEF (),
whenever 0 < A < Ag.

Example 7. (i) In Example 4, Wy, W3 and R4 are most powerful in Example 1 except
LR* at each fixed e; > 0 and p > 0 with an error o(c,!). Hence, we compare W
and LR* tests in terms of second-order local maximinity. Note that the condition (10)
holds. From Theorem 1 and Example 4,

3
PEY @) = i ) { §6nae) — Gaa(e) + 361a () |
3
P e) = R e { -5 6na(e) 4 Gaa) - Gaa(e) + 3G1a)]
3
Tt ) e {-Grale) + Gaa)
+ ﬁal{GB’A(Z) — GLA(Z)},

where A = (£1)%(1 + p?)/(1 — p*)%2. If p=1/2, A < 1 and a = 0.05, then

LR* _ pLR* (1— PQ)AUQ
P€2 (A)_PQ {_ (1+p2)1/2 y €2 ¢

1 [ (- p)ar
P€V2v (A):PQVV {_ (1+p2)1/2 , €2 .
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Thus we can see
PY'(A) < PER(A),
whenever 0 < A < 1.

(ii) If p < 0 and €1 > 0, then Ry, R3 and W, are most powerful in Example 1 except LR*
with an error o(c,, ). Hence, we compare Ry and LR* tests in terms of second-order
local maximinity. Then

3
P (e = R e {680 - Grae) — Gaa(e) + 261a ()
A(3p+ p°)
+ mﬁl{Gs,A(Z) —G3a(2)}
+ ﬁsl{G&A(z) _Gia(2)}.

If p=-1/2, A <1 and a = 0.05, then
LR Ay prre [ (1= pP)AM?
P52 (A)_PQ { (1+p2)1/2 yE€2 ¢y

Ry _ pRi (1-p?Al/z
P, (A) =P, {_W,Ez .

Thus we can see
PR (A) < PER (A,
whenever 0 < A < 1.

Example 8. (i) In Example 5, W;, W3 and R4 are most powerful in Example 1 at each
fixed £; > 0 and v > 0 with an error o(c,,!). Hence, we compare W; and LR* test in
terms of second-order local maximinity. For M A(1) model in Example 5, the condition
(10) holds. From Theorem 1, we obtain

PIR () = ﬁ(a)?’{emw 2G5 a(2) + Cral2),
B (e) = ﬁ(a)?’{—@,m) + 2G5 a(2) — 2G5 a(2) + Gra(2)}
+ 13—12251{—G5,A(z) +Gaa(a)},

where A = (£1)2/(1 —¢?). If ¢y = 1/2, A < 1 and a = 0.01, then we have
PEV(8) = PR {(1 =) 2812 e, )
PY(A) = B -1 =) 2812 e )
Hence,
PY(A) < PV (A),

whenever 0 < A < 1.
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(ii) If » < 0 and &1 > 0, then R;, R and W, are most powerful in Example 1 at each
fixed €1 > 0 and ¢ > 0 with an error o(c,!). Hence, we compare R; and LR* test in
terms of second-order local maximinity. From Theorem 1, we get

Y

Pi(e) = m(él)g'{?G?,A(z) —Gs5a(2) —2G3.a(2) + G1a(2)}
+ %Q{G&A(z) ~ Gyalz))

If=-1/2, A <1and a=0.01, then
PR (8) = PV { (1= p2)12012 2, ),
PR (A) = PR {=(1 = ¢?)2A12 ey )
Hence,
PEY(A) < PEY(8),

whenever 0 < A < 1.

4. Effect of nuisance parameters. In this section, we consider the case where the
nuisance parameter #; = 5 is known. Let 61 = (51, - ,9”)' be the maximum likelihood
estimator of §; under 6y = 9. Any function evaluated at the point §; = 6, 3 = 0y will
be distinguished by the addition of a horizontal bar. Then the corresponding statistics with
that in Example 1 are given by

LRy = LR} = 2(I,, — ln),
(17) WlO = j(ij)TiTj, W20 = I(ij)TiTj, W30 = f/(ij)TiTj, W40 = L(ij)TiTj,
Rio =17 Z;Z;, Roo=172:;Z;, Rao=L§ZiZ;j, Rauo=L§ZiZj,
where 77 = ¢;; (0" = 0}), {L(i;)(0)} = L11(6), and I/ (9) and L (0) are the (i, j) component

of the inverse matrix of I;1(f) and L11(0), respectively.
The stochastic expansions of test statistics in (17) are given by

To=177:Z; + c; (by + 2)IEF II'WY, 2, Z,
e I T T {0y Ky g + (bs + 1) Ty o Y 225 2k + 0p (),

where the coefficient (b1, be, b3) is the same as in (7) and Wi’j =7 — ijl(’lel. Hence, we
consider the following class of tests:

Fo={To | To =17 Z:Z; + ¢ a [FFI'W}, 2, 2,
+ . af" 2,2; 25 + 0p(cy ),
under H, where a; and aéj * are nonrandom constants}.

For simplicity we assume the local parametric orthogonality at 6 = 6, namely

(A-6) I;; =0 i=1,...,p,r=p+1,...,p+¢q.
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Then the class . can be written as
S ={T | T=172:Z; + c;  ar IF II' Wi Z: Z; + 2¢;, 1 g7 W;,. 2 2,
+e;% i 2,22, — e R T Ky g0 202 2
— e 15" 9 (K s + Jirs) ZiZe Zu + € as Zi 4 o0y,
under H, where a1, aéj * and a} are nonrandom constants}.

Thus the comparison between T and T with the same coefficient will illustrate what
influence nuisance parameters exert on the performance of test statistics. Then we have the
following theorem.

Theorem 5. (i) Under (A-6), for T € % and Ty € % with the same coefficient, the
distribution functions of T are decomposed into

(18)
P90+C;1€[T < Z] = P910+C77161,6’20 [TO < Z]
1 o
+ 50;1(K¢,j,r + Jigr + Jjir)e'e’e{Gpia,a(2) — Gpalz)}
L j s i —
+ §cn1{I(ij)a§ -9 (Ki,r,s + Ji,TS)}E {Gp+2,A(Z) - GP,A(Z)} + O(Cnl)'
(ii) If
(19) Kijr+ Jijr+Jjar =0,
(20) gTS(Ki,r,s + Ji,rs) = O,

are satisfied, then the distribution function of T € . with a = 0 is equal to that of
Ty € S with the same coefficient as T up to order c;l.

Remark 4. The condition (19) agree with (10) in Theorem 2 under (A-6). If the condition
(20) holds, then LR test is second order asymptotically unbiased. Therefore, the third
term of the right hand in (18) can be interpreted as second order local bias in the usual
likelihood ratio test (see Mukerjee [8]). In Section 5, we will observe that this term can
also be interpreted as an effect of nuisance parameters in test statistics. Thus, we provide
a decomposition formula of local powers for test statistics under local orthogonality for
parameters.

Example 9. This example relates to the ratio of independent exponential means. Let

p(w1, @5 i1, o) = (papiz) " exp{—(uy ‘@1 + py '2)}, 1,22 > 0.

(i) If 61 = p1/p2 and 05 = (,ulug)l/Q, then parametric orthogonality holds and g11(6) =
(61)72/2 and ¢g**(K1,22 + J1.22) = 0. Hence, the conditions (19) and (20) hold.

(ii) If 6, = (u1po)'/? and 0y = pu1/p2, then parametric orthogonality holds and g1;(6) =
2(01)72 and ¢**(K122 + J122) = (61)"'. Hence, the condition (19) holds and (20)
does not hold.

Example 10. Let {X;} be a Gaussian ARM A(1,1) process with the spectral density

_ 02 |1 _ 1bei/\|2

fold) = 27 |1 — peir|2”
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(i) If 0; = 02 and 6 = (p,)’, then parameter orthogonality holds,

91102, p,8) = (20)7Y, Ina(0%,p,00) = _(31‘_"’2;1 ‘(gl_‘;;ﬁl‘ﬁ ,

202 o2
2 _ 9 .
Ki22(0%, p, ) = 1——,02’ J1,22(0 ,p,qp)__m7
202 o2
2 _ 9 B
Ki33(0% p,) = 1_—¢2’ J1,33(0 ,p,qp)__mj
202 o2

Ki23(0%, p,p) = — Ji,23(0%, p, ) =

L—p’ L—pyp
Hence, the condition (19) hold, and ¢"* (K7 . s+J1,s) = 202 shows that the condition
(20) does not hold.

(i) If 61 = (p,v)" and O, = 0%, then parameter orthogonality holds,

111.2 (p’ d}7 02) N _((:ll__p;&;il _((11__";;@[)])_711 )

and ¢*3(K; 33 + Ji33) = 0. Hence, the conditions (19) and (20) hold.

5. Unbiased test. We discuss the local unbiasedness of T" € .. Under the absence of
nuisance parameters, LR test is locally unbiased. However, under the existence of nuisance
parameters, LR test is not generally locally unbiased. From Theorem 1, among the test
statistics in Example 1, LR* test is the only one which is second order asymptotically
unbiased unless ¢;;¢7“¢"* (Ka,r,s + Jars) = 0. If gi;67*9" (Ko r,s + Jars) = 0, then LR =
LR* + 0,(c;;1). Hence, LR test is locally unbiased. Since T € . is not generally unbiased,
we consider modification of T € . to T* = h(6,)T + ¢; ' A’ Z; so that T* is second order
asymptotically unbiased, where h(f;) is a smooth function and A* is a nonrandom constant.
The following theorem asserts that this is accomplished by choosing A* and h;(6;) = 9;h(61)
satisfy appropriate conditions.

Theorem 6. Suppose that h(01) is a continuously two times differentiable function with
h(610) = 1 and A® is a nonrandom constant. Then, for T € ., the modified test T* =
h(61)T + ¢, Y A*Z; is second order asymptotically unbiased if h; = hi(010) and A® satisfy

(i) hi= _p_iz(gijgjaBﬂvKa,ﬁ,w + gz‘jgkla%kl 13]),
(ll) Al = giagrs(Ka,'r’s + Ja’rs) — ag.

For h(f;) and A° satisfying (i) and (ii), respectively, in Theorem 6, from Theorem 1, we
can get the asymptotic expansion of the distribution function of 7.

Theorem 7. Suppose that h(f;) and A satisfy (i) and (ii), respectively, in Theorem 6.
Then, for T € ., the distribution function of the modified test T* = h(6,)T + ¢; LA Z;
under a sequence of local alternatives § = 6y + ¢, 'c has the second order asymptotic
expansion

3
P90+C;1€[T* < z]=Gpa(z)+ et Z m;Gpyoja(2) + o(c; ),
§=0
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where
m} = 2K, gAd*dPd" — LgivBaﬂKa gAdVdd
3 6 P 2(p+2) J 5Py
]_ i 7;/ ./ ’ ]_ i 7;/ ./ ’
+ §a2jk9ii’gjj’gkk’d i d* — magjk[g]gii’gjkgj’k’d i d~,
1 o
3= ———0ijB° Ky p5,d"d'd’
My 2(p T 2)g J 8,
1 i il i / 1 i il i /
21 = 505 giv gy g d” @ d¥ + W“z’k[3]gngwj'k'd @ d”,
* 1 o 318 1y 1 o 36 (37 T
my = 5Ja,pyd*d7d" = (Ko + Japr + Jpar)d*d’(d” —€"),
1
my = _E(Kaﬁn/ + 3Ja,ﬁv)dadﬂdﬂy
1
+ §(Ka,57r + Ja,ﬂr + Jﬂvar)dadﬂ(dr — ET).
If p=1, then
29 ijk o 1 Yk(310 0 g = 0
( ) Qg Gii' 955’ Gkk' — maz [ ]gu’gjkgj’k’ =u

In this case we observe that the coefficients m3, m3, mj and mg in (21) are independent of
T € ., and hence all the powers of the modified tests T™* are identical up to second order.
On the other hand, if p > 2, then uniform results are not available.

Example 11. Consider the ARM A(1,1) model in Example 10 (ii). For test statistics in

(7),

agjkgugjlgkl =b2K1,11 4 (bs +1)J111

(23) 2p
- m(?)bg - b3 — 1),
and
L ik 3 ij 1 ij
1% [3]gi1gjkg11 = ZbQKl,i,jg g11 + Z(bs +1)J1,i5[3]9" 911

3 6p 49
(24) =i { A—p22 T U=p- pw}
12p%4 — 10p2)2? — 8p% + 4 + 2
(1=p2)2(1 = pY)(p — )

1
- 1
+4(b3+ )

(23) and (24) show that (22) does not holds.

We give factorizations of T' € .% as quadratic forms. By direct computation, 7' € .%
can be factorized as

T = g"T;T; + op(c, '),
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where
T — . l —1 o ja kB -1 . _ja, rs
=W+ Cn a19i;9° 9 [[aﬁ[[k+cn 9i59° 49 WearWs

1 .
+ gzja%lekVVl - §Cn lgijgjagkﬁgrsKa,B,erWs

[\>|>—‘l\9li—‘

1 _ i _
gzjgjagrtggu(Ka,r,s + Ja,rs)Wth + ECn 1g¢ja§ + Op(Cnl).
Then the asymptotic mean of T; under 6 = 6 is given by

_ i 1
Cn lgijgkla%kl - _C gljgjagrs(Ka,r,s + Ja,rs)

1
2
1

2 Cn glja’3 +o(c, 1)
Similarly, we consider factorizations of Ty € 4y as quadratic forms. The asymptotic mean
of Ty under = 6y, where To = I’ T;0Tj0 + 0p(c,, ), is given by
R Gkl —1
EQO[Tio] = §Cn I(ij)I(kl)CLQ +0(Cn )
Under (A-6), A in Theorem 6 can be written as
Cp AT = 21 (Eg, [Tjo] — Eg,[T5]) + o(c, ).

Note that the third term of the right hand in (18) is given by Eg,[T;] — Eg,[Ti0]. Therefore,
this term (and hence A?) can be interpreted as a effect of nuisance parameters in T' € ..

6. Proofs. In this section, we give the proofs of theorems.
Proof of Theorem 1. Since the actual calculation procedure is formidable, we give a
sketch of the derivation. First, we evaluate the characteristic function of T,

¢ (fa ) 9 +cn [eXp(tT)], T e y,

where t = (—1)1/2¢. Let D(0) = {D,s3(#)} be the unique lower triangular matrix with
positive diagonal such that

o)~ (" 0.

We consider the transformation
Y = D*Wp,

where D?3(0) is the (, 8) component of the inverse matrix of D(#).
Denoting Ln(wn) = pn(‘”n? o + C'r:lg)/pn(wrﬂ 90)7 we have

bnlEre) = / eXDUT ()} Lo () (s 00)
— Epy [exp{tT + log Ln(2.)}].

(25)
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We expand log L, (z,) in a Taylor series in c; ', leading to
(26)
log Ly, () = Wie" + garg™ Wie® — %I(amso‘sﬂ + %cglwaga“eﬂ
4 ; VT apg Weeeh — é (K go + Jug[3)e%Pe7 + 0 ()
= D;;je" Y7 + gorg" D™yt — %I(amso‘sﬂ + %c,jlWaga"‘eﬂ

1 . 1 N ~
+ 50n1Jmaﬂg‘”D6<€ ey < — gcnl(Kaﬁﬁ + Japy[3])%€€7 + 0p(c, ).

Inserting (26) in exp{tT + log L, (x,)} we obtain, after further expansion and collection of
terms,

(27)
P o 1
exp{tT + log Ln ()} = exp { £ (Y2 + Diye'Y? + garg D" = Sl iap)ce” }
i=1
X {1 +e (Y, Way)} + op(cy ),
where ¢i(,-) is a polynomial. In view of the assumption (A-3) we can easily evaluate
the asymptotic cumulants of (Y*, Wg,). Since Ep{Y*(0)Ws,(0)} = o(c,;'), we derive
the second order Edgeworth expansion of the distribution of Y*. Thus the second order

Edgeworth expansion of the distribution of Y¢ is given by

p+q

Pa(Y < y) / 1) {15 Gt Y Conatonsl0) | i+ ol
(28) ponost

where

el 1 1p+q a2
f(?/):mexp —52(.@) )

a=1

Caﬂ'y _ Da1a9a1a2Dﬂlﬂgﬂl%Dﬂyl'yg%’hKag,ﬂg;yQ,

and Hgy5(y®) are the Hermite polynomials. Note that

14 p+q
i i, ] rs « 1 « 1 a
t> (") + Dije'y’ + garg"*Dare®y' — sl e’ — 3 > w)?
=1 a=1
_tgi J _ .
= fJE; Z{ 1—26)2yf — (1 —2t)" /2D ;72
1 p+q

- 5 Z {yr - gasgStDtrga}2~

r=p+1
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From (25), (27) and (28) it follows that

p
9,9 TS feY 1 feY
wn(f, = /exp{ Z —|—D¢j€ yJ + Garg * Dy yt _ ij(aﬁ)s 55}

(29) x {1+ ¢, 'q1(y7,0)} qly Ndy® + o(c; )

tgiictel _ _ s _
- P (ﬁ) (1—2t)77/? 1+cn1j§mj(1—2t) 7 +o(eh).

Inverting (29) by Fourier inverse transform we can prove Theorem 1. O

Proof of Theorem 2.
(i) Note that d is independent of 5. From Theorem 1, for T' € . we have

P90+C;1€[T < Z] - P910+6771€17920 [T < Z]
1
=3 0 (Kapr + Japr + Jpar)d®d’ e {Gpia(2) = Gpa(2)} + ol ),

which leads to (i).
(ii) From d* = g;;¢7“¢", clearly
(Ka,ﬂ,r + Ja,pr + J@(w)dadﬁgr = gii’gi/agjj’gj/a(Kaﬁm + Jopr + Jﬂ,ar)ffifjfr.
Hence, we get (ii) in Theorem 2. O

Proof of Theorem 3 and Corollary 1. From Theorem 1 we can see that

]_ . Y] /
ms = Eagjkgii’gjj’gkk’di &’ dk + C3,

1 id i il ’ 1 iq
mg = __agjkgii’gjj’gkk’d d’d¥ + —agjk[3}gizgjkdl + Cs,
(30) 2 2

1, 1,

my = —iaajk[?)]gugjkdl + 5395 + C,
1,

mo = —Eaégijd] + C(),

where Cy, C1, Cs and C5 are independent of a1, a2 k¥ and a} and hence are the same for all
test statistics in .. Theorem 3 and Corollary 1 follow from (30). O

Proof of Theorem 4. Let a/* and aj} be the coefficients of T' € .. Then, we can rewrite
Pl(e) = Qijw(a Jk)silsjlskl + Qa,ijre'ele”
(31) 4 500(6" B Ko+ Bloj) {G2(2) — Cpraa(2)
4 5000k — 90 (K + TG0 (2) — Gpina ().
Note that |¢?| < (A/X)Y/2, where X is the smallest eigenvalue of I11.5. By (31)
PY(e) < Wi(A,ay")AY? + Wy (A)A | " |

1 )
+ §9li(9mBﬂ7Ka,ﬁﬁ +a2 [ ]gjk) {Gp+2 a(z) - Gp+4,A(Z)}

1 i, TS j
+ igij{a:% g9 (Koz,r,s + Ja,rs)}SJ{GP»A(Z) - GP+2,A(Z)}7
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where
UiA ) = Y |Quiw @A Wan(d) = 3 Qe A7
il g k=1 i,5=1
Hence, we obtain
(32) PI(A) < U1 (A,a")A32 4 Wy (M)A | e | +M(A),

where

M) = min | Soulg B Kapo + 7300 {Gria.a () = Gpraal)}

+ 50505 = 90 (Ko 4 Inr}HGra(2) — Gpras (o)} |
Similarly, we have
(33) PER(A) 2 —01(A, =g 979" Ko 5, /3) A% = Wa (A)A | €7 |
From (32) and (33),

PER(8) = PL(2) = = {w1(A,0¥") + 01(A, ~g 0" Ko 5, /3) } A
—2Ug (A)A " | —M(A).
Hence, for T' € . whose coefficients do not satisfy 2(a*3lgje + g B Ko p4) + (0 +
2){ay — g"“¢"*(Ka,rs + Ja,rs)} = 0, there exists a positive Ay such that
PERY(A) — PE(A) >0,

whenever 0 < A < Ayp. O

Proof of Theorem 5. The distribution function of T € %) under a sequence of local
alternatives 6 = 610 + c;, ‘1 has the asymptotic expansion

3
Py overtey 00 T0 < 21 = Gpal(2) + ¢, Y mjoGpyajalz) +olc, ),

j=0
where
. 1 1 ’L/j/k/ ij_k
mao = | cBijk + 5027 " Ll lawn) | €'e’e”
1 i y 1 4 1,
(34) mog = —50,2] k I(i/i)[(j/j)[(k/k)g EJEk + §IOJKi’j)k€k + Ea Jk[?)]](u)[(jk)ﬁl,
1 1 1,
mig = 5 Jijre'elet = D17 K et — §azjk[3]f(il)f<jk>5l’
1 .
moo = — = (K jk + 3Ji,j;€)51€j€k.

6
Note that, under (A-6), d" = 0 and

(B} = ( (Ilb)_l 8 )
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Then the coefficients ms, mo, m1 and mg in Theorem 1 can be written as

m3 = ma3o,

m2 = M2o,

1 o
m1 = mio + §(Ki,j,r + Jijr + Jjir)e'ele”

(3) + () — 07 (Ko + Ty}
mo = Moo — %(Ki,j’r + Jijr + Jj’ir)i‘:ii‘:jgr
- %{aéf(u) = 9" (Kjrs + Jjra) Y.

The comparison of (34) and (35) leads to Theorem 5. O

Proof of Theorem 6 and 7. Note that Z; = W; + op(1). Expand T* as

(36) 1y i —1 i ~1
=1 +c, hin" )T +c,, " A'W; + 0p(c, ).

Inserting (5) in (36) we obtain

T* = g9WiWj + ¢, a1g" 7P WogWilW; + 2¢, 1 " g7 Wio Wi W
+ oy as T WW W = ' g0 g7 g7 K g Wi W W
- crzlgmg”gsu(Kams + Ja,rs)WthWU + crzla;iWi + OP(CT_Ll)’
where
@ik _ ik g ik
a3 = i+ Al

This implies T* € ., and hence a necessary and sufficient condition for its locally unbi-
asedness is that the coefficients in (37) satisfy

(i) a;ijk[?’]gilgjk + 919" *BP Ko 5., = 0,
(i) a3'gij — 95i9"* 9" (Kar,s + Jars) = 0.
Note that
a;ijk[?’]gilgjk = aéjk[3]gﬂgjk + (hl,gl'igﬂ'k + hyglIght 4 hl,gz’kgij)gilgjk
= a¥*[3]gugjx + (p + 2)hu.

Solving (i) and (ii) with respect to h; and A?, we obtain the relations in Theorem 6. Theo-
rem 7 follows from the above argument and Theorem 1. O
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Figure 1: For the bivariate normal model with correlation coefficient 7 = p, both means
0> = p and both variances 1 in Example 4, second order powers of LR, LR*, R; and W,
statistics are plotted. PyR(g) (solid line), PYR" () (dotted line), Py* (e) (dashed line) and
PV (¢) (dash-dotted line) with o = 0.05 and €, = 1.
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Figure 2: For the bivariate normal model with correlation coefficient #; = p, both means
02 = p and both variances 1 in Example 4, second order powers of LR, LR*, Ry and W
statistics are plotted. Py (solid line), PFR" (dotted line), Py (dashed line) and P)"*
(dash-dotted line) with o = 0.05 and ¢; = 0.1.
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Figure 3: For M A(1) model in Example 5, second order powers of LR, W; and R, statistics
are plotted. PYR (solid line), Py"" (dotted line) and Py (dashed line) with a@ = 0.01 and
g1 = 6.5.
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Figure 4: For M A(1) model in Example 5, second order powers of LR, W; and R, statistics
are plotted. PYR (solid line), Py"" (dotted line) and Py (dashed line) with o = 0.01 and
€1 = 0.65.
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Figure 5: For AR(1) model in Example 6, second order powers of LR, Wy and Ry statistics
are plotted. PYR (solid line), Py"? (dotted line) and Py* (dashed line) with a = 0.01 and

61:3.
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Figure 6: For AR(1) model in Example 6, second order powers of LR, Wy and Ry statistics
are plotted. PYR (solid line), Py"? (dotted line) and Py (dashed line) with a = 0.01 and

g1 = 0.8.



