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Abstract. The authors show that the boundary of the polar set E∧ of the sum E
of k elliptical discs E1, . . . , Ek with center at the origin lies on an algebraic curve C
of degree 2k. The authors give an algorithm to compute the defining polynomial of C
and apply it to k-numerical range and a problem in Architecture.

1 Sum of elliptical discs Classical numerical ranges or generalized numerical ranges of
matrices are related to many geometric problems. In this paper we use a parallel curve of a
convex curve and apply it to the study of the k-numerical range of a matrix and a structural
performance problem of buildings in Architecture.

We consider the following (2k) × (2k) matrix Ak:

Ak =
(

0 α1

β1 0

)
⊕

(
0 α2

β2 0

)
⊕ · · ·⊕

(
0 αk

βk 0

)
, (1.1)

where αj, βj are arbitrary complex numbers ( 1 ≤ j ≤ k).

In the below we mention a close relationship between the k-numerical range and a
problem of Architecture. We take the following fact into account : The safety zone of
columns for horizontal loads are represented by elliptical discs, and the direction of the
major axis of one of the elliptical discs is same as the direction of the major or minor axis
of another elliptical disc. Corresponding to this fact, we mainly consider the case αj, βj

are real numbers satisfying |βj| ≤ αj (1 ≤ j ≤ k).

The k-numerical range Wk(A) of n× n matrix A ( 1 ≤ k ≤ n) is defined as

{ξ∗1 A ξ1 + ξ∗2 A ξ2 + . . .+ ξ∗k A ξk : {ξ1, ξ2, . . . , ξk} is an orthonormal system inCn}. (1.2)

(cf. [8],[1], [12], [15]). If k = 1, then the range Wk(A) is the (classical ) numerical range
and denoted by W (A) (cf. [7]). For subsets Γ1, Γ2, . . . , Γk of C, define the set

Γ1 + Γ2 + . . .+ Γk

of C as
{γ1 + γ2 + . . .+ γk : γj ∈ Γj (1 ≤ j ≤ k)}.

First we prove the following theorem.

Theorem 1.1 Suppose that Ak is the 2k × 2k complex matrix given by the equation
(1.1), where αj , βj are arbitrary complex numbers ( 1 ≤ j ≤ k). Then the following
equation holds :
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Wk(Ak) = W (
(

0 α1

β1 0

)
) +W (

(
0 α2

β2 0

)
) + . . .+W (

(
0 αk

βk 0

)
). (1.3)

Proof By the definition of the k-numerical range we have the following inclusion :

Wk(Ak) ⊃W (
(

0 α1

β1 0

)
) +W (

(
0 α2

β2 0

)
) + . . .+W (

(
0 αk

βk 0

)
). (1.4)

We shall show the inverse inclusion. By the separation theorem of compact convex sets, the
inverse inclusion is deduced from the following equation

max{�(z e−i θ) : z ∈Wk(Ak)} =
k∑

j=1

max{�(z e−i θ) : z ∈W (
(

0 αj

βj 0

)
)}, (1.5)

for each −π ≤ θ ≤ π. We set

αj = exp(i (φj + ψj)) (aj + bj),

βj = exp(i (φj − ψj)) (aj − bj),

where aj ≥ 0, bj ≥ 0 and φj , ψj are real numbers ( 1 ≤ j ≤ k). Since a k-numerical range
is invariant under unitary similarity, we may assume that ψj = 0 for 1 ≤ j ≤ k.

The Hermitian part of e−i θ Ak is given by the following:

⊕k
j=1

(
0 aj cos(φj − θ) + i bj sin(φj − θ)

aj cos(φj − θ) − i bj sin(φj − θ) 0

)
,

We compute that

det(t I2k − �(e−i θ Ak))

=
k∏

j=1

(t2 − a2
j cos2(φj − θ) − b2j sin2(φj − θ))

=
k∏

j=1

(t−
√
a2

j cos2(φj − θ) + b2j sin2(φj − θ))

(t+
√
a2

j cos2(φj − θ) + b2j sin2(φj − θ))).

By a theorem of Li-Sung-Tsing in [10], we have the following :
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max{�(z e−i θ) : z ∈Wk(Ak)}

= max{
k∑

j=1

(pj

√
a2

j cos2(φj − θ) + b2j sin2(φj − θ)

−qj
√
a2

j cos2(φj − θ) + b2j sin2(φj − θ)} :

pj ∈ {0, 1}, qj ∈ {0, 1}, p1 + q1 + p2 + q2 + . . .+ pk + qk = k}

=
k∑

j=1

√
a2

j cos2(φj − θ) + b2j sin2(φj − θ)

=
k∑

j=1

max{�(z e−i θ) : z ∈W (
(

0 αj

βj 0

)
)}. (1.6)

Hence we obtain the equation (1.5) and the proof of the theorem is complete.

We identify the Gaussian plane C with the 2-dimensional Euclidean space R2. The
numerical range of the 2 × 2 matrix

(
0 exp(i φj) (aj + bj)

exp(i φj) (aj − bj) 0

)

coincides with the elliptical disc

Ej = {r (aj cos φj cos θ − bj sinφj sin θ, aj sinφj cos θ + bj cos φj sin θ) :
−π ≤ θ ≤ π, 0 ≤ r ≤ 1}, (1.7)

( 1 ≤ j ≤ k) and the range Wk(Ak) coincides with the sum :

E = E1 + E2 + . . .+ Ek = {(u1 + u2 + . . .+ uk, v1 + v2 + . . .+ vk) :

(uj, vj) ∈ Ej (1 ≤ j ≤ k)}. (1.8)

By Proposition 2.2 of [14], the boundary ∂E lies on an algebraic curve. The set E satisfies
−E = E. We assume that each ellipse ∂Ej is non-degenerate : aj > 0, bj > 0 ( 1 ≤ j ≤
k). The boundary of E1 + E2 + . . .+ Ek+1 lies on an algebraic curve and its parametric
representation is given by the following recursive formula :

xk+1(θ) = xk(θ) +
C11 x

′
k(θ) +C12y

′
k(θ)√

C01 x
′
k(θ)2 + 2C02 x

′
k(θ)y

′
k(θ) + C03y

′
k(θ)2

, (1.9)

yk+1(θ) = yk(θ) +
C21 x

′
k(θ) + C22y

′
k(θ)√

C01 x
′
k(θ)2 + 2C02 x

′
k(θ)y′k(θ) +C03y

′
k(θ)2

, (1.10)



166 HIROSHI NAKAZATO AND KOZO TSUMURA

where

C11 = sinφk+1 cos φk+1 (b2k+1 − a2
k+1),

C12 = cos2 φk+1 a
2
k+1 + sin2 φk+1 b

2
k+1,

C21 = − sin2 φk+1 a
2
k+1 − cos2 φk+1 b

2
k+1,

C22 = sinφk+1 cos φk+1 (a2
k+1 − b2k+1),

C01 = sin2 φk+1 a
2
k+1 + cos2 φk+1 b

2
k+1 = −C21,

C02 = sinφk+1 cos φk+1 (b2k+1 − a2
k+1) = C11 = −C22

C03 = cos2 φk+1 a
2
k+1 + sin2 φk+1 b

2
k+1 = C12.

This formula is deduced from its special case for φk+1 = 0 by a rotation. If φk+1 = 0,
then the recursive formula is given by

xk+1(θ) = xk(θ) +
a2

k+1 y
′
k(θ)√

b2k+1 x
′
k(θ)2 + a2

k+1 y
′
k(θ)2

, (1.11)

yk+1(θ) = yk(θ)− b2k+1 x
′
k(θ)√

b2k+1 x
′
k(θ)2 + a2

k+1 y
′
k(θ)2

, (1.12)

(−π ≤ θ ≤ π). This formula is deduced from the theory of parallel curves by using an affine
transformation. By the equation (1.6) we obtain a characterization of the curve ∂E:

max{x cos θ + y sin θ : (x, y) ∈ ∂E}

=
k∑

j=1

√
a2

j cos2(θ − φj) + b2j sin2(θ − φj). (1.13)

Denote by H(θ) the above value. Then H is a positive valued function satisfying H(θ+π) =
H(θ). Define a positive valued function r by

r(θ) exp(i θ) ∈ ∂E.

The following relation is worthwhile for the application to Architecture :

M = max{r(θ) : −π ≤ θ ≤ π} = max{H(θ) : −π ≤ θ ≤ π},
and M = r(θ0) = H(θ0) for some 0 ≤ θ0 ≤ π. This follows from the equation r′(θ0) = 0.We
consider the polar set E∧ of the compact convex set E:

E∧ = {(a, b) ∈ R2 : −1 ≤ a x+ b y ≤ 1 for every (x, y) ∈ E},

its boundary ∂E∧ is the dual curve of the curve ∂E, that is (a, b) ∈ R2 belongs to ∂E∧ if
and only if the straight line a x+ b y + 1 = 0 is a tangent of ∂E.

The curve ∂E∧ lies on an algebraic curve C of degree 2k. By using a general theory
of plane algebraic curves, we find that a trivial upper bound of the order of the defining
polynomial of ∂E is given by 2k (2k − 1). We give an algorithm to compute the defining
polynomial of C. We consider the following polynomial
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f (t, x, y) = det(t I2k + (x/2)(Ak + A∗
k) − i (y/2)(Ak − A∗

k))

=
k∏

j=1

(t2 − a2
j(x cos φj + y sinφj )2 − b2j (−x sinφj + y cos φj)2)

=
k∑

j=0

cj(x, y) t2k−2j.

We shall use symmetric polynomials. Set

F (t; t1, . . . , tk) =
k∏

j=1

(t− tj)(t + tj) =
k∏

j=1

(t2 − t2j)

=
k∑

j=0

(−1)j sj(t21, t
2
2, . . . , t

2
k) t

2k−2j ,

where sj ’s are fundamental symmetric polynomials :

sp(x1, x2, . . . , xk) =
∑

1≤j1<j2<···<jp≤k

xj1 xj2 · · ·xjp
.

We consider the following polynomial :

G(t; t1, . . . , tk) =
2∏

h1=1

2∏
h2=1

· · ·
2∏

hk=1

(t+ (−1)h1t1 + (−1)h2t2 + . . .+ (−1)hktk)

=
2k∑

p=0

Gp(t1, . . . , tk) t2
k−p.

Then the polynomials Gp(t1, . . . , tk) satisfy the symmetry

Gp(−t1, t2, . . . , tk) = Gp(t1, t2, . . . , tk).

Similar equation holds for t2, . . . , tk. Hence Gp = 0 for odd p. Each polynomial

Gp(t1, . . . , tk) ∈ Z[t1, . . . , tk]

is a polynomial in t21, . . . , t
2
k. Since each Gp is symmetric with respect to t1, . . . , tk, the

fundamental theorem of symmetric polynomials implies that Gp(t1, . . . , tk) is written as a
polynomial of s1(t21, . . . , t

2
k), . . . , sk(t21, . . . , t

2
k) :

G2j(t1, . . . , tk) = h2j(−s1(t21, . . . , t2k), s2(t21, . . . , t2k), . . . , (−1)k sk(t21, . . . , t
2
k)),

where h2j(x1, x2, . . . , xk) ∈ Z[x1, x2, . . . , xk] ( j = 0, 1, . . . , 2k−1) (cf. [18], 5.7 symmetric
functions).
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We give exact form of the polynomials h2j for k = 2, 3, 4. We set

Sj(x1, . . . , xk) = (−1)j sj(x1, . . . , xk).

The case k = 2. In this case h2(S1, S2) = 2S1, h4(S1, S2) = S2
1 − 4S2.

The case k = 3. In this case we have the following:

h2(S1, S2, S3) = 4S1,
h4(S1, S2, S3) = 6S2

1 − 8S2,
h6(S1, S2, S3) = 4S3

1 − 16S1S2 + 64S3,
h8(S1, S2, S3) = S4

1 − 8S2
1 S2 + 16S2

2 .

The case k = 4. In this case the expressions of hj(S1, S2, S3, S4)’s are rather complicated.

h2(S1, S2, S3, S4) = 8S1,
h4(S1, S2, S3, S4) = 28S2

1 − 16S2,
h6(S1, S2, S3, S4) = 56S3

1 − 96S1S2 + 128S3,
h8(S1, S2, S3, S4) = 70S4

1 − 240S2
1 S2 + 96S2

2 + 512S1 S3 − 2176S4,
h10(S1, S2, S3, S4) = 56S5

1 − 320S3
1 S2 + 384S1S

2
2 + 768S2

1 S3

−1024S2S3 − 2560S1S4,
h12(S1, S2, S3, S4) = 28S6

1 − 240S4
1 S2 + 576S2

1 S
2
2 − 256S3

2 + 512S3
1 S3

−2048S1S2 S3 + 4096S2
3 + 1280S2

1 S4 − 7168S2S4,
h14(S1, S2, S3, S4) = 8S7

1 − 96S5
1 S2 + 384S3

1 S
2
2 − 512S1 S

3
2 + 128S4

1 S3

−1024S2
1 S2 S3 + 2048S2

2 S3 + 1536S3
1 S4 − 6144S1S2 S4 + 8192S3S4,

h16(S1, S2, S3, S4) = S8
1 − 16S6

1 S2 + 96S4
1 S

2
2 − 256S2

1 S
3
2 + 256S4

2

−128S4
1 S4 + 1024S2

1 S2 S4 − 2048S2
2 S4 + 4096S2

4.

To illustrate the above formula, we treat the case k = 3. Then we have

G(t; t1, t2, t3)
= (t+ t1 + t2 + t3) (t+ t1 + t2 − t3) (t+ t1 − t2 + t3) (t+ t1 − t2 − t3)

(t− t1 + t2 + t3) (t− t1 + t2 − t3) (t− t1 − t2 + t3) (t− t1 − t2 − t3)
= t8 + 4 (−t21 − t22 − t23) t

6 + {6 (−t21 − t22 − t23)
2 − 8 (t21 t

2
2 + t21 t

2
3 + t22 t

2
3) }t4

+{4 (−t21 − t22 − t23)
3 − 16 (−t21 − t22 − t23)(t

2
1 t

2
2 + t21 t

2
3 + t22 t

2
3) + 64(−t21 t22 t23)}t2

+{(−t21 − t22 − t23)
4 − 8 (−t21 − t22 − t23)

2(t21 t
2
2 + t21 t

2
3 + t22 t

2
3) + 16 (t21 t

2
2 + t21 t

2
3 + t22 t

2
3)}

We shall treat a general case. We set

g(t, x, y) =
2k−1∑
j=0

h2j(c1(x, y), c2(x, y), . . . , ck(x, y)) t2
k−2j . (1.14)

Then g(1, x, y) is a polynomial in x, y with degree 2k.
We shall prove the following theorem.

Theorem 1.2 Suppose that g(1, x, y) is a real polynomial in x, y with degree 2k given
by the equation (1.14). Then the algebraic curve C ⊃ ∂E∧ is defined by the polynomial
g(1, x, y):
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C = {(x, y) ∈ R2 : g(1, x, y) = 0}.

Proof We call a general property of a compact convex set E ⊂ R2 satisfying −E = E.
For every −π ≤ θ ≤ π, the value

H(θ) = max{x cos θ + y sin θ : (x, y) ∈ ∂E}
defines two support lines of E:

x cos θ + y sin θ = H(θ), x cos θ + y sin θ = −H(θ).

These are also tangents of ∂E. By the definition of the polar set E∧, its boundary consists
of the points

(
− cos θ
H(θ)

,
− sin θ
H(θ)

),

( −π ≤ θ ≤ π). We apply this characterization of ∂E∧ to the case H(θ) is given by the equa-
tion (1.13). By the homogeneity of the form g, the relation g(1,− cosθ/H(θ),− sinθ/H(θ)) =
0 is equivalent to g(H(θ),− cosθ,− sinθ) = 0. So it is sufficient to show that the polynomial
g(t, x, y) enjoys the equation

g(
k∑

j=1

√
a2

j cos2(φj − θ) + b2j sin2(φj − θ),− cosθ,− sinθ) = 0

for −π ≤ θ ≤ π. This equation is shown by the following equation :

g(t,− cosθ,− sinθ)

=
2∏

h1=1

2∏
h2=1

· · ·
2∏

hk=1

(t+
k∑

j=1

(−1)hj

√
a2

j cos2(φj − θ) + b2j sin2(φj − θ))

for −π ≤ θ ≤ π. This equation follows from the properties of the polynomials G, G2j (
j = 1, 2, . . . , 2k−1) and the equation

f (t,− cosθ,− sinθ)

=
k∏

j=1

(t2 − a2
j(cos θ cos φj + sin θ sin φj)2 − b2j (cos θ sin φj − sin θ cos φj)2)

=
k∏

j=1

(t2 − a2
j cos2(φj − θ) − b2j sin2(φj − θ)).

The proof of Theorem 1.2 is complete. �

The function H defined by the equation (1.13) satisfies the equation

g(H(θ),− cosθ,− sinθ) = g(H(θ), cos θ, sinθ) = 0,

for every −π ≤ θ ≤ π, andH(θ) is the greatest roots of the equation g(t,− cosθ,− sinθ) = 0
in t.
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a) Horizontal load  acting on a building b) Horizontal load
    acting on a column

x

y

Fig.1 Horizontal load  acting on a building caused by earthquake or wind

2 Sum of elliptical discs and the structural performance of buildings In this sec-
tion we explain the relation between the structural performance of buildings and a problem
of sum of elliptical discs.

When an earthquake occurs or wind blows near a building, a large horizontal load may
act on the building as shown in Fig.1, which shows the case of single story building. The
magnitude and the direction of this load is various under various situations. We want to
know whether the building is safe or not against various horizontal loads (cf. [20]). Recent
orthodox approach to this kind of problem is using computer simulation methods like finite
element methods (cf.[4]) for structural analysis. But it is difficult to get the total picture
for the problem we are discussing, by using these methods, because these methods answer
only one numerical result for a particular problem. We find the problem is connected with
the problem of sum of elliptical discs, as mentioned below. This changing the viewpoint
may help us to get the total picture for the problem.

A horizontal load acting on a building or its member column is represented by a point
on a plane of horizontal loads ( the end point of the arrow in Fig.1 a)). By using the data of
this point and the safety zone for the building or the columns, we can judge safety of them
on the plane of horizontal loads. We assume the following things concerned with buildings.

(1) Floor slabs (including roof slabs) are rigid and move parallel.

(2) Safety zones of columns for horizontal loads are represented by elliptical discs.

(3) Mechanical behavior of columns obey the theory of plasticity.

In the above the assumption (1) is set in order to simplify the problem. The assumption
(2) is based on experimental results of some reinforced concrete columns (cf. [19]). If the
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horizontal load acting on the column is on the elliptical disc, then the column is safe, because
of the assumption (2) and (3). The column cannot bear holding the horizontal load, which
is not on the elliptical disc. Because of plasticity of the materials ( the assumption (3) ), a
column does not collapse completely as soon as the horizontal load reaches boundary line of
the elliptical disc, but can keep their strength while the horizontal load is on the boundary
line ( We refer the reader to Chakrabarty’s text book [2] for basic theory for the plastic
theory, and W.F.Chen’s text book [3]. His other publications [5] help us to know recent
applications of the plastic theory to reinforced concrete buildings).

In addition to the above assumptions, we are interested in the case : the direction of
the major axis of one of the elliptical discs is the same as the direction of the major or
minor axis of another elliptical disc in a building. This case suits for the building where
all of the side faces of the columns and walls make intersect perpendicularly to one of the
Cartesian axes in the horizontal plane. We think many buildings are classified into the
case, because the external forms and the internal forms of many buildings are composed
of cuboids. Remote cause of this character of many buildings may be related with that
buildings are usually designed on orthogonal grid sheets.

In the beginning, we discuss about the case, where there are two columns in a single
story building. Safety zones of the columns are given by elliptical discs shown in Fig.2.a)
and b). We have to note that the sum of the horizontal loads acting on all the columns
is equal to the applied horizontal load acting on the floor slab, because of the condition
of equilibrium, but the directions of the loads acting on the columns are not always equal
to the direction of the applied horizontal loads acting on the floor slab(see the arrows in
Fig.1.a) and b)). If we can not find any set of the loads acting on the columns, where the
sum of them is equal to the applied loads acting on the floor slab and each of them is on
their corresponding elliptical disc, then the building is not safe for the applied horizontal
load. If we find them, then the building is safe. Let us discuss about this problem on the
figure shown in Fig.2 c) and d). Suppose the horizontal loads acting on the column No.1(see
the arrow in Fig.2.c)) is fixed to the boundary line of corresponding elliptical disc as shown
in Fig.2 c). Then the safety zone of the building is given by translated elliptical disc of the
column No.2, as shown by the shaded area in Fig.2 c), because the column No.2 cannot bear
holding the horizontal load, which is not on the disc. In general, the horizontal load acting
on the column No.1 is not fixed, and it allowed to be anywhere on the disc. It means we
can translate the center of the elliptical disc of the column No.2 to anywhere on the disc of
column No.1 on the plane of horizontal loads. The area, which is formed by making parallel
translation of the elliptical disc with that center as shown in Fig.2 d), is the safety zone of
the building. In the figure, the boundary line of the safety zone is represented by dotted
curve, which is envelope curve formed by the discs whose centers are on the boundary line
of elliptical disc of the column No.1. Thus, the problem calculating safety zones of buildings
are now reduced to the problem of sum of elliptical discs.

In case there are three columns in the building, we shall make parallel translation of
the elliptical disc of third column keeping the center on the boundary line of the safety
zone made by two columns, then we get the new envelope curve as the boundary line of the
safety zone of the building. This procedure is applicable for over three columns cases. In
case the building consists of multi stories, we shall calculate safety zones of all the stories
using above method, and check the safety of each story for ( the shear force of the story)
total applied horizontal loads acting on upper part of the building. And if all the stories
are safe, then the building is safe, otherwise the building is not safe. If only one horizontal
load is acting on the top of multi story building, then the intersection of all the safety zones
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d) Safety zone of  the building
    with  the  columns No.1
    and No.2,    in general

x

y

c) Safety zone of  the  building
    with the columns No.1 and No.2,
    in case the column No.1’s load is
    fixed as shown by   the arrow

x

y

a) Safety zone of  the column No.1

x

y

b) Safety zone of  the column No.2

x

y

Fig.2 Sum method for safety zones of columns
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of the stories is the safety zone of the building.

The following simple property is worthwhile for the application to Architecture.

Proposition 2.1 If the elliptical discs in the equation (1.6) satisfy the condition φj = 0
( 1 ≤ j ≤ k), that is, the major axis of each ellipse ∂Ej lies on the real axis or the imaginary
axis, then the positive valued function r(θ) defined by

r(θ) exp(i θ) ∈ ∂E = ∂(E1 + E2 + . . .+ Ek)

( 0 ≤ θ ≤ π/2) attains its minimum at θ = 0 or θ = π/2.

Remark This proposition provides us an information about the weakest direction of
the safety zone E.

Proof The set Ej is contained in the rectangle

Rj = {x+ i y : (x, y) ∈ R2,−aj ≤ x ≤ aj , −bj ≤ y ≤ bj},
(j = 1, 2, . . . , k). Thus the set E is contained in the rectangle

R = {x+ i y : (x, y) ∈ R2, |x| ≤ a1 + a2 + . . . , ak, |y| ≤ b1 + b2 + . . .+ bk},

and hence r(0) ≤ a1 + a2 + . . .+ ak , r(π/2) ≤ b1 + b2 + . . .+ bk. Each set Ej contains a
point aj cos θ + i bj sin θ for every 0 ≤ θ ≤ π/2, and hence E contains the arc

{(a1 + a2 + . . .+ ak) cos θ + i (b1 + b2 + . . .+ bk) sin θ : 0 ≤ θ < π},
and hence r(0) = a1 + a2 + . . .+ ak, r(π/2) = b1 + b2 + . . .+ bk, and

r(θ) ≥ min{a1 + a2 + . . .+ ak, b1 + b2 + . . .+ bk}
for 0 < θ < π/2, which completes the proof of the proposition. �

3 The case k = 2 and an example for k = 3. We shall give an explicit expression
of E in the case k = 2. We confine ourselves to consider the case φ1 = φ2 = 0, which is
satisfied by the situation of safety zones.

In the case b1/a1 = b2/a2, the set E is an elliptical disc. We assume that b1/a1 �= b2/a2.
By using an affine transformation, we may assume that

0 < b = b1 < a1 = 1, 1 ≥ b2 = κ > a2 = κ b.

In this case we have

f (t, x, y) = (t2 − x2 − b2 y2)(t2 − κ2 b2 x2 − κ2 y2)
= t4 + c1 t

2 + c2,

and hence
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c1 = −(1 + κ2 b2) x2 − (b2 + κ2) y2,

c2 = κ2 b2 x4 + κ2 (1 + b4) x2 y2 + κ2 b2 y4.

By Theorem 1.2 , the boundary of the polar of E lies on the curve g(t, x, y) = 0 where

g(t, x, y) = t4 − 2(1 + κ2 b2) t2 x2 − 2(b2 + κ2) t2 y2

+(1 − κ2 b2)2 x4 + 2 (1− κ2 b2) (b2 − κ2) x2 y2 + (b2 − κ2)2 y4.

The polynomial K(x, y) = K(1, x, y) defining the boundary of E is related with the polyno-
mial g(t, x, y) as the following. The algebraic curve K(t, x, y) = 0 on the complex projective
plane CP2 is the dual curve of the curve g(t, x, y) = 0, that is, a generic point (t0, x0, y0) of
the curve K(t, x, y) = 0 represents a tangent of the curve g(t, x, t) = 0 at some non-singular
point (T0, X0, Y0) :

g(T0 + T,X0 +X, Y0 + Y )
= (t0 T + x0X + y0 Y )

+ (a00 T
2 + a11X

2 + a22 Y
2 + 2a01 T X + 2a02 T Y + 2a12X Y ) + . . . .

If a straight line 1+x0X+y0 Y = 0 with y0 �= 0 is the tangent of the curve g(1, X, Y ) = 0,
then the equation

yn
0 g(1, X,−

1
y0

− x0

y0
X) = 0,

in X has a multiple root, where n is the degree of g and n = 4 in the case k = 2.
This property provides us an algorithm to compute the polynomial K(x, y) = K(1, x, y).
The polynomial K(x, y) is obtained as a factor of the discriminant of the polynomial
yn g(1, X,−1/y − xX/y) with respect to X. The degree of the polynomial K depends
on the singularities of the curve g(t, x, y) = 0. For its general theory we refer the read-
ers to [13, 21]. To treat the case the degree n of g is 4, we refer [9, 16]. The alge-
braic curve g(t, x, y) = 0 on the complex projective plane CP2 has two double points at
(t, x, y) = (0,±√

(κ2 − b2)/(1 − κ2 b2), 1) if κ �= b. If κ = b,then (t, x, y) = (0, 0, 1) is a
tacnode of the curve g(t, x, y) = 0. Corresponding to these singular points, the degree of
the equation of ∂E is 8 = 4 × 3 − 2 × 2. We have the following equation.

K(x, y)
= b4 (x8 + y8) + (2b2 + 2b6) (x6 y2 + x2 y6) + (1 + 4b4 + b8) x4 y4

+(−4b4 + 2b8 + 2b2 κ2 − 4b6 κ2) x6 + (−6b2 + 2b6 − 2b10 − 2κ2

+2b4 κ2 − 6b8 κ2) x4 y2

+(−2 + 2b4 − 6b8 − 6b2 κ2 + 2b6 κ2 − 2b10 κ2) x2 y4

+(2b2 − 4b6 − 4b4 κ2 + 2b8 κ2) y6

+(6b4 − 6b8 + b12 − 6b2 κ2 + 10b6 κ2 − 6b10 κ2 + κ4 − 6b4 κ4 + 6b8 κ4) x4

+(6b2 − 10b6 + 6b10 + 4κ2 − 6b4 κ2 − 6b8 κ2 + 4b12 κ2
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+6b2 κ4 − 10b6 κ4 + 6b10 κ4) x2 y2

+(1 − 6b4 + 6b8 − 6b2 κ2 + 10b6 κ2 − 6b10 k2 + 6b4 κ4 − 6b8 κ4 + b12 κ4) y4

+2(1 − b4) (b2 − κ2) (−2b2 + b6 + κ2 + b8 κ2 + b2 κ4 − 2b6 κ4) x2

+2(1 − b4) (b2 κ2 − 1) (b2 − 2b6 + κ2 + b8 κ2 − 2b2 κ4 + b6 κ4) y2

+(1 − b4)2 (b2 − κ2)2 (1− b2 κ2)2.

We shall consider the case κ = 1. In this case the convex set E is invariant under the
transformation (x, y) 	→ (y, x). In this case we have the equations

∂E ∩ {(x, 0) : x ≥ 0} = (1 + b, 0),

∂E ∩ {(x, x) : x ≥ 0} = (
√

1 + b2,
√

1 + b2).

By the equations (1.11), (1.12) the curve ∂E is parametrized as

∂E = {(cos θ [1 +
b3√

b4 + (1 − b4) sin2 θ
], sin θ [b+

1√
b4 + (1 − b4) sin2 θ

]) : −π ≤ θ ≤ π}.

Second we consider the case k = 3 and φ1 = φ2 = φ3 = 0. By using an affine trans-
formation, we assume that a3 = b3 = 1. Under these assumptions, the boundary of E is
parametrized as

x = x(θ) = a1 cos θ +
a2

2 b1 cos θ√
R(θ)

+
M1(θ) cosθ√

K(θ)
,

y = y(θ) = b1 sin θ +
a1 b

2
2 sin θ√
R(θ)

+
M2(θ) sin θ√

K(θ)
,

where

R(θ) = a2
2 b

2
1 cos2 θ + a2

1 b
2
2 sin2 θ = a2

1 b
2
2 + (a2

2 b
2
1 − a2

1 b
2
2) cos2 θ,

M1(θ) = a1 b
2
2R(θ) + b1R(θ)3/2 + (a1 a

2
2 b

2
1 b

2
2 − a3

1 b
4
2) (1− cos2 θ),

M2(θ) = a2
2 b1R(θ) + a1R(θ)3/2 + (−a4

2 b
3
1 + a2

1 a
2
2 b1 b

2
2) cos2 θ,

K(θ) = {a2
2 b1R(θ) + a1R(θ)3/2 + (−a4

2 b
3
1 + a2

1 a
2
2 b1 b

2
2) cos2 θ}2 (1 − cos2 θ)

+{a1 b
2
2R(θ) + b1R(θ)3/2 + (a1 a

2
2 b

2
1 b

2
2 − a3

1 b
4
2) (1− cos2 θ)}2 cos2 θ

= M1(θ)2 cos2 θ +M2(θ)2 (1 − cos2 θ)

To examine algebraic properties of ∂E, we consider an example a1 = 5, a2 = 2, b1 = 3,
b2 = 1, a3 = b3 = 1. In this case, the parametric representation (x(θ), y(θ)) of ∂E implies
the following two equations in x, y, t. We set t = cos2 θ.

A(t, x) = 18496000000000000t4 + . . .+ 959512576t8 x8 = 0,
B(t, y) = 308990478515625+ . . .+ 2725888000t7y8 = 0,
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where A(t, x) has 45 terms and B(t, y) has 55 terms.

The polynomial defining the irreducible algebraic curve C containing the boundary
∂E appears as a factor of the resultant of A(t, x) and B(t, y) with respect to t. Roughly
speaking, the equation of ∂E is obtained by the elimination of t = cos2 θ from two equations
A(t, x) = 0 and B(t, y) = 0. The resultant of A(t, x) and B(t, y) with respect to t is the
product of 4 mutually distinct polynomials of degree 24. The polynomial defining C contains
91 terms and given by the following :

L(x, y)
= 24321026304000000+ 6219654271200000x2− 9394210810278000x4

−119557650310200x6 + 1148960296277289 x8 − 225485918370000x10

+9766119186756x12 + 496880820720x14 − 41819348898x16

+340997040x18 + 33577092x20 − 903960x22 + 6561x24

−145573057543680000y 2 + 160470758172240000x2y2

−74983506744728160x4y2 + 21631932478951920x6y2

−3615852797722368x8y2 + 273097884681000x10y2

−10116343380240x12y2 + 459355997880x14y2 − 33762316896x16y2

+1463105880x18y2 − 28889136x20 y2 + 204120x22y2 + 276752549006035200y4

−327695837918101120x 2y4 + 129730653917742880x4y4

−29031056926250880x6y4 + 3472034123551364x8y4

−262242253173920x10y4 + 15365609949108x12y4

−701349742240x14y4 + 22038542572x16y4 − 395922240x18y4 + 2850876x20 y4

−160930265588261376y 6 + 210978783393022720x2y6

−87387776403387392x4y6 + 15997343953491360x6y6

−1681793837963792x8y6 + 117738015146680x10y6

−5533530445056x12y6 + 169468903600x14y6 − 3082219184x16 y6

+23594040x18y6 − 8473879464268544y 8− 75548840451553280x2y8

+28728792965852896x4y8 − 4541575657302320x6y8 + 411228018078046x8y8

−22588136336720x10y8 + 760605714796 x12 y8 − 15131544080x14y8

+128612806 x16 y8 + 15499748747118592y10 + 15200716316517120x2y10

−5286853460701888x4y10 + 717727895418880x6y10 − 51290469392160x8y10

+2086231097240x10y10 − 48947784944x12y10 + 485423960 x14 y10

−1302734568177152y 12 − 2134564244657920x2y12 + 586973681258240x4y12

−63047101474880x6y12 + 3465268162196x8y12 − 105395060800x10y12

+1297807516x12y12 − 345463809903616y14 + 193415557928960x2y14

−36300142805248x4y14 + 3226863390560x6y14 − 148262560336x8y14

+2470745480x10 y14 + 53029187088896y16 − 6378626983680x2y16

+1290332412688x4y16 − 128648994520x6y16 + 3317142241x8 y16

−820479232000y 18− 93712764800x2y18 − 59761772000x4y18

+3057712400x6y18 − 133610720000y 20− 8790800000x2y20
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+1835260000x4y20 + 1720000000y22 + 644000000x2y22 + 100000000y24

= 0.

We can give an alternating expression of E in the case a1 = 5, a2 = 2, b1 = 3, b2 = 1,
a3 = b3 = 1 by using the equation in λ = H(θ), that is, g(λ,− cosθ,− sinθ) = 0, where

g(λ,− cosθ,− sinθ)
= λ8 − (76 cos2 θ+ 44) t6 + (1782 cos4 θ + 2012 cos2 θ + 574) t4

−(12844 cos6 θ + 23428 cos4 θ + 13652 cos2 θ + 2556) t2

+28561 cos8 +57460 cos6 θ + 44110 cos4 θ + 15300 cos2 θ + 2025.

We close this section by posing a question.

Question 3.1 Is the degree of the defining polynomial of the algebraic curve containing
the boundary of E = E1 +E2 + . . .+ Ek equal to k × 2k in a generic case ?

4 Numerical methods and graphics We can apply many numerical methods to esti-
mate the sum E of elliptical discs E1, E2, . . ., Ek. We assume that

Ej = {r (aj cos θ, bj sin θ) : −π ≤ θ ≤ π, 0 ≤ r ≤ 1}
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Fig.3 An example of safty zones calculated 
         by the numerical method

Fig.4 Radius of the safty zone
         shown in Fig.3
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where aj > 0, bj > 0 ( 1 ≤ j ≤ k). By the equation

max{x cos θ + y sin θ : (x, y) ∈ ∂E}

=
k∑

j=1

√
a2

j cos2 θ + b2j sin2 θ,

an outer approximation of the arc ∂E ∩{(x, y) ∈ R2 : x ≥ 0, y ≥ 0} by the polygon formed
by the line segments {(t x(p− 1) +(1 − t) x(p), t y(p− 1) +(1− t) y(p)) : 0 ≤ t ≤ 1} is given
by

a(p) =
k∑

j=1

√
a2

j cos2(pπ/(2L))+ b2j sin2(pπ/(2L)),

( p = 0, 1, 2, . . . , L)

x(p) = cosec(π/(2L)) {−a(p+ 1) sin(pπ/(2L))+ a(p) sin((p + 1)π/(2L))},
y(p) = cosec(π/(2L)) {a(p+ 1) cos(pπ/(2L)) − a(p) cos((p + 1)π/(2L))},

(p = 0, 1, . . . , L − 1). In the above L is a large natural number. We may describe an
approximate graphic of the safety zone by using the above approximation. We may also
use some computer programs for c-numerical ranges, e. g., [11], [6]. We give the graph of
the curve ∂E in Fig.3 and the graph of the radius as a function of the angle in Fig.4 in the
case k = 4, a1 = 5, a2 = 1, a3 = 4, a4 = 3, b1 = 1, b2 = 5, b3 = 1, b4 = 1. We find that an
approximate value of the maximum of radius is 13.2772. The maximum is attained about
at θ = 0.3636 (radians). In this case the minimum of the radius is attained at θ = π/2.
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