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ABSTRACT. The authors show that the boundary of the polar set E” of the sum E
of k elliptical discs E, ..., E) with center at the origin lies on an algebraic curve C
of degree 2*. The authors give an algorithm to compute the defining polynomial of C
and apply it to k-numerical range and a problem in Architecture.

1 Sum of elliptical discs Classical numerical ranges or generalized numerical ranges of
matrices are related to many geometric problems. In this paper we use a parallel curve of a
convex curve and apply it to the study of the k-numerical range of a matrix and a structural
performance problem of buildings in Architecture.

We consider the following (2k) x (2k) matrix Ag:

()L ) (2 5) o

where «;, (; are arbitrary complex numbers ( 1 < j < k).

In the below we mention a close relationship between the k-numerical range and a
problem of Architecture. We take the following fact into account : The safety zone of
columns for horizontal loads are represented by elliptical discs, and the direction of the
major axis of one of the elliptical discs is same as the direction of the major or minor axis
of another elliptical disc. Corresponding to this fact, we mainly consider the case o, §;
are real numbers satisfying |G| < a; (1 < j <k).

The k-numerical range Wy (A) of n x n matrix A ( 1 < k <n) is defined as

{EFAG+E AL+ + & A& {61, &, ..., & isanorthonormal system inC™}. - (1.2)

(cf. [8],[1], [12], [15]). If k = 1, then the range Wj(A) is the (classical ) numerical range
and denoted by W (A) (cf. [7]). For subsets I'y, I'g, ..., 'y of C, define the set

M+ 4.+ T

of C as
(mt+nt +wyuel;1<i<k)})

First we prove the following theorem.
Theorem 1.1 Suppose that Ay is the 2k x 2k complex matrix given by the equation

(1.1), where «j, §; are arbitrary complex numbers ( 1 < j < k). Then the following
equation holds :
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Wk(Ak)—W(( ;1 o >)+W(( /?2 o >)+...+W(( /?k o >). (1.3)

Proof By the definition of the k-numerical range we have the following inclusion :

Wk(Ak)DW(< 601 “ >)+W(< 602 “ >)+...+W(< Bok o )). (1.4)

We shall show the inverse inclusion. By the separation theorem of compact convex sets, the
inverse inclusion is deduced from the following equation

max{R(ze %) : 2 € Wi(Ap)} =) max{R(ze "¥):z € W(( Boj O(‘)j ))}, (1.5)

j=1
for each —m < 0 < 7. We set

aj = exp(i (¢; + ;) (a; + b)),

B; = exp(i (¢ — ;) (aj — bj),

where a; > 0, b; > 0 and ¢;, 9; are real numbers ( 1 < j < k). Since a k-numerical range
is invariant under unitary similarity, we may assume that ¢; =0 for 1 < j < k.

The Hermitian part of e=*% Ay, is given by the following:

k

0 ajcos(¢p; —0)+ i bjsin(p; — 6) )
Dj=1 ;

( ajcos(¢; —0) —ibjsin(¢; — 6) 0

We compute that

det(t Iy, — %(e‘ie Ak))
k

= H(t2 — a? COSQ(¢j —0)— b? sin? (p; — 0))
j=1
k

= (t— \/a? cos?(¢; — 0) + b2 sin*(¢; — 0))

J=1

(t+ \/c@ cos?(¢; — 0) + b2 sin’(¢; — 0))).

By a theorem of Li-Sung-Tsing in [10], we have the following :
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max{R(ze %) : z € Wy (Ax)}

k
= maX{Z(pj \/c@ cos?(¢; — 0) + b2 sin®(¢; — 0)
j=1

—q; \/a§ cos?(¢; — 0) + b? Sin2(¢j —0)}:
p; €{0,1},¢; € {0, 1}, pi+ 1 +p2+ @2+ ... +pr +q =k}

k
- Z \/a? cos?(¢; — 0) + b? Sin2(¢j —0)
i=1

k
= jz:;max{%(ze*m) 1z € W(( b(’)j Oaj ))} (1.6)

Hence we obtain the equation (1.5) and the proof of the theorem is complete.

We identify the Gaussian plane C with the 2-dimensional Euclidean space R2. The
numerical range of the 2 x 2 matrix

( exp(i ¢j)0(aj —b;) ot ¢j)0(aj o )

coincides with the elliptical disc

E; = {r(ajcosg;jcos —bjsing;sinf,a;sin¢; cost + b; cos ¢; sinh) :
—1<0<70<r <1}, (1.7)

(1< j<k) and the range Wj(Ay) coincides with the sum :

E=FE1+E+..+E, ={(u1+us+...+up,v1+v2+...+vg):
(uj,v;) € Ej (1 <j <k)}. (1.8)

By Proposition 2.2 of [14], the boundary F lies on an algebraic curve. The set E satisfies
—E = E. We assume that each ellipse OF; is non-degenerate : a; > 0,0; >0 (1< j <
k). The boundary of Ey + Fs + ...+ Ejy1 lies on an algebraic curve and its parametric
representation is given by the following recursive formula :

" C11 J)%(Q) +012y;€(9)
VCo1 2, (0)% + 2Co2 27, (0)y1.(0) + Cosyi(0)%

wry1(0) = 2x(0) (1.9)

. Ca1 x(6) 4 Caoyy, (6)
VCo1 7, (0)2 + 2Co2 2}, (0)y,(0) + Cozyl(0)2

Yr1(0) = yr(0) (1.10)
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where

C11 = sin g1 cos Prp1 (b7, — ai ),
Cr2 = c08? Pp1 afqy + 80" Proy1 by,

Cy = — sin? Pr+1 ai_H — cos? Ok+1 b%_H,

Cog = sin ¢p11 €OS P41 (aiJr1 - biﬂ),

Cor = sin® gps1 a3y + cos® Gppr by = —Chn,

Coz = sin¢py1 €08 Ppy1 (b7, —ai ) = Ciy = —Ca

2 2 - 30
Co3 = c08” Q41 agy +sin” dpi1 b5, = Cra.

This formula is deduced from its special case for ¢rr1 = 0 by a rotation. If ¢p41 = 0,
then the recursive formula is given by

1 (0) = 24(0 a’k+1 Y1 (0) (1.11)
wiﬂ 2 (0)2 + a3,y Y (0)?
b? (0
Y+1(0) = yx (0 == mk( ) , (1.12)
\/bk+1 24 (0)% + aj .y v, (0)°

(=m < 60 < ). This formula is deduced from the theory of parallel curves by using an affine
transformation. By the equation (1.6) we obtain a characterization of the curve OE:

max{z cosf +ysinb : (z,y) € OE}

k
:Z\/a§0052(9—q5j)+b§sin2(9—¢j). (1.13)
j=1

Denote by H(0) the above value. Then H is a positive valued function satisfying H(6+7) =
H(0). Define a positive valued function r by
r(0) exp(i 0) € OFE.

The following relation is worthwhile for the application to Architecture :

M =max{r(0) : -7 <0 <7} =max{H(0) : -7 < 0 < 7},

and M = r(6y) = H(6p) for some 0 < §y < w. This follows from the equation /(6y) = 0.We
consider the polar set E” of the compact convex set E:

E" ={(a,b) e R?*: —1 <azx+by < 1forevery (z,y) € E},

its boundary OE” is the dual curve of the curve OF, that is (a, b) € R? belongs to E” if
and only if the straight line ax +by + 1 =0 is a tangent of JF.

The curve JE” lies on an algebraic curve C of degree 2¥. By using a general theory
of plane algebraic curves, we find that a trivial upper bound of the order of the defining
polynomial of OF is given by 2¥ (2¥ — 1). We give an algorithm to compute the defining
polynomial of C. We consider the following polynomial
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[t ay) = det(tlar + (2/2)(Ax+ Ap) — i (y/2)(Ar — Ap))
k
= (t? — a?(as cos ¢j +y sing;)? — b? (—z sing; +y cos ¢;)?)

—

<

cj(z,y) 12k=2i

Il
™=

<.
I
o

We shall use symmetric polynomials. Set

F(t;tla"'vtk) =

—

k
(t—t))t+t;) =[] >~

<
Il
—

(=1)7s5(8, 85, .. £2) 2572,

|

<
I
o

where s;’s are fundamental symmetric polynomials :

Sp(-r17x27"'7xk): E mjl szx]p
1<j1<ja<-<jp<k

We consider the following polynomial :

2 2 2
Gitstr,...otn) = ] TI - T] ¢+ D"t + (D"t + .+ (1))

h1=1hs=1 hr=1

Then the polynomials Gp(t1, ... ,tx) satisfy the symmetry

Gp(—t1,tay .. tx) = Gty ta, ... tg).
Similar equation holds for ¢, ..., t;. Hence G, = 0 for odd p. Each polynomial

Gp(tl,... i) EZ[ty, ... k]

is a polynomial in ¢7,...,¢. Since each G, is symmetric with respect to ti,..., ¢, the
fundamental theorem of symmetric polynomials implies that G (1, . .. , tx) is written as a
polynomial of s1(t2,...,t2),...,sx(t3, ..., t2) :

Goj(ti, ... tk) = hoj(—s1(t3,. .. 13), s2(t3, ... 13), o, (= 1)Fsp(t2, ... 13)),

where hoj (71, 2o, ..., 2k) € Zlv1, T2, ... 2] (j=0,1,...,251) (cf. [18], 5.7 symmetric
functions).
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We give exact form of the polynomials hy; for k = 2,3, 4. We set

Sj(‘rlv s ,$k) = (_1)] Sj(xlv s ,$k)»
The case k = 2. In this case ha(S1, S2) = 251, ha(S1, S2) = S? — 4S5s.

The case k = 3. In this case we have the following:

ha(S1, S2, S3) = 481,

ha(S1, S, S3) = 657 — 85,

(Sl, So, 3) = 4513 — 1651 S5 + 6453,
(Sl, S, S3) = Sil — 8512 So + 16322

The case k = 4. In this case the expressions of h;(S1, S2, S3, S1)’s are rather complicated.

2(S1, S, 83, S4) = 851,
ha(S1, S, S3,S4) = 2857 — 1655,
(51, Sa, S3, 54) = 5651‘3 — 9651 55 + 12883,
hg(sl, Ss, S3, 34) = 705@1 — 240512 So + 96322 + 51251 S3 — 217654,
h10(S1, S2, S3,S4) = 5657 — 32055 Sy + 3845, 52 + 76852 S5
—102455 S5 — 25605, Sy,
h12(S1, S, S3,S4) = 2889 — 2405% Sy + 57657 S3 — 256535 + 51253 S5
—204851 Sz S3 + 409652 + 128057 Sy — 716853 S,
h14(51, Sa, S3, 54) = 8517 — 96515 S + 384513 522 — 5125, 323 + 128511 S3
—1024512 Sy S5 + 2048522 Sz + 15365&3 Sy — 614451 S5 Sy + 819255 .5y,
h16(S1, S2, Sz, S4) = S¢ — 1659 So + 9651 S5 — 25657 S5 + 2565
—1285¢4 S, +10245% S5 S, — 204852 Sy + 409657.

To illustrate the above formula, we treat the case £ = 3. Then we have

G(t; tl,tg,tg)

= (t+ti+tat+tz)(t+ti+ta—t3)(t+t1 —tatt3)(t+t1 —t2 —t3)
(t—t1+ta+ts)(t—t1+ta—1t3) (t —t1 —ta+t3)(t —t1 —ta —t3)

= 344 (—t2 13—t {6 (12 —t2 122 -8 (122 + 1342+ 1212) Wt
A (=2 =12 —t2)3 =16 (=12 — 12 — 2) (32 + 1242 + 1242) + 64(—t2 12 t2) 12
(T =15 = 13) = 8 (=17 — 13 — 13)2(1T 45 + {7 45 + 15 45) + 16 (17 15 + 17 85 + £513)}

We shall treat a general case. We set
27071

ke .
g(t7 €, y) = Z h’Qj(cl(xv y)? CQ('r7 y)a S ,Ck(.]?, y)) t2 72]' (114)
§=0
Then g(1, z,y) is a polynomial in x,y with degree 2*.
We shall prove the following theorem.

Theorem 1.2 Suppose that g(1, z,y) is a real polynomial in z,y with degree 2* given
by the equation (1.14). Then the algebraic curve C' D OE” is defined by the polynomial

g(1,z,y):
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C ={(z,y) € R*: g(1,2,y) = 0}.

Proof We call a general property of a compact convex set £ C R? satisfying —F = E.
For every —m < 6 <, the value

H(0) = max{z cosf + ysinb : (z,y) € OF}

defines two support lines of E:

xcosf+ysinf=H(0), xcosh+ysind=—H().

These are also tangents of 9E. By the definition of the polar set E”, its boundary consists
of the points

—cosf —sinf
“HO)HE)
( —m < 6 < 7). We apply this characterization of 9E” to the case H(f) is given by the equa-
tion (1.13). By the homogeneity of the form g, the relation g(1, — cos8/H(0), —sinf/H(0)) =
0 is equivalent to g(H (6), — cosf, — sinf) = 0. So it is sufficient to show that the polynomial
g(t, z,y) enjoys the equation

Z\/a cos2(¢ —9)+b251n (¢p; —0), —cosf, —sinh) =0

for —-m <0 <. ThlS equation is shown by the following equation :

g(t, — cosé, —sin€)

H H H Z \/a cos?(¢; —9)+b281n (p; — )

hi=1ho=1  hu=1

for —m < 6 < w. This equation follows from the properties of the polynomials G, Ga; (
j=1,2,...,2% 1) and the equation

f(t, —cosf, —sinf)

= H — a (cos @ cos pj + sin 0 sin ¢;)> b? (cos @ sin ¢; — sinf cos p;)?)

<.
—

k
— H —a cos?(¢; — 0) — b? Sin2(¢j —0)).

The proof of Theorem 1.2 is complete. O

The function H defined by the equation (1.13) satisfies the equation

g(H(0), — cosf, —sinf) = g(H (), cos b, sinf) = 0,

for every —m < 6 < m, and H(0) is the greatest roots of the equation g(¢, — cosf, —sinf) =
in ¢t.
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a) Horizontal load acting on a building b) Horizontal load
acting on a column

Fig.1 Horizontal load acting on abuilding caused by earthquake or wind

2 Sum of elliptical discs and the structural performance of buildings In this sec-
tion we explain the relation between the structural performance of buildings and a problem
of sum of elliptical discs.

When an earthquake occurs or wind blows near a building, a large horizontal load may
act on the building as shown in Fig.1, which shows the case of single story building. The
magnitude and the direction of this load is various under various situations. We want to
know whether the building is safe or not against various horizontal loads (cf. [20]). Recent
orthodox approach to this kind of problem is using computer simulation methods like finite
element methods (cf.[4]) for structural analysis. But it is difficult to get the total picture
for the problem we are discussing, by using these methods, because these methods answer
only one numerical result for a particular problem. We find the problem is connected with
the problem of sum of elliptical discs, as mentioned below. This changing the viewpoint
may help us to get the total picture for the problem.

A horizontal load acting on a building or its member column is represented by a point
on a plane of horizontal loads ( the end point of the arrow in Fig.1 a)). By using the data of
this point and the safety zone for the building or the columns, we can judge safety of them
on the plane of horizontal loads. We assume the following things concerned with buildings.

(1) Floor slabs (including roof slabs) are rigid and move parallel.
(2) Safety zones of columns for horizontal loads are represented by elliptical discs.
(3) Mechanical behavior of columns obey the theory of plasticity.

In the above the assumption (1) is set in order to simplify the problem. The assumption
(2) is based on experimental results of some reinforced concrete columns (cf. [19]). If the



k-NUMERICAL RANGE AND THE STRUCTURAL PERFORMANCE OF BUILDINGS 171

horizontal load acting on the column is on the elliptical disc, then the column is safe, because
of the assumption (2) and (3). The column cannot bear holding the horizontal load, which
is not on the elliptical disc. Because of plasticity of the materials ( the assumption (3) ), a
column does not collapse completely as soon as the horizontal load reaches boundary line of
the elliptical disc, but can keep their strength while the horizontal load is on the boundary
line ( We refer the reader to Chakrabarty’s text book [2] for basic theory for the plastic
theory, and W.F.Chen’s text book [3]. His other publications [5] help us to know recent
applications of the plastic theory to reinforced concrete buildings).

In addition to the above assumptions, we are interested in the case : the direction of
the major axis of one of the elliptical discs is the same as the direction of the major or
minor axis of another elliptical disc in a building. This case suits for the building where
all of the side faces of the columns and walls make intersect perpendicularly to one of the
Cartesian axes in the horizontal plane. We think many buildings are classified into the
case, because the external forms and the internal forms of many buildings are composed
of cuboids. Remote cause of this character of many buildings may be related with that
buildings are usually designed on orthogonal grid sheets.

In the beginning, we discuss about the case, where there are two columns in a single
story building. Safety zones of the columns are given by elliptical discs shown in Fig.2.a)
and b). We have to note that the sum of the horizontal loads acting on all the columns
is equal to the applied horizontal load acting on the floor slab, because of the condition
of equilibrium, but the directions of the loads acting on the columns are not always equal
to the direction of the applied horizontal loads acting on the floor slab(see the arrows in
Fig.1.a) and b)). If we can not find any set of the loads acting on the columns, where the
sum of them is equal to the applied loads acting on the floor slab and each of them is on
their corresponding elliptical disc, then the building is not safe for the applied horizontal
load. If we find them, then the building is safe. Let us discuss about this problem on the
figure shown in Fig.2 ¢) and d). Suppose the horizontal loads acting on the column No.1(see
the arrow in Fig.2.c)) is fixed to the boundary line of corresponding elliptical disc as shown
in Fig.2 ¢). Then the safety zone of the building is given by translated elliptical disc of the
column No.2, as shown by the shaded area in Fig.2 ¢), because the column No.2 cannot bear
holding the horizontal load, which is not on the disc. In general, the horizontal load acting
on the column No.1 is not fixed, and it allowed to be anywhere on the disc. It means we
can translate the center of the elliptical disc of the column No.2 to anywhere on the disc of
column No.1 on the plane of horizontal loads. The area, which is formed by making parallel
translation of the elliptical disc with that center as shown in Fig.2 d), is the safety zone of
the building. In the figure, the boundary line of the safety zone is represented by dotted
curve, which is envelope curve formed by the discs whose centers are on the boundary line
of elliptical disc of the column No.1. Thus, the problem calculating safety zones of buildings
are now reduced to the problem of sum of elliptical discs.

In case there are three columns in the building, we shall make parallel translation of
the elliptical disc of third column keeping the center on the boundary line of the safety
zone made by two columns, then we get the new envelope curve as the boundary line of the
safety zone of the building. This procedure is applicable for over three columns cases. In
case the building consists of multi stories, we shall calculate safety zones of all the stories
using above method, and check the safety of each story for ( the shear force of the story)
total applied horizontal loads acting on upper part of the building. And if all the stories
are safe, then the building is safe, otherwise the building is not safe. If only one horizontal
load is acting on the top of multi story building, then the intersection of all the safety zones
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y y

A >,
C &

Y

a) Safety zone of the column No.1 b) Safety zone of the column No.2

c) Safety zone of the building d) Safety zone of the building
with the columns No.1 and No.2, with the columnsNo.1
in case the column No.1'sload is and No.2, ingeneral

fixed as shown by the arrow

Fig.2 Sum method for safety zones of columns
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of the stories is the safety zone of the building.
The following simple property is worthwhile for the application to Architecture.

Proposition 2.1 If the elliptical discs in the equation (1.6) satisfy the condition ¢; =0
(1 <j <k), that is, the major axis of each ellipse OF; lies on the real axis or the imaginary
axis, then the positive valued function r(0) defined by

r(0) exp(i0) € OF = O(Ey + Ex + ...+ Ek)
(0 <6 <m/2) attains its minimum at § =0 or § = 7/2.

Remark This proposition provides us an information about the weakest direction of
the safety zone F.

Proof The set F; is contained in the rectangle

Rj:{x—l—iy:(x,y)eRQ,—ajgxgaj,—bjgygbj},

(j=1,2,...,k). Thus the set FE is contained in the rectangle

R:{ac—l—iy:(w,y)ER2,|x\§a1+a2+...,ak, ly] <by+ba+ ...+ by},

and hence 7(0) < a1+ as+...+ag, r(7/2) < by + by + ...+ by. Each set E; contains a
point a; cos@ + i b; sin6 for every 0 < § < w/2, and hence E contains the arc

{(ar+az+...4ar) cos@+i(by+ba+...+b;)sinf:0<60<n},
and hence r(0) = a1 +az+ ...+ ag, 7(7/2) = by +ba + ...+ by, and

T(G)2min{a1+a2+...+ak,bl+b2+...—|—bk}

for 0 < 0 < 7/2, which completes the proof of the proposition. O

3 The case k£ = 2 and an example for £ = 3. We shall give an explicit expression
of F in the case k = 2. We confine ourselves to consider the case ¢ = ¢o = 0, which is
satisfied by the situation of safety zones.

In the case b1/a1 = ba/as, the set E is an elliptical disc. We assume that by /a; # ba/as.
By using an affine transformation, we may assume that

O<b=bi<a1=1, 1>by=kKk>as=~kb.

In this case we have

ftay) = (=2 =0 y*)(1 — k7022 = K2 y?)
th+ et + o,

and hence
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a = —(14x20%) 2% - 0+ y%
o = RVt +R2(1+0Y) 2%y + K202yt

By Theorem 1.2 , the boundary of the polar of E lies on the curve g(¢, z,y) = 0 where

glt,z,y) = t'—2014+ k202 2% — 2(0* + k) t2y?
+(1 _ I€2 b2)2 {E4 +2 (1 _ I€2 b2) (b2 _ ISJQ) 1[,'2y2 + (b2 _ Iﬁ:2)2 y4.

The polynomial K (x,y) = K(1, z,y) defining the boundary of FE is related with the polyno-
mial g(¢, x, y) as the following. The algebraic curve K (¢, z, y) = 0 on the complex projective
plane CP? is the dual curve of the curve g(t, z,y) = 0, that is, a generic point (to, 2o, yo) of
the curve K (¢, x,y) = 0 represents a tangent of the curve g(¢, z,t) = 0 at some non-singular
point (Ty, Xo, Yo) :

g(To+T,Xo+ X, Y5+Y)
= (T +woX+yY)
+(a00T2+a11X2+a22Y2—|—2a01TX—|—2a02TY—|—2a12XY)—|—... .

If a straight line 14z X +yo Y = 0 with yo # 0 is the tangent of the curve g(1, X,Y) = 0,
then the equation
n 1 o
Yo 9(17 X7 %0 %0
in X has a multiple root, where n is the degree of ¢ and n = 4 in the case k = 2.
This property provides us an algorithm to compute the polynomial K (z,y) = K(1,z,y).
The polynomial K(z,y) is obtained as a factor of the discriminant of the polynomial
y"g(1, X, —1/y — x X/y) with respect to X. The degree of the polynomial K depends
on the singularities of the curve g(¢,z,y) = 0. For its general theory we refer the read-
ers to [13, 21]. To treat the case the degree n of g is 4, we refer [9, 16]. The alge-
braic curve g(t,x,y) = 0 on the complex projective plane CP? has two double points at
(t,2,y) = (0, £/(k2 = b2)/(1 — k2b2),1) if k # b. If k = bthen (t,z,y) = (0,0,1) is a
tacnode of the curve g(¢,x,y) = 0. Corresponding to these singular points, the degree of
the equation of OF is 8 = 4 x 3 — 2 x 2. We have the following equation.

X) =0,

K(z,y)
_ b4 (138 4 yS) 4 (2[)2 4 2[)6) (l‘G y2 4 1‘2 yG) 4 (1 4 4b4 4 bS) x4 y4
+(—4b* + 20° + 207 k? — 4b° K?) 28 + (=67 + 20° — 2b'0 — 247
+2b% k% — 6b° K?) 2 y?
+(=2 + 2b* — 6b® — 60 K% + 20° K* — 2b'0 K2) 22 y*
+(2b% — 465 — 4b* K2 + 268 k%) ¢/°
+(6b* — 6b° 4+ b'% — 6b? k2 + 100° K2 — 6b'° k2 + K* — 6b* K* + 60° k*) 2?
+(6b% — 100° 4 600 + 4K? — 6b* K2 — 6b° K? + 4b1% K2
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+6b2 k1 — 1065 k* + 660 k%) 22 2
+(1 — 6b* 4 6b° — 6b% K2 +100° k% — 6b'° k? 4 6b* k* — 60° * + b'2 1) ¢
+2(1 = b*) (b2 — K2) (—20% + 1% + K2 + 1% K% + b2 Kk — 205 K1) 22
+2(1 = b*) (b K% — 1) (0* — 20° + K2 + b® &% — 207 K* 4+ 0O k) o2
( _ b4)2 (b2 _ /@2)2 (1 _ b2 /@2)2.

We shall consider the case k = 1. In this case the convex set E is invariant under the
transformation (z,y) — (y, ). In this case we have the equations
OEN{(z,0):2>0}=(1+5,0),

OEN{(z,z): 2 >0} =(V1+5b2 vV1+0b2).

By the equations (1.11), (1.12) the curve OF is parametrized as

b 1
OF = {(cos b [1 ],sin@[b N:—nm<0<m}.

\/b4 (1 — b4) sin® 9 \/b4 (1 —b4)sin? 6

Second we consider the case k = 3 and ¢1 = ¢2 = ¢3 = 0. By using an affine trans-
formation, we assume that ag = bs = 1. Under these assumptions, the boundary of E is
parametrized as

2by cosf M1 (0) cosf

VE® | JE®

ap b3 sin 6 M2(0) sin 0

VR VE ()

a

x=x(0) =a; cosf +

Yy = y(a) = bl Sil’l9+

where

R() = a3 b7 cos® 0 + a? b3 sin? @ = aTb3 + (a3 — a3 b3) cos? b,

M (0) = ay b2 R(0) + by R(0)*/? + (a1 a2b? b2 — a3 b3) (1 — cos® 0),

M(0) = a2 by R(O) + a1 R(0)*/? + (—adbd + a% a% by b3) cos? 0,

K(0) = {a2by1 R(0) + a1 R(0)*/? + (—a3 b3 + a? a2 by b2) cos? )2 ( — cos? )
+{a1 b2 R(0) + by R(0)*/? + (a1 a2 b? b2 — a3 b3) (1 — cos®6)}? cos® 0

= M1(6)? cos® 0 + M(60)? (1 — cos®0)

To examine algebraic properties of OF, we consider an example a; =5, as = 2, by = 3,
ba = 1, a3 = bg = 1. In this case, the parametric representation (z(6),y(9)) of OE implies
the following two equations in x, 7, t. We set ¢ = cos? 6.

A(t, z) = 18496000000000000¢* + . .. + 959512576t5 2% = 0,
B(t,y) = 308990478515625 + . .. + 2725888000t "y® = 0,
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where A(t, z) has 45 terms and B(t, y) has 55 terms.

The polynomial defining the irreducible algebraic curve C' containing the boundary
OF appears as a factor of the resultant of A(t,z) and B(t,y) with respect to ¢. Roughly
speaking, the equation of OF is obtained by the elimination of ¢ = cos? 6 from two equations
A(t,z) = 0 and B(t,y) = 0. The resultant of A(t,z) and B(¢,y) with respect to ¢ is the
product of 4 mutually distinct polynomials of degree 24. The polynomial defining C' contains
91 terms and given by the following :

L(z,y)

= 24321026304000000 + 62196542712000002:% — 93942108102780002:*
—1195576503102002 ¢ + 1148960296277289 28 — 225485918370000 1°
+97661191867562 12 + 4968808207202 14 — 4181934889821
4340997040z '8 + 33577092220 — 903960222 + 656122
—145573057543680000y 2 4+ 1604707581722400002 2 3/
—74983506744728160 2% 4% + 216319324789519202: ¢ 12
—36158527977223682 5 y* + 273097884681000z 1052
—10116343380240x12y2+459355997880x14 2 _ 337623168962 162
414631058802 % 4% — 2888913622 y? + 2041202224 4 276752549006035200y*
—327695837918101120x 2 9y* 4+ 1297306539177428802 4 /4
—290310569262508802° y* + 34720341235513642° 3
—2622422531739202 10 y* + 15365609949108x 124/
—7013497422402 ' y* + 2203854257226 * 395922240x18y4+2850876x20 4
—160930265588261376y ¢ 4+ 210978783393022720: 2
—873877764033873922" ¢/° + 15997343953491360:v6y6
—16817938379637922:8 45 + 117738015146680x 1° 5
—55335304450562 12 4/° + 1694689036002 4 3/° — 3082219184216 /6
4235940402 '8 8 — 8473879464268544y® — 755488404515532802 2 /8
+28728792965852896 2 ¢y — 454157565730232025 4° + 4112280180780462% °
—22588136336720x 10y 4+ 760605714796 12 y® — 151315440802 4 /8
+128612806 ¢ y® 4+ 15499748747118592y 10 + 15200716316517120x 2 y'°
—5286853460701888x 1 0 + 7177278954188802 % 'Y — 512904693921602 % 4/*°
+20862310972402 19 410 — 48947784944212 410 + 485423960 14 410
—1302734568177152y 12 — 2134564244657920z 2 y'2 + 586973681258240x * y12
—63047101474880x %312 + 3465268162196z 8 y2 — 1053950608002 10 ¢/*2
+1297807516x 2 y'? — 345463809903616y '* + 1934155579289602 % 3y
—36300142805248x  y'* + 32268633905602° y* — 1482625603362 % y'*
+2470745480z 0 y** + 53029187088896y 16 — 63786269836802% y'¢
+12903324126882 % y'6 — 1286489945206 y'¢ + 331714224128 y'©
—820479232000y '® — 9371276480022 y'® — 59761772000z * y*®
+305771240025 y'® — 133610720000y 2° — 879080000022 ¢
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418352600002 *y2° + 1720000000y %2 4+ 6440000002 %> + 100000000y >*
= 0.

We can give an alternating expression of F in the case a1 = 5, as = 2, b1 = 3, by = 1,
as = bz = 1 by using the equation in A = H(6), that is, g(A, — cosf, — sinf) = 0, where

g(A, — cosf, —sind)

= A —(76cos® 0+ 44) t5 + (1782 cos* 6 + 2012 cos? § + 574) t*
—(12844 cos® 6 + 23428 cos® 6 + 13652 cos? O + 2556) t2
428561 cos® +57460 cos® 6 + 44110 cos? @ + 15300 cos? 6 + 2025.

We close this section by posing a question.

Question 3.1 Is the degree of the defining polynomial of the algebraic curve containing
the boundary of £ = Fy + Es + ...+ Ej, equal to k X 2F in a generic case 7

4 Numerical methods and graphics We can apply many numerical methods to esti-
mate the sum FE of elliptical discs Fy, Fs, ..., Ex. We assume that

E; ={r(ajcos8,bjsinf): —n < <7m,0<r <1}

14 ¢ 14
12 — 12 F
10 F 10 £
2 8k 9 8F
ok B o6
4 ;_ safty zone 4 £
2 | 2 F
o E o b v b b
0 2 4 6 8 10 12 14 0 04 08 12 16
X axis angle (radian)
Fig.3 An example of safty zones calculated Fig.4 Radius of the safty zone

by the numerical method shownin Fig.3
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where a; > 0,b; >0 (1 <j <k). By the equation

max{x cosf +ysinb : (z,y) € IFE}

k
= Z \/a? cos? 0 + b3 sin? 0,
j=1

an outer approximation of the arc 9E N {(x,y) € R?: 2z >0,y > 0} by the polygon formed
by the line segments {(tz(p—1)+ (1 —¢t) z(p), ty(p— 1)+ (1 —¢) y(p)) : 0 <t < 1} is given
by

a(p) = Z \/a? cos?(pm/(2L)) + b2 sin®(pr/(2L)),

Jj=1

(p=0,1,2,...,L)

(p) = cosec(m/(2L)) {—a(p + 1) sin(pr/(2L)) + a(p) sin((p + 1)7/(2L))},
y(p) = cosec(m/(2L)) {a(p+ 1) cos(pr/(2L)) — a(p) cos((p + 1)7/(2L))},

(p =0,1,...,L —1). In the above L is a large natural number. We may describe an
approximate graphic of the safety zone by using the above approximation. We may also
use some computer programs for c-numerical ranges, e. g., [11], [6]. We give the graph of
the curve OF in Fig.3 and the graph of the radius as a function of the angle in Fig.4 in the
case k=4,a1=5,as=1,a3=4,a,=3,by =1,by =5, b3 =1, by = 1. We find that an
approximate value of the maximum of radius is 13.2772. The maximum is attained about
at § = 0.3636 (radians). In this case the minimum of the radius is attained at § = 7/2.
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