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OPTIMAL SEQUENTIAL DECISIONS WITH INFORMATION
INVARIANCE

E.G. Enns
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Abstract. N independent and identically distributed random variables are sampled
sequentially from a known continuous distribution. The optimal policy for maximizing
the probability of obtaining the maximum of the sequence is formulated generally
for any information source and illustrated with several examples. When following the
optimal policy, it is shown in each case considered that the expected number of random
variables sampled is simply related to the probability of selecting the maximum of the
sequence. This relationship is posed as a conjecture for all information sources.

1 Introduction N independent and identically distributed random variables are sampled
sequentially from a known continuous distribution. At each sampling an irrevocable decision
for acceptance or rejection must be made. Exactly one of the N random variables sampled
is to be accepted at which time the sampling procedure terminates. The problem is to find
the optimal strategy which maximizes the probability of selecting the largest in the sequence
when various types of information are available from the sample. Under this strategy we
also find the expected number of observations made until a choice is made.

The types of information considered in this article are:

A. No information: In this case there is no information about the value the random
variable assumes when it is sampled.

B. Complete information: In this case the value a random variable assumes when
sampled is known exactly.

C. Sample extremum information: In this case the information available is whether
the random variable sampled is greater or less than the maximum of the random
variables previously sampled.

D. Single level information: In this example the information available is whether the
random variable sampled is greater or less than some fixed number.

Examples B and D have been considered by Gilbert and Mosteller [1]. D is also a special
case of Enns [2] in which case he considers an arbitrary number of sampling levels. Example
C is equivalent to the complete information case B with the exception that no information
about the distribution of the random variables sampled is known. This has been considered
by Morgenstern [3]. This article combines the varied approaches in a single formulation.

In each of the above cases, the distribution and expected value of the number of random
variables sampled has been obtained.
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Conjecture 1 If MN is the event that the maximum in the sequence of size N is selected
and KN is the position in the sequence of the random variable selected, then we show that
under the optimal strategy:

P (MN) = (E(KN) − β)/N(1.1)

β is the number of random variables at the beginning of the sequence that are not available
for selection under the optimal policy.

All examples in this article confirm this conjecture.

2 Formulation Let (Y1, Y2, . . . , YN) be N independent and identically distributed ran-
dom variables with known distribution F (y) = P {Yi ≤ y} . As the distribution F (y) is
known and the problem is to select the maximum of the sequence, then this problem is
equivalent to selecting the maximum of the sequence (X1, X2, . . . , XN ) where the transfor-
mation from Y → X preserves the ordering of the sequence. In this paper the transfor-
mation Xi = F (Yi), i = 1, 2, . . . , N will be used. Hence Xi has a uniform distribution on
[0, 1] .

Let zn = (x1, x2, . . . , xn) for n ≤ N denote the sequential sample obtained to the nth
sampling from (X1, X2, . . . , XN) . Let ωn be the information available ¿from zn; this will
vary in each of the cases mentioned. Then define:
MN : the event that the maximum of the sample of size N is selected.
KN : the number of random variables sampled, including the one selected.
Ai : the event that Xi, i = 1, 2, . . . , N , is selected in the sequential procedure.
Decisions at each stage in the procedure will be based on the information available.

Hence let

D = {D1 (ω1) , D2 (ω2) , . . . , DN (ωN )}

represent the policy which is to be followed where

Dk(ωk) = P
{
Ak | A′

1, A
′
2, . . . , A′

k−1, ωk

}
for k = 1, 2, . . . , N(2.1)

The probability of obtaining the maximum of the sequence when following policy D
with information source γ is P

γ
D {MN} . The optimal policy D∗ is defined as

P γ {MN} = P γ
D∗ {MN} = max

D
P γ

D {MN} .(2.2)

The distribution and expected value of KN will be obtained for each information source
mentioned. In each case the expected value of KN will be related to the corresponding
P {MN} . Define:

P γ {KN = k} = P {KN = k | information source γ}

Eγ {KN} =
∑

k

kP γ {KN = k} .(2.3)
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3 The probability of obtaining the Maximum of the sequence and the Expected
number of variables sampled One can now write:

P γ
D {MN} =

∫ 1

0

P {MN | A1, z1}D1 (ω1) dx1 +
∫ 1

0

dx1(1 − D1 (ω1))
∫ 1

0

dx2P {MN | A2, A
′
1, z2}D2 (ω2)

+ · · ·+
∫ 1

0

dx1 (1 − D1 (ω1)) . . .

∫ 1

0

dxN−1(1 − DN−1(ωN−1))
∫ 1

0

dxNP
{
MN | AN , A′

1 . . . , A′
N−1, zN

}
DN (ωN ) .

(3.1)

Exactly one random variable is to be selected, hence:

DN (ωN) ≡ 1

and

P
{
MN | Ak, A

′
1, . . . , A′

k−1, zk

}
= 0 if xk ≤ rk−1

= xN−k
k if xk > rk−1

where rk = max(x1, x2, . . .xk) for k = 1, . . . , N.(3.2)

Substitution of (3.2) into (3.1) yields:

P γ
D {MN} =

∫ 1

0

xN−1
1 D1 (ω1)dx1

+
N∑

k=2

⎡
⎣k−1∏

j=1

∫ 1

0

dxj(1 −Dj (ωj))

⎤
⎦∫ 1

rk−1

dxkxN−k
k Dk(ωk).(3.3)

In order to find D∗, the first step is to find D∗
N−1 (ωN−1) .

The last two terms of the summation in (3.3) may be written as:

N−2∏
j=1

∫ 1

0

dxj (1 − Dj (ωj)) φ(zN−2)

where

φ(zN−2) = (1− r2
N−2)/2 +

∫ 1

rN−2

dxN−1 (2xN−1 − 1)DN−1 (ωN−1)

− (1 − rN−2)
∫ N−2

0

DN−1 (ωN−1)dxN−1.(3.4)

In order to maximize (3.3), one must first maximize φ(zN−2). This can only be done by
first specifying the information ωN−1.

4 Optimal policies for various types of information
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A. No information: In this case the most general decision is:

D∗
N−1 (ωN−1) = pN−1

as it cannot be a function of zN−2. Therefore

φ(zN−2) = (1− r2
N−2)/2

which is not a function of pN−1, namely pN−1 may be arbitrarily selected. Successively
substituting D∗

k (ωk) = pk, one finally obtains:

P A {MN} =
∫ 1

0

dx1x
N−1D∗

1(ω1) +
∫ 1

0

dx1(1− D∗
1(ω1))(1 − xN−1

1 )/(N − 1).(4.1)

With D∗
1(ω1) = p1, one finds P A {MN } = 1/N as expected. This illustrates that any

policy is as good as any other policy when there is no information available. Hence
we may select the policy D∗

1(ω1) ≡ 1. Then

P A {KN = k} = 1 if k = 1
= 0 otherwise

and

EA {KN} /N = P A {MN} = 1/N.(4.2)

This confirms the Conjecture with β = 0.

B. Complete information: In this case DN−1(ωN−1) can be based on a complete
knowledge of zN−2. (3.4) is then obviously maximized when:

D∗
N−1(ωN−1) = 1 if xN−1 > max(0.5, rN−2)

= 0 otherwise.(4.3)

Hence

φ(zN−2) = (1− r2
N−2)/2 + 1/4 if rN−2 ≤ 1/2

= (1− r2
N−2)/2 + rN−2(1 − rN−2) if rN−2 ≥ 1/2(4.4)

Substitution into (3.3) and evaluation of the next optimal policy step, one obtains:

D∗
N−2(ωN−2) = 1 if xN−2 > max(rN−3, (1 +

√
6)/5)

= 0 otherwise(4.5)

Successive substitution and policy evaluation yields:

D∗
k(ωk) = 1 if xk > max(rk−1, LN−k) for k = 1, . . . , N − 1

= 0 otherwise

where Lr is the unique root in [0, 1) of

r∑
j=1

(
x−j − 1

)
/j = 1.(4.6)
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Substitution of (4.6) and (3.3) yields:

P B {MN} =

[
1 +

N−1∑
r=1

N−1∑
s=r

Ls
N−r/s

]
/N.(4.7)

Table 1 lists values of Lr for r ≤ 100. Empirically, one also obtains:

lim
N→∞

P B {MN} = 0.5802.(4.8)

The optimal policy in this case is given by (4.6). In order to find P B {KN = k} ,
consider the following revised policy when the kth random variable is sampled:

πk(ωk, z) = 1 if xk > max{rk−1 , LN−k, z)
= 0 otherwise for k = 1, . . . , N − 1

πN (ωN , z) ≡ 1.(4.9)

Then πk(ωk, 0) = D∗
k(ωk) as defined in (4.6). Let

Pz {KN = k} = P {KN = k | policy π is being followed} .

Then one can write:

Pz {KN = 1} = 1 − max(z, LN−1)

Pz {KN = k} = zPz {KN−1 = k − 1} +
∫ max(z,LN−1)

z

Px {KN−1 = k − 1} dx, for k ≥ 2.

(4.10)

When z = 0, P0 {KN = k} = P B {KN = k} . From (4.10), the distribution sought is:

P B {KN = k} = 1 − LN−1 when k = 1

=
k−1∑
r=1

Lk−1
N−r/(k − 1) −

k∑
r=1

Lk
N−4/k when 2 ≤ k ≤ N − 1

=
N−1∑
r=1

LN−1
N−r/(N − 1) when k = N.(4.11)

The first moment is then found to be:

EB {KN} /N =

(
1 +

N−1∑
r=1

N−1∑
s=r

Ls
N−r/s

)
/N = P B {MN} .(4.12)

Again this confirms the Conjecture with β = 0.

C. Sample extremum information:

The information that xN−1 is greater or less than the previous maximum implies that
the most general form of the first policy decision is:

DN−1(ωN−1) = pN−1 if xN−1 > rN−2

= qN−1 if xN−1 ≤ rN−2.(4.13)
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This results in:

φ(zN−2) = (1− r2
N−2)/2 + (pN−1 − qN−1)rN−2(1 − rN−2)(4.14)

which implies the optimal (N − 1)th decision to be:

D∗
N−1(ωN−1) = 1 if xN−1 > rN−2

= 0 otherwise, for N > 2.(4.15)

Successive integrations in (3.3) finally yield:

D∗
k(ωk) = 1 if xk > rk−1 and k > ξ

= 0 otherwise

where ξ is uniquely determined from:

1 ≤
N−1∑
i=ξ

i−1 ≤ 1 + 1/ξ.(4.16)

(3.3) now becomes:

P c {MN} =
ξ

N

N−1∑
i=ξ

i−1.(4.17)

The limiting relation may be obtained by letting:

α = lim
N→∞

ξ/N.

From (4.16) one finds α = e−1 = 0.3679 and hence:

lim
N→∞

P C {MN} = 0.3679(4.18)

Now

P C {KN = k} = 0 if k ≤ ξ

= ξ/(k(k − 1)) if k = ξ + 1, . . . , N − 1
= ξ/(N − 1) if k = N.(4.19)

The first moment is:

EC {KN} = ξ + ξ

N−1∑
i=ε

i−1

or equivalently:

(EC {KN} − ξ)/N = P C {MN} .(4.20)

Again the Conjecture is satisfied with β = ξ.
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D. Single level information:
At each sampling, the information available is whether the random variable sampled
is greater or less than some level l, see Enns [2]. The most general decision based on
this information is:

DN−1(ωN−1) = pN−1 if xN−1 > l

= qN−1 if xN−1 ≤ l.(4.21)

One need only consider l > rN−2, hence this yields:

φ(zN−2) = (1 − r2
N−2)/2 + (pN−1 − qN−1)l(1− l).(4.22)

Thus the optimal (N−1)th decision which is the same as all previous optimal decisions
is:

D∗
k(ωk) = 1 if xk > l

= 0 if xk ≤ l.(4.23)

In this example (3.3) becomes:

P D {MN} = lN

[
1/N +

N∑
k=1

(l−k − 1)/k

]
(4.24)

where l must be chosen to maximize (4.24).
Table 2 lists optimal values of l for 1 ≤ N ≤ 50 after which the asymptotic value of
l, namely l = exp(−a/N ) with a = 1.502861 may be used. For N > 50, the accuracy
of this estimate is

|l − exp(−a/N | ≤ 0.00011.(4.25)

Asymptotically, (4.24) becomes

lim
N→∞

P D {MN} =
(
1 − e−a

)
/a = 0.51735.(4.26)

Selected values of P {MN} are tabulated in Table 3 for information sources A, B,
C and D. Many other information sources could of course have been considered.
Another information source could have been whether the random variable sampled is
greater or less than some constant times the sample mean of the random variables
previously sampled. Other examples could be constructed using mixtures of the above
information sources. An example of this is given later in the article.

When following policy (4.23), one obtains:

P D {KN = k} = lk−1(1 − l) for k = 1, . . . , N − 1

= lN−1 for k = N.(4.27)

This implies that:

ED {KN} = (1 − lN )/(1 − l).(4.28)

Differentiating (4.24), one finds:

dPD {MN} /dl = NP D {MN} /l − ED {KN} /l.(4.29)

The policy being optimal requires dPD {MN} /dl = 0, hence ED {KN} /N = P D {MN} .

This confirms the Conjecture with β = 0.

Variations on the Single-level problem have been published by Sakaguchi and Sza-
jowski [4][5].
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5 A mixture example

E. Mixture of information sources B and C:

When the first random variable is presented, its’ value is known, however the distribution
from which it was obtained is unknown. For subsequent random variables the distribution is
known and complete information about the value a random variable assumes when sampled
is known.

The optimal strategy in this case is intuitively obvious based on the previous discussion,
namely, D∗

1(ω1) ≡ 0 and D∗
k(ωk) for k > 1 is given by (4.6). One can now write:

P E {MN} = P E {MN , X1 ≤ LN−1} + P E {MN , X1 > LN−1}(5.1)

where

P E {MN , X1 ≤ LN−1} = P B {MN , X1 ≤ LN−1} = P B {MN} − (1− LN
N−1)/N(5.2)

and

P E {MN , X1 > LN−1} =
N∑

l=2

∫ 1

LN−1

dxxl−2

∫ 1

x

uN−ldu

=
(1 + LN

N−1)
N

N−1∑
i=1

i−1 −
N−1∑
i=1

L−i
N−1

i(N − i)
.(5.3)

Hence

P E {MN} = P B {MN} − (1 −LN
N−1)

N
+

(1 + LN
N−1)

N

N−1∑
i=1

i−1 −
N−1∑
i=1

L−i
N−1/(i(N − i)).

(5.4)

Similarly:

EE {KN} = EE {KN | X1 ≤ LN−1}P {X1 ≤ LN−1} + EE {KN | X1 > LN−1}P {X1 > LN−1}
(5.5)

where

EE {KN | X1 ≤ LN−1}P {X1 ≤ LN−1} = EB {KN} − (1 −LN−1)(5.6)

and

P E {KN = k, X1 > LN−1} = (1 −Lk−1
N−1)/(k − 1) − (1 − Lk

N−1)/k for k = 2, . . . , N − 1

= (1 −LN−1
N−1)/(N − 1) for k = N.(5.7)

Hence

EE {KN | X1 > LN−1}P {X1 > LN−1} = 1 − LN−1 +
N−1∑
k=1

(
1 − Lk

N−1

)
/k(5.8)

from which one finally obtains:

EE {KN} = EB {KN} +
N−1∑
k=1

(1 − Lk
N−1)/k.(5.9)



OPTIMAL SEQUENTIAL DECISIONS WITH INFORMATION INVARIANCE 189

Utilizing (4.12) one obtains the relation:

(EE {KN} − 1)/N = P E {MN} − LN
N−1

N

[
1 −

N−1∑
r=1

L−r
N−1 − 1

r

]
= P E {MN}(5.10)

from the definition of LN−1 in (4.6).
The conjecture is therefore verified in this somewhat more complex example.
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table 1

r Lr r Lr r Lr

1 .50000 34 .97674 67 .98810
2 .68990 35 .97739 68 .98927
3 .77585 36 .97801 69 .98944
4 .82459 37 .97859 70 .98860
5 .86696 38 .97915 71 .98876
6 .87781 39 .97968 72 .98892
7 .89391 40 .98018 73 .98907
8 .90627 41 .98065 74 .98921
9 .91604 42 .98111 75 .98936
10 .92398 43 .98154 76 .98950
11 .93054 44 .98196 77 .98963
12 .93606 45 .98235 78 .98976
13 .94077 46 .98273 79 .98989
14 .94483 47 .98309 80 .99002
15 .94837 48 .98344 81 .99014
16 .95148 49 .98378 82 .99026
17 .95424 50 .98410 83 .99038
18 .95671 51 .98440 84 .99049
19 .95892 52 .98470 85 .99060
20 .96091 53 .98499 86 .99071
21 .96272 54 .98526 87 .99082
22 .96437 55 .98553 88 .99092
23 .96589 56 .98578 89 .99102
24 .96737 57 .98603 90 .99112
25 .96855 58 .98627 91 .99122
26 .96974 59 .98650 92 .99131
27 .97083 60 .98672 93 .99140
28 .97185 61 .98694 94 .99150
29 .97281 62 .98715 95 .99158
30 .97369 63 .98735 96 .99167
31 .97453 64 .98754 97 .99176
32 .97531 65 .98773 98 .99184
33 .97605 66 .98792 99 .99192

Optimal values of Lr in the complete
information case with N ≤ 100.
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table 2

N l N l N l N l N l

1 0 11 .87426 21 .93152 31 .95295 41 .96417
2 .5 12 .88396 22 .93450 32 .95438 42 .96500
3 .62284 13 .89227 23 .93724 33 .95572 43 .96580
4 .69784 14 .89947 24 .93975 34 .95699 44 .96656
5 .74814 15 .90577 25 .94207 35 .95819 45 .96729
6 .78415 16 .91132 26 .94422 36 .95932 46 .96798
7 .81118 17 .91626 27 .94622 37 .96039 47 .96865
8 .83221 18 .92068 28 .94808 38 .96141 48 .96929
9 .84903 19 .92466 29 .94981 39 .96237 49 .96991
10 .86279 20 .92825 30 .95143 40 .96329 50 .97050

Optimal values of l in the single level information case.

table 3

N P A {MN} P B {MN} P C {MN} P D {MN}

1 1 1 1 1
2 0.5000 0.7500 0.5000 0.7500
3 0.3333 0.6843 0.5000 0.6703
4 0.2500 0.6554 0.4583 0.6312
5 0.2000 0.6392 0.4333 0.6080
6 0.1667 0.6288 0.4278 0.5926
7 0.1429 0.6215 0.4143 0.5817
8 0.1250 0.6161 0.4098 0.5736
9 0.1111 0.6120 0.4060 0.5673
10 0.1000 0.6087 0.3987 0.4522

20 0.0500 0.5942 0.3842 0.5397
50 0.0200 0.5857 0.3743 0.5263
100 0.0100 0.5829 0.3710 0.5218
∞ 0 0.5802 0.3679 0.5174

Selected Values of P γ {MN} for
Various Types of Information
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