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Abstract. The best constant of Sobolev space of order M defined on �n : W M (�n) is
obtained using the reproducing kernel which is the Green function of some high order
elliptic partial differential operator on �n .

1 Introduction Let H := WM (Rn) be the Sobolev space of order M satisfying 2M > n,
then the well-known Sobolev’s inequality (Sobolev embedding) [1, Cor. 9.13] asserts

( sup
y∈Rn

|u(y)|)2 ≤ C‖u‖2
H ,(1)

where ‖ · ‖H is the norm of H which is induced by the certain inner product attached to
H . In [2], Hegland and Marti obtained the best constant of the inequality (1) when n = 1,
M = (1, 2 · · · ) and n = 2, M = 2 assuming the usual inner product

(u, v)H =
∑

|α|≤M

(∂αu, ∂αv)L2(Rn).(2)

Another result for the best constant of the embedding of WM (Rn) into L∞(Rn) is by Morosi
and Pizzocchero [3]. It is shown in [3] that the best constant is

C(n,M) = (
1
4π

)
n
2

Γ(M − n
2 )

Γ(M)
,

under the assumption on the inner product:

(u, v)H =
∫

Rn

(1 + |ξ|2)M û(ξ)v̂(ξ)dξ.(3)
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This paper develops the result of [3], adopting the generalized inner product1

(u, v)H

(4)

: =
∫

Rn

[
[M/2]∑
j=0

pM−2j

(
∆ju(x)

) (
∆jv(x)

)
+

[ M−1
2 ]∑

j=0

pM−2j−1 ∇
(
∆ju(x)

) · ∇(
∆jv(x)

) ]
dx

= (2π)−n

∫
Rn

[
[M/2]∑
j=0

pM−2j(|ξ|2)2j û(ξ)v̂(ξ) +
[ M−1

2 ]∑
j=0

pM−2j−1(|ξ|2)2j+1û(ξ)v̂(ξ)

]
dx

= (2π)−n

∫
Rn

(−1)M p(−|ξ|2) û(ξ) v̂(ξ) dξ, (∀u, v ∈ H),

where

p(λ) =
M−1∏
j=0

(λ − αj) =
M∑

j=0

(−1)j pj λM−j ,(5)

and {αi}M−1
i=0 are positive numbers satisfying 0 < α0 < α1 < · · · < αM−1. Therefore, the

result of [3] is understood as the degenerated case (α0 = · · · = αM−1 = 1) of this paper.

2 Reproducing kernel In this section, we compute the reproducing kernel of H which
is needed for the proof of Theorem 3. Let G(α;x) be the Green function of the differential
operator (−1)M p(∆). Then the following theorem holds:

Theorem 1 Assume 2M > n then Green function K(x, y) = G(α;x−y) is the reproducing
kernel with respect to the Hilbert space H and an inner product (u, v)H of Eq. (4). That is
to say, for any y ∈ R

n, K(x, y) belongs to H as a function of x and for almost all y ∈ R
n

we have

(u(x),K(x, y))H = u(y).(6)

Proof of Theorem 1 : Since

Ĝ(α; ξ) = (−1)Mp(−|ξ|2)−1,(7)

K̂(ξ, y) = e−
√−1<ξ,y>Ĝ(α; ξ) holds. In order to show that K(x, y) ∈ H , it is enough to

show that |ξ|M |Ĝ(α; ξ)| ∈ L2(Rn) and Eq. (6), but this is assured by the condition n < 2M .
By Eq. (4) we have

(u(x),K(x, y))H = (2π)−n

∫
Rn

(−1)M p(−|ξ|2) û(ξ) e−
√−1<ξ,y> Ĝ(α; ξ) dξ =

(2π)−n

∫
Rn

e
√−1<ξ,y> û(ξ) dξ = u(y)

where we have used (7). This completes the proof of Theorem 1. �
1The norm induced by the inner products Eqs. (3) and (4) induce equivalent norms to the one induced

by the usual inner product (2).
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3 Main Results Using the well-known theory of reproducing kernel we have the main
results of this paper.

Theorem 2 Let 2M > n, then for every u in H there exists a positive constant C which
is independent of u such that the following Sobolev inequality holds.(

sup
y∈Rn

∣∣u(y)
∣∣)2

≤ C||u||2H = C(u, u)H(8)

Among these constants C the best constant is

C(n,M) = sup
y∈Rn

K(y, y) = G(α; 0)(9)

If we replace C by C(n,M) in the above inequality, the equality holds for u(x) = K(x, y)
for every fixed y ∈ R

n.

The proof of this theorem is easy so we omit it; see [4, p. 812] . The best constants are
given by the following theorem.

Theorem 3
(1) For M = 2, 3, 4, · · · , we assume that an odd number n = 2q + 2 satisfies q − 1/2 =
0, 1, 2, · · · , M − 2. Then we have

C(2q + 2, M) = (−1)M+q−1/2 1
4Γ(q + 1)

(
1
4π

)q M−1∑
j=0

ej αq
j =(10)

(−1)M+q−1/2 1
4Γ(q + 1)

(
1
4π

)q
∣∣∣∣∣∣∣∣

αi
j

αq
j

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣ αi

j

∣∣∣∣∣
where the numerator is the determinant of an M × M matrix (0 ≤ i ≤ M − 2, 0 ≤ j ≤
M − 1) and the denominator is the determinant of an M × M Vandermonde matrix and
ej = 1/p′(αj) (0 ≤ j ≤ M − 1).
(2) For M = 2, 3, 4, · · · we assume that an even number n = 2q+2 satisfies q = 0, 1, 2, · · · , M−
2. Then we have

C(2q + 2, M) = (−1)M+q 1
Γ(q + 1)

(
1
4π

)q+1 M−1∑
j=0

ej αq
j log αj =(11)

(−1)M+q 1
Γ(q + 1)

(
1
4π

)q+1

∣∣∣∣∣∣∣∣
αi

j

αq
j log αj

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣ αi

j

∣∣∣∣∣
As shown in Theorem 2, the best constant is given by

G(α; 0) =
(−1)M

(2π)n

∫
Rn

1
p(−|ξ|2)dξ =

1
(2π)n

∫
Rn

1
M−1∏
j=0

(|ξ|2 + αj)

dξ.(12)
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Indeed, this integral can be computed by calculus of residues. This approach is seen in
Appendix. We remark that the residue computation results in Appendix were deduced
from the one obtained by the following more direct computation. For the direct computation
approach, we introduce an another expression for G(α, 0).

Lemma 1 The Green function for the differential operator (−1)M p(∆) has the following
integral representation:

G(α;x) =
∫ ∞

0

e(α; t)H(x, t) dt,(13)

e(α; t) = (−1)M−1
M−1∑
j=0

ej e−αjt,

H(x, t) = (4πt)−n/2 exp(− |x|2/(4t)),

where H(x, t) is the heat kernel.

Proof of Lemma 1 : Applying well-known formula of expansion by partial fractions

p(λ)−1 =
M−1∑
j=0

ej (λ − αj)−1

to Eq. (7), we have

Ĝ(α; ξ) = (−1)M
M−1∑
j=0

ej (−|ξ|2 − αj)−1 = (−1)M

∫ ∞

0

M−1∑
j=0

eje
−(|ξ|2+αj)tdt

=
∫ ∞

0

e(α; t) e−|ξ|2t dt.

Using well known formula Ĥ(ξ, t) = e−|ξ|2t we obtain (13). �
Now we state a fundamental lemma concerning e(α; t).

Lemma 2 e(α; t) is an entire function of t and can be expressed by a Taylor series

e(α; t) = (−1)M−1
∞∑

i=M−1

⎛⎝M−1∑
j=0

αi
jej

⎞⎠ (−1)i

i!
ti.(14)

This follows at once from the well-known fact

M−1∑
j=0

αi
j ej = δi,M−1 =

{
0 (0 ≤ i ≤ M − 2)
1 (i = M − 1).

(15)

Before, going to the proof of Theorem 3, we prove another important fact that G(α; ·) is
positive.

Proposition 1 G(α; ·) is positive.
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Proof of Proposition 1: It is enough to show that e(α; t) > 0, since by Eq. (13),
H(x, t) > 0. From (13) and (15), we see that e(α; t) = e(α0, α1, . . . , αM−1; t) is the solution
of the initial value problem:

(
d

dt
+ αM−1) · · · ( d

dt
+ α1)(

d

dt
+ α0)e(α0, α1, . . . , αM−1; t) = 0,(16)

e(i)(α; 0) =

{
0 (0 ≤ i ≤ M − 2)
1 (i = M − 1).

From this fact, we know that e(α; t) = e(α0, α1, . . . , αM−1; t) can be expressed as

e(α0, α1, . . . , αM−1; t)(17)

=
∫ t

0

e(α0, α1, . . . , αM−2; t − s) · e(αM−1; s)ds

=
∫ t

0

(e(α0; ·) ∗ · · · ∗ e(αM−2; ·))(t − s)e(αM−1; s)ds

= (e(α0; ·) ∗ · · · ∗ e(αM−1; ·))(t).
Since e(α0; t) = e−α0t > 0, by induction, e(α; t) is positive. �
Now, we prove Theorem 3.
Proof of Theorem 3 : By Theorem 2 we have

C(2q + 2, M) = G(α; 0) =
∫ ∞

0

e(α; t)H(0; t) dt =

(
1
4π

)q+1 ∫ ∞

0

e(α; t) t−q−1 dt.

We assumed n = 2q + 2 > 2M that is M − q − 1 > 0 so the above integral is convergent
because of the Taylor expansion.

e(α; t) =
1

(M − 1)!
tM−1 + · · ·

Differentiating the above expression we also have

e(j)(α; t) =
1

(M − j − 1)!
tM−j−1 + · · · (0 ≤ j ≤ M − 1).

At first we treat the case (1). Integrating the relation⎡⎣ q−1/2∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j)

⎤⎦′

=

e(q+1/2)(α; t) Γ(1/2) t−1/2 − e(α; t) Γ(q + 1) t−(q+1)

on the interval 0 < t < ∞ we obtain

0 =
q−1/2∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j)

∣∣∣∣t=∞

t=0

=

Γ(1/2)
∫ ∞

0

e(q+1/2)(α; t) t−1/2 dt − Γ(q + 1)
∫ ∞

0

e(α; t) t−q−1 dt.
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Hence we have ∫ ∞

0

e(α; t) t−q−1 dt =
Γ(1/2)

Γ(q + 1)

∫ ∞

0

e(q+1/2)(α; t) t−1/2 dt =

(−1)M+q−1/2 Γ(1/2)
Γ(q + 1)

M−1∑
j=0

ej α
q+1/2
j

∫ ∞

0

e−αjt t−1/2 dt.

Owing to the relation ∫ ∞

0

e−αjt t−1/2 dt = Γ(1/2) α
−1/2
j

finally we have ∫ ∞

0

e(α; t) t−q−1 dt = (−1)M+q−1/2 Γ(1/2)2

Γ(q + 1)

M−1∑
j=0

ej αq
j .

This proves case (1).
Next we treat the case (2). Integrating the relation⎡⎣q−1∑

j=0

e(j)(α; t) Γ(q − j) t−(q−j)

⎤⎦′

= e(q)(α; t)t−1 − e(α; t) Γ(q + 1) t−q−1

on the interval 0 < t < ∞ we obtain

0 =

⎡⎣q−1∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j) − e(q)(α; t) log t

⎤⎦∣∣∣∣∣
t=∞

t=0

=

− Γ(q + 1)
∫ ∞

0

e(α; t) t−q−1 dt −
∫ ∞

0

e(q+1)(α; t) log t dt.

So we have ∫ ∞

0

e(α; t) t−q−1 dt = − 1
Γ(q + 1)

∫ ∞

0

e(q+1)(α; t) log t dt =

(−1)M+q−1

Γ(q + 1)

M−1∑
j=0

ej αq+1
j

∫ ∞

0

e−αjt log t dt.

Considering that ∫ ∞

0

e−αjt log t dt = −α−1
j (log αj + γ)

where γ = 0.577 · · · is the constant of Euler, finally we obtain∫ ∞

0

e(α; t) t−q−1 dt =
(−1)M+q

Γ(q + 1)

⎡⎣ M−1∑
j=0

ej αq
j log αj + γ

M−1∑
j=0

ej αq
j

⎤⎦ =

(−1)M+q

Γ(q + 1)

M−1∑
j=0

ej αq
j log αj .
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Here we used the fact

M−1∑
j=0

ej αq
i = 0 (0 ≤ q ≤ M − 2).

This completes the proof of case (2). �

4 Special case We here treat the simplest case M = 2, where the condition n < 2M
means that n = 2, 3. In this case, the Sobolev space H = W 2(Rn) consists of all the
functions u(x) ∈ L2(Rn) satisfying ∆u(x) ∈ L2(Rn). We assume that the inner product for
any u, v in H is given by

(u, v)H =
∫

Rn

[
(∆u(x)) (∆v(x)) + p1 (∇u(x)) · (∇v(x)) + p2 u(x) v(x)

]
dx,

where p1 = α0 +α1, p2 = α0α1 for some pair of positive numbers α0 and α1 (0 < α0 < α1).
As a special case of Theorem 2 and 3 we have

Theorem 4 We assume that n = 2, 3. For every u(x) in H = W 2(Rn) there exists a
positive constant C which is independent of u(x) such that the following Sobolev inequality
holds. (

sup
y∈Rn

|u(y)|
)2

≤ C

∫
Rn

(|∆u(x)|2 + p1 |∇u(x)|2 + p2 |u(x)|2) dx.(18)

Among these constants C the best constant is

C(n, 2) =

⎧⎪⎪⎨⎪⎪⎩
1
4π

log α1 − log α0

α1 − α0
(n = 2)

1
4π

1

α
1/2
0 + α

1/2
1

(n = 3).

If we substitute C(n, 2) into C in the above inequality (18), the equality holds for u(x) =
K(x, y) for every fixed y ∈ R

n. The reproducing kernel K(x, y) is given by the following
formula.

K(x, y) = G(α0, α1; x − y) =
∫ ∞

0

e(α0, α1; t)H(x − y, t) dt =∫ ∞

0

1
α1 − α0

(e−α0t − e−α1t)H(x − y, t) dt(19)

where

H(x, t) =

⎧⎨⎩(4πt)−1 exp
(−(x2

1 + x2
2)/(4t)

)
(n = 2)

(4πt)−3/2 exp
(−(x2

1 + x2
2 + x2

3)/(4t)
)

(n = 3)

is the heat kernel.
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5 Appendix First we show that the integral of Eq. (12) when n is odd can be computed
by calculus of residues. Representing the integral by the polar coordinate (r, θ1, . . . , θn−1)
∈ [0,∞) × [0, π] × · · · [0, π] × [0, 2π], we have

I :=
|Sn−1|
(2π)n

∫ ∞

0

rn−1

M−1∏
k=0

(r2 + αk)

dr.(20)

If n is odd, by calculus of residues, we obtain

I =
1

(2π)n

2π
n
2

Γ(n
2 )

1
2

∫ ∞

−∞

rn−1

M−1∏
k=0

(r2 + αk)

dr(21)

=
2π

√−1
(4π)

n
2 Γ(n

2 )

M−1∑
j=0

(−αj)
n−1

2

2
√−αj

M−1∏
k=0,k �=j

(−αj + αk)

= (−1)M−1+ n−1
2

1
4Γ(n

2 )

(
1
4π

)n−2
2 M−1∑

j=0

ejα
n−2

2
j .

This coincides with the result of Theorem 3 (i). Next, we compute the case, that n is even.
By the change of the variable, we have

I =
|Sn−1|
2(2π)n

∫ ∞

0

z
n−2

2

M−1∏
k=0

(z + αk)

dz(22)

Let f(z) =z
n−2
2 /ΠM−1

k=0 (z + αk) and integral path of f be as in Figure 1. Then we have

−εR O x

y

R
C

C�

Figure 1: Integral path of f .
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∫ R

ε

(log x)f(x)dx −
∫ R

ε

(log x + 2π
√−1)f (x)dx

+ {integral on CR and Cε} = 2π
√−1Res((log z)f(z))

By taking the limit R → ∞ and ε → 0, we have∫ ∞

0

f(x)dx = −Res((log z)f(z)) = −
M−1∑
j=0

(log(−αj))
(−αj)

n−2
2∏

k=0,k �=j

(−αj + αk)

= (−1)M−q
M−1∑
j=0

(log(αj) + π
√−1)αq

jej = (−1)M−q
M−1∑
j=0

ejα
q
j log αj

Substituting this to Eq. (22), we obtain the result.
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