Scientiae Mathematicae Japonicae Online, e-2004, 331-338 331

TREE BASED ALGORITHM FOR THE FLOW-SHOP MODEL TO
MAXIMIZE NUMBER OF JUST-IN-TIME JOBS

Naovya HONDA ** Hiroakl ISHII ¢, TEruo MASUDA °®

Received October 1, 2004

ABSTRACT. We study the flow-shop problem nonpreemptively scheduling n jobs on m
machines to maximize the number of just-in-time jobs. This network type algorithm
is based on a binary tree structure. We define the superiority relation of a partial
schedule, and propose an efficient rule that searches only partial schedules extensible
to optimal schedules. We show that this algorithm finds an optimal schedule for this
problem in a low polynomial time.

1 Introduction The paper deals with flow-shop scheduling problem to maximize the
number of just-in-time jobs. Each of the n jobs J; (i = 1, - -+, n) consists of a chain in a
linear order of m operations (O;1, O;a, - -+, O;m) that have to be completed exactly at their
due dates. We are interested in maximizing the number of jobs completed just-in-time. We
show that this problem is solvable in a low polynomial time by using a new network type
algorithm.

There is now a substantial body of literature on just-in-time production systems since the
publication of the first paper by Sugimori et al. in 1977 on the Toyota Production System
[9]. Baker and Scudder [1] reviewed the literature on scheduling models with earliness and
tardiness penalties in 1990. These authors pointed out that the single-machine scheduling
problem with a restricted common due date has never been addressed in the literature.
Numerous results on other related single machine JIT scheduling problems can be found
in the survey paper by Li et al. [7], Davis and Kanet (2], Federgruen and Mosheiov [3],
Liman and Lee [6], Li et al. [8], and Kim and Yano [4], among others. K. Hiraishi et
al. [5] proposed an algorithm for the parallel identical machine problem of maximize the
weighted number of just-in-time jobs, which is solvable in a polynomial time.

2 Problem formulation We consider the following permutation flow-shop problem:

e There are m machines My, Ms, ..., M,,, and n jobs Ji, Jo, ..., Jn to be processed on
these machines.

o At each machine, processing order is equal for all jobs, i.e., permutation schedule.

e Processing time of each job on each machine is known.

e Each job can be processed on any machine but it must be processed without preemp-

tion.

e A nonnegative due date d;; is associated with each job J; on M; (j = 2,3,... ,).

o If di; < dij(k # 1) holds, di(j+1) < di(j+1) also holds due to the permutation flow-
shop.

2000 Mathematics Subject Classification. 90B35.
Key words and phrases. Just-in-time, Flow-shop, Binary tree, Polynomial algorithm, Non-dominated

solution.

332 N. HONDA, H. ISHII AND T. MASUDA

We use the following notations:

t - Time.

J; -Jobi (i=1,2,...,).
M; - Machine j (j =1,2,...,m).
pij - Processing time of job ¢ on machine j.
d;; - Due date of job i on machine j (j=2,3,...,n).
S;; - Start time of job i on machine j.
C;; - Completion time of job 7 on machine j.

m - A certain permutation schedule.

Jx(i) - t-th processed job on schedule =

The objective is to maximize the number of jobs completed on at their due dates. There-
fore the job that is not enough just in time on the due date is processed by postponement.
We consider the problem that the due date exist in each machine except M. Therefore all
jobs on machine M; is processed in no-wait.

The example of feasible schedule is shown in the following Gantt chart.

d, dys
d, by dpdy; dpdy ds, dsy 1

—_—
>

1 H

mlan T 0 [5| J4“[J5|

M2 | J| | J2 J3 [J4 JS

M, l_—_J:ELL__J FAmFA

Figure 1: Feasible schedule

3 Solution algorithm At first n jobs are sorted by EDD rule. Sorted jobs are described
as Ji,Joy. .. ,Jn (d1 < dg < ... < dy) without any loss of generality by changing index of
job if necessary. The objective is to maximize the number of just-in-time job. We define
a state of i-th job as b(i) = {0,1,?} (i = 1,2,...,n), when b(i) = 1 is completed just-in-
time. We define a binary sequence of length n for a schedule. The binary sequence with
the maximum number of elements of glh is the optimal schedule. The schedule is called a
partial schedule that g?h is included in a sequence. For example, it is assumed that there is
the following schedule. Ji, Jo are processed just-in-time. J3 is processed by postponement.
Processing of Jy and Js is not determined yet. Then that partial schedule is expressed as
{1,1,0,7,7} .

Fig. 2 shows binary tree structure as a method to enumerate {0,1} sequence. In Fig. 2,
there is one partial schedule in each node. In node A, Jy is processed just-in-time, Jz
processed just-in-time, too, Js processed by postponement, and Jy, Js, -+, Jn not fixed.
This partial schedule is expressed as {1,1,0,7...7} . A enumeration of all schedules is
expressed by node expansion with such a binary tree structure. Fig. 3 shows the new
network structure compressed from tree structure in Fig. 2. Each level means the number
of just-in-time jobs. Set of partial schedules is attached to each node. Label in a node
shows the number of the contained in it partial schedule. For example, in node D shown

TREE BASED ALGORITHM 333

L, y

v/ \

1@0 10
ofoJoll
@cb

J,

9 9 epos

1
Figure 2: Binary tree structure

in Fig. 3, there are three partial schedules with two just-in-time jobs among Ji, Ja and Js.
That partial schedule is expressed as {0,1,1,7...7}, {1,0,1,7...7}, {1,1,0,7...7}. These
partial schedules correspond to three nodes A,B,C shown in Fig. 2.

@ 3 JIT (just-in-time) jobs

/
é—o—’ @ 2 JIT jobs

<§o~<§o~@
C§'0"’ (6‘0—’ 65'0-’ @ 0 JIT job

Figure 3: Network model transformed from binary tree

Fig. 4 shows the network model with labeled nodes and arcs. We define the notation
used in Fig. 4.

apq - Node at the level p in phase g. There are partial schedules with p just-in-time jobs
among Jy ... Jg.
p - Level p of a vertical direction (p < g|p=0,1,... ,n).
q - Phase ¢ of a horizontal direction (p < ¢lg=0,1,...,n).
Xpq - Arc from apg_1) to ayq (p # q)-

334 N. HONDA, H. ISHII AND T. MASUDA

Yyq - Arc from a(p—1)(g—1) t0 apq (p # 0).

m - A certain partial schedule in node ag,.
Ch; - Completion time of the last just-in-time job on machine M; in the partial schedule

Pl
o

ﬁ%q'”” - A certain partial schedule in node a,q where J,;, can be processed just-in-time.

MPa~IIT _ A get of partial schedules in node apq where Jgi1 can be processed just-in-time.

Cﬁ.—’JIT - Completion time of the last just-in-time job on Mj in the partial schedule w’éq_'JIT.

[oA9T

Figure 4: Network model

Rule of node expansion:

In node expansion Xpq (from apg—1) t0 apq), Jy is not processed just-in-time for all partial
schedules in a,(g_1). Jq is processed by postponement. Therefore, b(q) = 0 is set for all
partial schedules to satisfy

q—1

3 b)) =p, b(g)=b(g+1)=--=b(n) =?

i=1

In node expansion Ypq (from a(,—1)(g—1) t0 @pq), Jq is is processed just-in-time for all partial
schedules in a,(q_1). Therefore, b(q) = 1 is set for all partial schedules to satisfy

Y b@)=p-1b(@)=blg+1) =" =b(n)=?

TREE BASED ALGORITHM 335

Thus, the enumeration of all the schedules can be expressed by node expansion from

phase 1 to phase ¢q. The schedule which satisfies max Z b(4) is the optimal schedule in
=1
the combination of all schedules. A characteristic of network structure is shown in Fig. 4,

there are partial schedules with the same numbers of just-in-time jobs in each node. When
the node is expanded to the last phase, a combination of all schedules is expressed. How-
ever, when n is large, it is unrealistic to expand all node because There exists 2" schedule
combinations. We suggest improvement rule of node expansion. Only a node with optimal
possibility is expanded, but the rest are cut off.

Definition 1 Domination of a partial schedule

In node apq, 757 is superior to 75 when corresponding m-dimensional vectors (C73,... ,Ci1,),
Pq :
(CRis- -+ CRin) satisfy
Pq Pq (s _ Pq 4 - Pq
Ci;<Ck; (G=1,....m), = #mg

In this case we say 777 dominates mh.

Proposition 1

In the above case, even if partial schedule 7% is deleted, an optimal schedule can be ob-
tained.

Proof. Each schedule in node a,q has a common property that Z b(i) = p and

b(g+1)=b(g+2)=---=b(n) =?. A different point is combination of {b(l) b(,b(q)}
Processed job just-in-time from among Jq+1, Jg+25 - -+ , Jn is influenced by the complete tlme
of a last just-in-time job in Jy, Jy,.. J since all jobs are sorted in an EDD rule. If an
optlmal schedule is expanded from 7%, the partial schedule after J,4; is feasible also in

74 shown in Fig. 5. This completes the proof.

. Pq
Optimal schedule expanded from 7 cr ng t

Optimal schedule expanded from ny cr
L1

Figure 5: Optimal schedule expanded from 7%’ and 757

336 N. HONDA, H. ISHII AND T. MASUDA

Proposition 2

In node expansion Yy, (from a(,_1y(g—1) t0 apg), only one partial schedule is expanded which
satisfy min {Cgfl)(q_l)_"]w ’wg’—l)(q_l)_’“T € M- (g-1)-JIT }
R
Proof. If J, is processed in each schedule Wg’_l)(q—l)—m'r € IP-DE-D)=IT comple-
tion time of each schedule on My, ..., M, is same, but completion time on M is different
as shown in Fig. 6. According to proposition 1, we can obtain optimal schedule even if

schedules which is not satisfy mén {Cgl—l)(q—l)—)JIT} are cut off. This completes the proof.

2l Su duSs dy 1
=
M NeA

nh d, 5';3 d;ﬂ K
M, [

M, i
M, [

Figure 6: Node expansion in Y,

Maximum number of expanded partial schedule in each node is shown in Fig. 7.
Number of partial schedules expanded in node apq is ¢ — p + 1 at the most. Expanded
schedule in node agq is one. Total maximum number of expanded partial schedule in phase

q (aog,@1gs -+ ,Qpgs -+ ,Qqq) IS

q

1
1+Y (a-p+1)=3¢(¢+1)+1
p=1

Grand total maximum number of expanded partial schedules of the whole graph is

f: (1+§q:(q—p+1)>

9=1 p=1

TREE BASED ALGORITHM 337

er9T
&

ORES
W L,
) “@@f’@... al@ ..a.‘@

Phase

Figure 7: Maximum number of expanded partial schedule in each node

Thus, we obtained the following argorithm.

Step 1 - Initialization. Jobs are sorted in EDD rule as Jy, Ja, ... , Jn (dim < dagm < ... < dpm)-
Node agp is empty. Set Phase ¢ = 0, Level p = 0, Loop r = 0.
Step 2 - Expansion. All partial schedules in node apq are expanded to node ap(g41) that

Jg+1 is not processed just-in-time. If wfg"'”” exists, one partial schedule satisfying

m}%n {CZ"I_’JIT} is expanded to node @(p41y(g+1) that Jo41 is processed just-in-time.
Set Phase ¢ = ¢+ 1, Level p=p + 1.

Step 3 - If ¢ = n then go to Step 4. Otherwise go to Step 2.

Step 4 - If apq is not empty then go to Step 5. Otherwise set Loop r = r + 1, Phase g=r,
Level p = 0, and go to Step 2.

Step 5 - Termination. Optimal schedule is obtained in node Apgq-

Finally, we estimate its computational complexity. In the Step 1, sorting is required
and it takes O(nlogn). Number of expanded partial schedules in Gpq is ¢ — p+ 1 at most.
Therefore computation order of our algorithm is as follows.

0 (nlogn+qz::l{l+i(q—l’+ 1)}) =0 (n?)

p=1

4 Conclusions In this paper, we have proposed a polynomial time algorithm for the
permutation flow-shop to maximize the number of just-in-time jobs. Our algorithm is
based on complete binary tree search, but the number of the expanded partial schedules is

338 N. HONDA, H. ISHII AND T. MASUDA

minimum. We has proposed a search algorithm with new network structure. We has shown
that calculation order of our algorithm is O(n3). If most of the expansion schedules are not
cut off, optimal schedule is found with an early stage.

REFERENCES

[1] K.R. Baker and G.D. Scudder, Sequencing with earliness and tardiness penalties: A review.
Operations Research 38 (1990) 22-36

[2] J.S. Davis, J.J. Kanet, Single-machine scheduling with early and tardy completion costs, Naval
Research Logistics 40 (1993) 85-101.

[3] A. Federgruen, G. Mosheiov, Simultaneous optimization of efficiency and performance balance
measures in singlemachine scheduling problems, Naval Research Logistics 40 (1993) 951-970.

[4] Y.-D. Kim and C.A. Yano, Minimizing mean tardiness and earliness in single-machine schedul-
ing problems with unequal due dates, Naval Research Logistics 41 (1994) 913-933.Japan. (2000)

[5] H. Kunihiko, L. Eugene and V. Milan. Scheduling of parallel identical machines to maximize
the weighted number of just-in-time jobs. Computers and Operations Research 29 (2002) 841-
848

[6] S.D. Liman, C.Y. Lee, Error bound of a heuristic for the common due date scheduling problem,
ORSA Journal on Computing 5 (1993) 420-425.

[7] Chung-Lun Li, T.C.E. Cheng and Z.-L. Chen, A note on one-processor scheduling with asym-
metric earliness and tardiness penalties, Operations Research Letters 13 (1993) 45-48.

[8] Chung-Lun Li, T.C.E. Cheng and Z.-L. Chen, Single-machine scheduling to minimize the
weighted number of early and tardy aggreeable jobs, Computers and Operations Research 22
(1995) 205-219.

[9] Y. Sugimori, K. Kusunoki, F. Cho. and S. Uchikawa, Toyota production system and kan-
ban system materialization of JIT and Respect-For-Human system. International Journal of
Production Research 15 (1977) 553-564.

¢ Graduate School of Information Science and Technology, Osaka University, 2-1 Yamada-
oka, Suita, 565-0871, Japan
e-mail: honda@ist.osaka-u.ac.jp, ishii@ist.osaka-u.ac.jp

b Faculty of Business Administration, Tezukayama University, 7-1-1 Tezukayama, Nara,
631-8501, Japan
e-mail: masuda@tezukayama-u.ac.jp

