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Abstract. There is a well-known connection between hyperidentities of an algebra
and identities satisfied by the clone of the algebra. The clone of an algebra is a
heterogeneous algebra, and the correspondence between hyperidentities and clone
identities is rather complicated to work with. It is also of interest to study this
correspondence in a restricted setting, that of hyperidentities of unary algebras (of
arbitrary unary type) and identities in the unary clone of unary term operations.
This unary clone is just a monoid, usually called the transition monoid of the unary
algebra. This correspondence is an important one in automata theory, since any finite
unary algebra A can be regarded as an automaton: the set A is regarded as a set
of states, with one state chosen as an initial state and a subset of A chosen as the
set of final states, and the operations of the algebra regarded as inputs. Then terms
and identities over the unary algebra A correspond to monoid words from the free
monoid generated by the operations of A. In this paper we study the correspondence
between hyperidentities and clone identities in this special case of unary algebras and
transition monoids. We also look at generalizations of this approach to algebras of
type (n, n, . . . ), and the corresponding n-clones, which correspond to tree automata
of type (n, n, . . . ).

1 Preliminaries There is a well-known connection, described by Taylor in [Tay;81], be-
tween hyperidentities of an algebra and identities satisfied by the clone of the algebra. The
clone of an algebra is a heterogeneous algebra, and the correspondence between hyperi-
dentities and clone identities is rather complicated to work with. In this paper we study
this correspondence in a restricted setting, that of hyperidentities of unary algebras (of
arbitrary unary type) and identities in the unary clone of unary term operations. This
unary clone is just a monoid, usually called the transition monoid of the unary algebra.
Since unary algebras correspond to finite automata, this correspondence is an important
one in automata theory. In 1965 Schützenberger ([Sch;65]) found an interesting connec-
tion between star-free languages and aperiodic monoids. The precise formulation of the
correspondence between certain sets of formal languages and sets of finite semigroups is
due to Eilenberg (see [Eil;74]) and uses the concept of a pseudovariety. The connection
between finite deterministic automata and regular languages is given by Kleene’s famous
theorem ((Kle;50]). In this paper we consider the third side, the connection between finite
deterministic automata and their transition monoids. This connection allows for instance
to apply the decomposition methods of finite semigroups using a wreath product in which
the factors are, alternately, finite groups and finite aperiodic semigroups in automata theory
([Kro-R;65]). If s ≈ t is an identity in a finite unary algebra, then the word tA is recognized
by the automaton corresponding to the unary algebra iff the word sA is recognized. If s ≈ t
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is even an identity in the transition monoid, and as we will prove, a hyperidentity in the
algebra A, then all words which arise from sA by replacing the input letters by arbitrary
words are recognized iff the same holds for tA. Therefore one may expect more applications
of our results in Automata Theory. We also look at generalizations of this approach to alge-
bras of type (n, n, . . .), and the corresponding n-clones, which correspond to tree automata
of type (n, n, . . . ).
We begin by defining a type τ of algebras to be unary if all the operation symbols of the
type have arity 1. We will assume throughout that τ0 is such a unary type (possibly with an
infinite number of operation symbols). We let (fi)i∈I be an indexed set of unary operation
symbols, corresponding to the type τ0. LetX = {x1, x2, x3, . . .} be a countably infinite set of
individual variables, and for each n ≥ 1 let Xn = {x1, . . . , xn}. We shall denote by Wτ0 (Xn)
the set of all n-ary terms of type τ0, and by Wτ0 (X) = ∪n≥1 Wτ0(Xn) the set of all (finitary)
terms of type τ0. This set is the universe of the algebra Fτ0(X) := (Wτ0(X); (f̄i)i∈I ), with
operations defined by f̄i(t) := fi(t), for t ∈ Wτ0 (X); the algebra Fτ0(X) is well known to
be the absolutely free algebra of type τ0 on the set X. In the special case X1 = {x1}, the
elements of Wτ0({x1}) are called unary terms. An identity s ≈ t of terms of unary type, (or
more formally the pair of terms (s, t)), contains at most two different variables. A unary
identity containing only one variable is called a regular identity. A unary algebra is a pair
A = (A; (fA

i )i∈I) consisting of a set A and a set of operations defined on A which are all
unary. Thus a unary algebra is an algebra of type τ0 for some unary type τ0. Let A be a
unary algebra. Then every unary term t ∈ Wτ0 ({x1}) induces a unary term operation tA

on A, which is inductively defined by the following steps:

(i) The variable x1 ∈ X1 induces the identity mapping idA : A→ A, that is, xA1 := idA,

(ii) If t′A is the unary term operation induced by the unary term t′ and if t = fi(t′) is
a compound term, then tA := fA

i ◦ t′A, where ◦ denotes the composition of unary
operations defined on A.

We will use T (1)(A) for the set of all unary term operations of the unary algebra A. This
set is the universe of a monoid generated by {fA

i | i ∈ I} ∪ {idA}, which is called the
transformation or transition monoid of A or the unary clone of A. We shall also use the
name T (1)(A) for this monoid, so

T (1)(A) = (〈{fA
i | i ∈ I} ∪ {idA}〉; ◦, idA).

The corresponding semigroup S(A) generated by {fA
i | i ∈ I} is called the transition

semigroup of A. Unary algebras are sometimes called X-algebras (see e.g. [Pet-C-B;02]).

2 Hypersubstitutions and Substitutions To consider identities in unary clones or
transition semigroups, we need to build up a language of type (2,0) or (2), respectively,
consisting of monoid or semigroup words. Let {Fi | i ∈ I} be a new set of variables,
also indexed by I. Then we denote by FS({Fi | i ∈ I}) the free semigroup generated by
{Fi | i ∈ I}, and similarly we denote by FM({Fi | i ∈ I}) the free monoid generated by
{Fi | i ∈ I}∪{λ}, where λ is the empty word. We shall denote the binary operation in both
the free semigroup and monoid by ◦. The basis of our work will be the following definition
of a mapping ϕ, which will effect the translation between unary terms of our type τ0 and
the monoid words on our new meta-level alphabet {Fi | i ∈ I}. Specifically, we want to
define a mapping ϕ between the set Wτ0({x1}) of unary terms of type τ0 and the monoid
generated by {Fi | i ∈ I} ∪ {λ}.
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Definition 2.1 The mapping ϕ : Wτ0 ({x1}) −→ 〈{Fi | i ∈ I} ∪ {λ}〉 is inductively defined
as follows:

(i) ϕ(x1) := λ,

(ii) ϕ(fi(t)) := Fi ◦ ϕ(t).

On both the set Wτ0 ({x1}) of unary terms and the monoidFM ({Fi | i ∈ I}) we are using the
operation of superposition of terms. The superposition of unary terms is defined inductively
by x1(t) := t, and if t′ = fi(t′′), then t′(t) := fi(t′′)(t) := fi(t′′(t)). It is sometimes
convenient to make this explicit with a new operation symbol S1

1 for the superposition of
unary terms; in this case, we have S1

1(x1, t) := t and S1
1(fi(t′′), t) := fi(S1

1(t′′, t)). This
approach will be used again in Section 6. This operation S1

1 is a binary operation, and
is clearly associative; the clone axioms for the unary clone T (1)(A) make this algebra a
monoid. The binary composition ◦ in FM({Fi | i ∈ I}) is also an instance of the general
superposition operation S1

1 . Moreover, the set Wτ0 ({x1}) is the universe of the unary clone
Clone(1)(τ0) = (Wτ0({x1}); S1

1, x1), which is also a monoid.
We will use the mapping ϕ to establish an isomorphism between these two monoids,

the unary clone Clone(1)(τ0) and the free monoid FM({Fi | i ∈ I}). The next Proposition
shows that ϕ is a homomorphism, with respect to the superposition operation S1

1 .

Proposition 2.2 For any two terms t′, t′′ ∈Wτ0 ({x1}) we have

ϕ(t′(t′′)) = ϕ(t′) ◦ ϕ(t′′).

Proof. We give a proof by induction on the complexity of the term t′. If t′ = x1 then
ϕ(x1(t′′)) = ϕ(t′′) = λ ◦ ϕ(t′′) = ϕ(x1) ◦ ϕ(t′′). If t′ = fi(t) and if we assume inductively
that ϕ(t(t′′)) = ϕ(t) ◦ ϕ(t′′), then we have ϕ(fi(t)(t′′)) = ϕ(fi(t(t′′))) = Fi ◦ ϕ(t(t′′)) =
(Fi ◦ ϕ(t)) ◦ ϕ(t′′) = ϕ(fi(t)) ◦ ϕ(t′′).

Proposition 2.3 The mapping ϕ : Wτ0({x1}) −→ 〈{Fi | i ∈ I} ∪ {λ}〉 is bijective.

Proof. By definition, ϕ maps terms in Wτ0 ({x1}) to words in FM ({Fi | i ∈ I}), and it is
clearly surjective. Assuming that ϕ(t1) = ϕ(t2), we prove the injectivity of ϕ by induction
on the complexity (the number of occurrences of operation symbols) of t1. If t1 is the
variable x1 ∈ X1, then ϕ(t1) = λ = ϕ(t2). Since x1 is the only unary term of type τ0 which
is mapped to λ, we then have t2 = t1 = x1. Now suppose that ϕ(t1) = ϕ(t2) =⇒ t1 = t2,
and consider the term t′1 = fi(t1). We may assume that t′2 is also not a variable, since
otherwise ϕ(t′2) = λ = ϕ(t′1) and t′1 = x1. Hence there is a unary operation symbol fj and
a unary term t′′2 such that t′2 = fj(t′′2). Then we have ϕ(t′2) = ϕ(fi(t′′2)) = Fi ◦ ϕ(t′′2), while
ϕ(t′1) = ϕ(fi(t1)) = Fi ◦ ϕ(t1). Thus

ϕ(t′1) = ϕ(t′2) ⇒ Fi ◦ ϕ(t1) = Fj ◦ ϕ(t2) ⇒ Fi = Fj and ϕ(t1) = ϕ(t2) ⇒ fi = fj and

t1 = t2 ⇒ t′1 = t′2

using the fact that FM ({Fi | i ∈ I}) is free.

In the remainder of this section we examine the connection between certain special iden-
tities of unary algebras and identities in their unary clones. Hyperidentities are identities
which hold in a particular stronger sense, defined using the concept of a hypersubstitution.
For more detailed information on hyperidentities we refer the reader to [Den-W;00]. A
hypersubstitution is a mapping which assigns to each operation symbol of a type a term,
of the same arity as the operation symbol.
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Definition 2.4 A hypersubstitution of unary type is a mapping

σ : {fi | i ∈ I} −→Wτ0({x1}).

Any hypersubstitution σ of unary type induces a mapping σ̂ defined on the set of all unary
terms of the type, as follows.

Definition 2.5 Let σ be a hypersubstitution of unary type. Then σ induces a mapping
σ̂ : Wτ0 ({x1}) −→Wτ0 ({x1}), by setting

(i) σ̂[x1] := x1,

(ii) σ̂[fi(t)] := σ(fi)(σ̂[t]) (= S1
1(σ(fi), σ̂[t])).

Let Hyp(τ0) be the set of all hypersubstitutions of the unary type τ0. Then a binary
operation ◦h on Hyp(τ0) can be defined, by setting σ1 ◦h σ2 := σ̂1 ◦ σ2. We also have an
identity hypersubstitution σid defined by σid(fi) = fi(x1). Altogether this gives a monoid
(Hyp(τ0); ◦h, σid). We shall show that hypersubstitutions of unary type are closely related
to substitutions on the monoid FM({Fi | i ∈ I}), that is, substitutions of {Fi | i ∈ I} into
〈{Fi | i ∈ I}∪{λ}〉. For the analogous semigroup case, when we do not use the empty word
λ, we need the concept of a pre-hypersubstitution. A hypersubstitution σ of unary type is
called a pre-hypersubstitution if for every i ∈ I the term σ(fi) is not a variable. We denote
by Pre(τ0) the set of all pre-hypersubstitutions of type τ0. It is easy to see that this set is
closed under the composition ◦h, and that Pre(τ0) is a submonoid of Hyp(τ0).

Any mapping η : {Fi | i ∈ I} −→ 〈{Fi | i ∈ I} ∪ {λ}〉 is called a substitution. The
extension η of the substitution η is an endomorphism of the free monoid FM ({Fi | i ∈
I} ∪ {λ}) and is uniquely determined by η. Now we consider the set SubstM(2) of all such
substitutions η. We can define a composition 
 on this set, by defining η1 
 η2 := η1 ◦ η2,
and we have an identity for this operation which is the identity mapping id on FM ({Fi | i ∈
I} ∪ {λ}). Thus here too we obtain a monoid (SubstM(2); 
, id). Since the sets {fi | i ∈ I}
of operation symbols of type τ0 and {Fi | i ∈ I} of new variable symbols are both indexed
by I, there is a bijection π between them, with π(fi) = Fi for i ∈ I. Using π we define a
mapping π : Wτ0({x1}) −→ 〈{Fi | i ∈ I} ∪ {λ}〉, by setting

(i) π(x1) = λ

(ii) π(fi(t)) = π(fi) ◦ π(t).

Using the inverse mapping π−1 of the bijection π we define a mapping π−1 by

(i) π−1(λ) = x1,

(ii) π−1(w1 ◦ w2) = π−1(w1)(π−1(w2)(x1)).

Then we have

Lemma 2.6 π = ϕ and π−1 = ϕ−1

Proof. We give a proof by induction on the term complexity. It is clear that for the
variable x1 we have π(x1) = λ = ϕ(x1). Assume inductively that t = fi(t′) and that π(t′) =
ϕ(t′). Then π(fi(t′)) = π(fi)◦π(t′) = Fi◦ϕ(t′) = ϕ(fi(t′)). For π−1 we have π−1(λ) = x1 =
ϕ−1(λ) and π−1(w1◦w2) = π−1(w1)(π−1(w2)(x1)) = ϕ−1(w1)(ϕ−1(w2)(x)) = ϕ−1(w1◦w2).
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The diagram (D) below shows that for every hypersubstitution σ of unary type, the
mapping η := ϕ ◦ σ ◦ π−1 is a substitution.

Proposition 2.7 If η is a substitution of the form ϕ ◦ σ ◦ π−1, then the following are
satisfied:

(i) η = ϕ ◦ σ̂ ◦ ϕ−1,

(ii) ϕ ◦ (σ1 ◦h σ2) ◦ π−1 = (ϕ ◦ σ̂1 ◦ ϕ−1) ◦ (ϕ ◦ σ2 ◦ π−1).

Proof. (i) For the base case we have η(Fi) = η(Fi) = (ϕ ◦ σ ◦ π−1)(Fi) = ϕ(σ(fi)) =
ϕ(σ̂[fi(x1)]) = ϕ(σ̂[ϕ−1(Fi)]) = (ϕ ◦ σ̂ ◦ ϕ−1)(Fi). Since the extension of η is uniquely
determined, we get (i). (ii) This follows from ϕ ◦ (σ1 ◦h σ2) ◦ π−1 = (ϕ ◦ σ̂1 ◦ σ2 ◦ π−1) =
(ϕ ◦ σ̂1 ◦ ϕ−1) ◦ (ϕ ◦ σ2 ◦ π−1).

�{fi | i ∈ I}
σ

Wτ0 ({x1}) � 〈{Fi | i ∈ I} ∪ {λ}〉
ϕ

�

�

�

{Fi | i ∈ I}

η

π π−1 (D)

Now we can establish our isomorphism.

Theorem 2.8 The monoid (Hyp(τ0); ◦h, σid) is isomorphic to (SubstM(2); 
, id).
Proof. Consider the mapping ψ : Hyp(τ0) −→ SubstM(2) defined by ψ(σ) := ϕ◦σ◦π−1.
Clearly ψ is well-defined. To see that ψ is one-to-one, suppose that ψ(σ1) = ψ(σ2). Then
ϕ ◦ σ1 ◦ π−1 = ϕ ◦ σ2 ◦ π−1 and since ϕ and π−1 are both bijections, we get σ1 = σ2. For
surjectivity of ψ, let η ∈ SubstM(2). Then the mapping ϕ−1 ◦ η ◦ π from {fi | i ∈ I}
to Wτ0 ({x1}) is a hypersubstitution of unary type, and applying ψ gives ψ(ϕ−1 ◦ η ◦ π) =
ϕ◦(ϕ−1◦σ◦π)◦π−1 = σ. Finally, ψ is a homomorphism, since ψ(σ1◦hσ2) = ϕ◦(σ1◦hσ2)◦π−1

= (ϕ◦σ̂1◦ ϕ−1)◦(ϕ◦σ1◦π−1) = (ϕ ◦ σ1 ◦ π−1)◦(ϕ ◦σ1◦π−1) = (ϕ◦σ1◦π−1)
 (ϕ◦σ1◦π−1),
by Proposition 2.7 and the definition of the operation 
 on SubstM(2).

We noted above that the free monoid FM({Fi | i ∈ I}) is isomorphic to the unary clone
Clone(1)(τ0) of the type τ0. If in diagram (D) above we replace the monoid FM ({Fi | i ∈ I})
by Clone(1)(τ0) and the set {Fi | i ∈ I} by {fi | i ∈ I}, then instead of SubstM(2) we
can consider the set of all clone substitutions. Then Theorem 2.8 can be interpreted as
asserting the existence of a one-to-one mapping between sets of hypersubstitutions and
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clone substitutions. A more general version of this interconnection, using the full clone of
terms for arbitrary types, can be found in [Den-G;96] (Corollary 3.5); see also [Den-W;00].
The results of this section can be modified to the semigroup case, excluding the variable x1

and the empty word λ, by using pre-hypersubstitutions. These are unary hypersubstitutions
σ which map all the operation symbols fi to terms other than the variable x1. In this case
we consider the restriction ϕS of the mapping ϕ which maps Wτ0 ({x1})\{x1} to the free
semigroup FS({Fi | i ∈ I}) generated by the variables {Fi | i ∈ I}. Then instead of monoid
substitutions we consider semigroup substitutions ηS : {Fi | i ∈ I} −→ 〈{Fi | i ∈ I}〉 and
the monoid (SubstS;
, id). The mappings of πS and π−1

S are defined by the equations
πS(fi(t)) = πS(fi) ◦ πS(t) and π−1

S (w1 ◦ w2) = π−1
S (w1)(π−1

S (w2)(x1)). Then by a proof
similar to that of Theorem 2.8, we have the following analogous result.

Theorem 2.9 The monoid (Pre(τ0); ◦h, σid) is isomorphic to (SubstS(2); 
, id).
We can use the isomorphism of Theorem 2.8 in the following way. Sets of substitutions with
certain properties which are preserved by composition of substitutions will correspond to
submonoids of hypersubstitutions. For instance, in Section 4 we will consider the following
two monoids of hypersubstitutions:

B := {σ | σ ∈ Hyp(τ0) and ϕ ◦ σ̂ ◦ ϕ−1is bijective}
and

O := {σ | σ ∈ Hyp(τ0) and ϕ ◦ σ̂ ◦ ϕ−1is surjective}.
3 Identities and Hyperidentities Let s and t be unary terms of type τ0, and let A
be a unary algebra of type τ0. The identity s ≈ t is satisfied in A if the term operations
induced by s and t are equal, that is, if sA = tA. An equivalent condition that we shall
frequently use is that an identity s ≈ t is satisfied in A iff for every valuation mapping
v : X → A we have v(s) = v(t) where v is the uniquely determined extension of v. We shall
denote by IdA the set of all identities satisfied in the algebra A. If V is a variety of unary
type τ0, then IdV denotes the set of all identities which are satisfied in all algebras of V . An
identity s ≈ t is called a hyperidentity of a variety V if for every σ ∈ Hyp(τ0) the equation
σ̂[s] ≈ σ̂[t] is in IdV . The identity is called a pre-hyperidentity of V if σ̂[s] ≈ σ̂[t] is in IdV
for every pre-hypersubstitution σ. In the first case we write V |=

hyp
s ≈ t and in the second

case V |=
pre-hyp

s ≈ t. If w1 and w2 are monoid words from FM({Fi | i ∈ I}), then the pair

w1 ≈ w2 is an identity in the monoid T (1)(A) if wT
(1)(A)

1 = w
T (1)(A)
2 . Analogously, in the

semigroup case where w1 and w2 are semigroup words from FS({Fi | i ∈ I}), then w1 ≈ w2 is
an identity in the semigroup S(A) when wS(A)

1 = w
S(A)
2 . We need one more mapping h which

assigns to each variable Fi the fundamental operation fA
i of our algebra A. The mapping

h can be uniquely extended to a homomorphism h : FM ({Fi | i ∈ I}) → (T (1)(A), ◦, idA)
since FM ({Fi | i ∈ I}) is free. For S(A) and FS({Fi | i ∈ I}) we denote the corresponding
mapping by hS . We use our isomorphism ϕ from the previous section and the mapping h to
relate hyperidentities on an algebra A to clone identities on the unary clones of the algebra
A.

Lemma 3.1 For every term s ∈Wτ0({x1}) and for every algebra A of type τ0, we have sA

= h(ϕ(s)); and for every term t ∈Wτ0({x1}) \ {x1} we have tA = hS(ϕS(t)).

Proof. We will give a proof by induction on the complexity of the term s. If s = x1,
then xA1 = idA = h(λ) = h(ϕ(x1)). Now let s = fi(s1) be a compound term, with sA1 =
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h(ϕ(s1)). Then sA = (fi(s1))A = fA
i ◦ sA1 = h(Fi) ◦h(ϕ(s1)) = h(Fi ◦ϕ(s1)) = h(ϕ(fi(s1))

= h(ϕ(s)). The proof for non-variable terms using hS is similar, but with a base case of
s = fi(x1).

Lemma 3.1 will allow us to compare identities s ≈ t (of the right form) on an algebra A
with their images ϕ(s) ≈ ϕ(t) on the unary clone of A. In order to apply ϕ to terms s
and t, and hence to identities, the terms must be terms on the alphabet X1 only. For
unary type, any term contains at most one variable, and hence any identity contains at
most two variables. We cannot apply ϕ to identities such as f1(f2(x1)) ≈ f2(f1(x2)) which
contain two different variables, and hence we restrict ourselves to identities which contain
only the single variable x1. Such identities are regular, since they have the same variable
on each side. Let s ≈ t ∈ IdV be a regular identity of a variety V , so that for every algebra
A ∈ V we have sA = tA. Then by Lemma 3.1 the elements h(ϕ(s)) and h(ϕ(t)) agree on
T (1)(A) for every A. This means that a set Σ of identities satisfied in an algebra A of type
τ0 corresponds to a set of equations between the generating elements {fA

i | i ∈ I} of the
unary clone T (1)(A). Such sets of equations are also called relations of the algebra. For
more information on presentations of an algebra by generators and relations the reader is
referred to [Bur-S;81] in the arbitrary case and to [Cli-P;67] for semigroups.
Now let A be an algebra of type τ0. On the free monoid FM ({Fi | i ∈ I}) we define the
so-called Myhill congruence µA of A ([Pet-C-B;02]) by

(w1, w2) ∈ µA :⇐⇒ ϕ−1(w1) ≈ ϕ−1(w2) ∈ IdA.
For V a variety, we define the congruence µV to be the intersection of all the congruences
µA for all A ∈ V . Analogously we define µ�A on FS({Fi | i ∈ I}) by

(w1, w2) ∈ µ�A :⇐⇒ ϕ−1
S (w1) ≈ ϕ−1

S (w2) ∈ IdA.
It is easy to see that µA is a congruence and therefore we may form the quotient monoid
FM({Fi | i ∈ I})/µA or for a variety FM({Fi | i ∈ I})/µV . In a corresponding way we may
consider FS({Fi | i ∈ I})/µ�A and FS({Fi | i ∈ I})/µ�V , respectively. Then we have

Proposition 3.2 The monoid (T (1)(A), ◦, idA) is isomorphic to the quotient monoid
FM({Fi | i ∈ I})/µA, and in the semigroup case S(A) is isomorphic to FS({Fi | i ∈ I})/µ�A.

Proof. We show first that µA is the kernel of h. We have
(w1, w2) ∈ µA ⇐⇒ ϕ−1(w1) ≈ ϕ−1(w2) ∈ IdA

⇐⇒ ϕ−1(w1)A = ϕ−1(w2)A

⇐⇒ h(ϕ(ϕ−1(w1))) = h(ϕ(ϕ−1(w2)))
⇐⇒ h(w1) = h(w2)
⇐⇒ (w1, w2) ∈ ker h,

by Lemma 3.1 and the bijectiv-

ity of ϕ. Since h is a surjective homomorphism from FM ({Fi | i ∈ I}) onto T (1)(A), by the
homomorphism theorem we have T (1)(A) ∼= FM ({Fi | i ∈ I})/kerh ∼= FM ({Fi | i ∈ I})/µA.
The proof for S(A) is similar.

If η : {Fi | i ∈ I} → FM ({Fi | i ∈ I}) is a substitution then the composition h ◦ η : {Fi |
i ∈ I}∪ → T (1)(A) is a valuation of the variables Fi by elements of the clone T (1)(A). The
next Theorem connects hyperidentities of the algebra or variety with identities of the unary
clone.

Theorem 3.3 A regular identity s ≈ t is a hyperidentity in an algebra A of type τ0 iff the
equation ϕ(s) ≈ ϕ(t) is an identity in the monoid T (1)(A). That is,
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A |=
hyp

s ≈ t ⇔ T (1)(A) |= ϕ(s) ≈ ϕ(t) .

Proof. We first assume that s ≈ t is a hyperidentity of A. Then for every σ ∈ Hyp(τ0)
we have σ̂[s]A = σ̂[t]A. Let v : {Fi | i ∈ I} → T (1)(A) be an arbitrary valuation mapping.
Since h is surjective, there exists a substitution ηv with v = h◦ηv, using the axiom of choice.
Then we have v(ϕ(s)) = (h ◦ ηv)(ϕ(s)) = h ◦ (ϕ ◦ σ̂ηv

◦ ϕ−1)(ϕ(s)) = (h ◦ ϕ ◦ σ̂ηv
)(s) =

(σ̂ηv
[s])A = (σ̂ηv

[t])A = v(ϕ(t)), and this means that ϕ(s) ≈ ϕ(t) ∈ IdT (1)(A). Conversely,
let ϕ(s) ≈ ϕ(t) ∈ IdT (1)(A). Then s, t ∈ Wτ0 ({x1}) and for every valuation v we have
v(ϕ(s)) = v(ϕ(t)). Let σ be a hypersubstitution. Then, using Lemma 3.1 and the fact that
h ◦ ϕ ◦ σ̂ ◦ ϕ−1 is the extension of a valuation mapping, we obtain σ̂[s]A = h(ϕ(σ̂[s])) =
h(ϕ(σ̂(ϕ−1(ϕ(s))))) = h(ϕ(σ̂(ϕ−1(ϕ(t))))) = σ̂[t]A. This shows that σ̂[s]A = σ̂[t]A, and
s ≈ t is a hyperidentity in A.

A normal regular identity, of type τ0, is a regular identity s ≈ t in which either both s and t
are equal to the variable x1 or neither are. In the following analogue of Theorem 3.3, normal
pre-hyperidentities of an algebra correspond to identities in the transition semigroups of the
algebra.

Theorem 3.4 Let s ≈ t be a non-trivial regular normal identity of a unary algebra A.
Then s ≈ t is a pre-hyperidentity of A iff the equation ϕS(s) ≈ ϕS(t) is an identity in the
transition semigroup S(A).

Proof. The proof is similar to that of Theorem 3.3.

A variety V of type τ0 is called solid if every identity in V is satisfied as a hyperidentity,
and is called presolid if every identity in V is satisfied as a pre-hyperidentity. The presolid
varieties of type τ0 form a complete sublattice of the lattice of all varieties of type τ0, and
the solid varieties form a complete sublattice of the lattice of all presolid varieties. Solidity
and presolidity are special cases of the general concept of M -solidity, for any submonoid
M of hypersubstitutions; see [Den-W;00] for more information on M -solid varieties. Let
V be a variety defined by a set Σ of regular equations of type τ0, so that V = Mod Σ is
the class of all algebras of type τ0 which satisfy every equation from Σ as an identity. It is
well-known that V is solid or presolid iff every equation from Σ is satisfied as a hyperidentity
or pre-hyperidentity, respectively, of V .

Corollary 3.5 Let A be an algebra of unary type τ0 with the property that the variety V (A)
which is generated by A is regular. Then V (A) is solid iff the monoid T (1)(A) is free with
respect to itself (Hall-free), meaning that every mapping from {fA

i | i ∈ I} to T (1)(A) can
be extended to an endomorphism of T (1)(A).

Proof. Using the equivalence from Theorem 3.3, we will show that T (1)(A) is free iff for
every identity s ≈ t ∈ IdA the equation ϕ(s) ≈ ϕ(t) is an identity in T (1)(A). Suppose
first that T (1)(A) is free with respect to itself, freely generated by the independent set
{fA
i | i ∈ I}, and let s ≈ t ∈ IdA. Then by Lemma 3.1, the elements h(ϕ(s)) and h(ϕ(t))

are equal in T (1)(A). Let v : {Fi | i ∈ I} → T (1)(A) be an arbitrary valuation mapping.
We define a mapping αv : {fA

i | i ∈ I} → T (1)(A) by αv(fA
i ) := v(Fi) for every i ∈ I. The

mapping αv is well-defined since {fA
i | i ∈ I} is an independent set and so, for i, j ∈ I we

have

fA
i = fA

j ⇒ i = j ⇒ Fi = Fj ⇒ v(Fi) = v(Fj) ⇒ αv(fA
i ) = αv(fA

j ).
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Since FM ({Fi | i ∈ I}) is free in the class of all monoids, the mapping v = αv ◦ h can be
uniquely extended to v = αv ◦ h. Then

h(ϕ(s)) = h(ϕ(t)) ⇒ αv(h(ϕ(s))) = αv(h(ϕ(t))) ⇒ v(ϕ(s)) = v(ϕ(t)) ⇒ ϕ(s)

≈ ϕ(t) ∈ IdT (1)(A).

Therefore s ≈ t is a hyperidentity in A, and we have shown that V (A) is solid.
For the converse direction, we assume that V (A) satisfies the solidity condition. To show
that T (1) is free, we let α : {fA

i | i ∈ I} → T (1)(A) be any mapping, and show that it can be
extended to an endomorphism. Our extension will be the mapping α : T (1)(A) → T (1)(A)
defined by α(uA) := α ◦ h(ϕ(u)), for each uA ∈ T (1)(A). Note that α ◦ h is the uniquely
defined extension of the valuation α ◦ h : {Fi | i ∈ I} → T (1)(A). To check that α is
well-defined, we let uA = tA. Then u ≈ t ∈ IdA and by the solidity assumption we have
ϕ(u) ≈ ϕ(t) ∈ IdT (1)(A). Then α ◦ h(ϕ(u)) = α ◦ h(ϕ(t)) since α ◦ h is a valuation, and
by definition we get α(uA) = α(tA). Next we show that α is a homomorphism: for any
uA, tA ∈ T (1)(A), we have α(uA◦tA) = α(u(t)A) = α ◦ h(ϕ(u(t))) = α ◦ h(ϕ(u))◦α ◦ h(ϕ(t))
= α(uA) ◦ α(tA). Moreover α extends α, since α(fA

i ) = α ◦ h(ϕ(fi(x1))) = α ◦ h(Fi) =
(α ◦ h)(Fi) = α(h(Fi)) = α(fA

i ).

If V is a regular variety of algebras of type τ0 and if FV (X) is the free algebra generated
by the countably infinite alphabet X, then T (1)(FV (X)) is called the transition monoid of
the variety V . Corollary 3.5 says that V is solid iff this transition monoid T (1)(FV (X))
is free with respect to itself. If V = ModΣ then V is solid iff T (1)(FV (X)) is free with
respect to itself and has the free presentation ({f i | i ∈ I}; ϕ(Σ)). ([Mar;66]). We remark
that Corollary 3.5 is a special case of the equivalence of the solidity of a variety of arbitrary
type τ and the freeness of the clone of that variety, if we regard the clone as a multibased
(heterogeneous) algebra. In a similar way, Theorem 3.4 can be used to show that for every
set Σ of normal and regular equations of type τ0, the variety V = ModΣ is presolid iff the
semigroup presented by ({fi | i ∈ I}, h(ϕS(Σ))) is free with respect to itself. Theorem 3.3
can be generalized in the following way. The isomorphism ψ : Hyp(τ0) −→ SubstM(2) used
in the proof of Theorem 2.8 maps submonoids of Hyp(τ0) to submonoids of SubstM(2). Let
G ⊆ Hyp(τ0) be a submonoid and let ψ(G) ⊆ SubstM(2) be the corresponding monoid of
substitutions.

Definition 3.6 An equation w1 ≈ w2 between monoid words from FM ({Fi | i ∈ I}) is
called a ψ(G)-identity in a semigroup S if for all η ∈ ψ(G) the equations h(η(w1)) =
h(η(w2)) are satisfied.

Then analogously to Theorem 3.3 we get the following Theorem.

Theorem 3.7 Let G be a monoid of hypersubstitutions of type τ0 and let A be an algebra
of type τ0. Then the regular identity s ≈ t is a G-hyperidentity in A iff ϕ(s) ≈ ϕ(t) is a
ψ(G)-identity in T (1)(A) . In this case we write T (1)(A) |=

ψ(G) − id
ϕ(s) ≈ ϕ(t).

For the semigroup case, for terms s, t �= x1 we get a similar result:

Theorem 3.8 Let G be a monoid of hypersubstitutions of type τ0 and let A be an algebra
of type τ0. Then the regular and normal identity s ≈ t is a G-hyperidentity in V iff ϕS(s) ≈
ϕS(t) is a ψ(G)-identity in S(A) . In this case we write S(A) |=

ψ(G)− id
ϕS(s) ≈ ϕS(t).
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4 σ-Closed and v-Closed Varieties of Unary Type There are some interesting in-
terconnections between varieties V of unary type τ0 and the classes {T (1)(A) | A ∈ V }
of transition monoids or {S(A) | A ∈ V } of transition semigroups formed from algebras
in V . One such connection uses the concept of σ-closed varieties of type τ0 introduced in
[Pet-C-B;02].

Definition 4.1 Let V be a variety of unary type τ0. Then V is called σ-closed if whenever
A ∈ V and T (1)(B) ∼= T (1)(A), then also B ∈ V . The variety V is called σ�-closed if
whenever A ∈ V and S(B) ∼= S(A) then also B ∈ V .

We recall from the end of Section 2 the definition of the submonoid O of hypersubstitutions:

O := {σ | σ ∈ Hyp(τ0) and ϕ ◦ σ̂ ◦ ϕ−1 is surjective}.
A unary variety V is called O-solid if for all identities s ≈ t in IdV and all σ ∈ O we
have σ̂[s] ≈ σ̂[t] ∈ Id V . We shall show that σ-closed varieties and O-solid varieties are
closely related to each other. To formulate and prove this interrelation we introduce some
new notation and concepts. For any algebra A (of arbitrary type) we denote by ConA the
lattice of congruences on A. By the second isomorphism theorem, if two congruences θ and
ρ on A satisfy θ ⊆ ρ, it follows that there is a homomorphism from A/θ onto A/ρ; but the
converse implication is not always true.

Definition 4.2 Let A be an algebra of arbitrary type. A congruence θ ∈ ConA is said to
be weakly invariant if for every ρ ∈ ConA the following condition is satisfied: if there exists
a homomorphism from A/θ onto A/ρ then θ ⊆ ρ.

Definition 4.3 A set C of congruences of an algebra A of arbitrary type τ is said to be
isomorphically closed if whenever θ ∈ C and A/θ ∼= A/ρ it follows that ρ ∈ C.

The following results were proved for semigroups in [Pet-C-B;02], and can easily be gener-
alized to algebras of arbitrary type τ .

Theorem 4.4 Let A be an algebra of arbitrary type τ , let V be a variety of type τ and let
FV (X) be the free algebra with respect to V , freely generated by X. Then (i) A congruence
θ on A is weakly invariant iff the principal filter generated by θ in ConA is isomorphically
closed.
(ii) Every weakly invariant congruence on A is invariant under all surjective endomorphisms
of A.
(iii) The set ConwiA of all weakly invariant congruences of A forms a complete lattice.
(iv) Every fully invariant congruence on FV (X) is weakly invariant.

Lemma 4.5 ([Pet-C-B;02]) Let V be a unary variety of type τ0. If V is σ-closed, then
µV ∈ ConFM({Fi | i ∈ I}) is weakly invariant.

Now we are able to prove:

Theorem 4.6 A regular variety V of type τ0 is σ-closed iff it is O-solid.

Proof. Assume that V is O-solid. It follows from the theory of M -hyperidentities and
M -solid varieties that there is a set Σ of regular equations of type τ0 such that V is the
O-hypermodel class V = HOModΣ defined by Σ, meaning that V is the class of all al-
gebras of type τ0 satisfying all the equations from Σ as O-hyperidentities. Thus A ∈ V
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iff A O-hypersatisfies Σ. We will use the notation ϕ(Σ) to denote the set of identities
obtained by applying ϕ to each identity in Σ; this makes sense because the identities in
Σ are all regular. Now let A be any algebra in V . Then ¿from A |=

O-hyp
Σ it follows

that T (1)(A) |=
ψ(O)-id

ϕ(Σ). If T (1)(A) ∼= T (1)(B), then T (1)(B) |=
ψ(O)-id

ϕ(Σ); this gives

B |=
O-hyp

Σ and thus B ∈ V = HOModΣ. This shows that V is σ-closed. Conversely, we

suppose that V is a regular variety of type τ0 which is σ-closed. Then by Lemma 4.5 the
Myhill congruence µV ∈ Con FM ({Fi|i ∈ I}) is weakly invariant. By Theorem 4.4 µV is
invariant under all surjective endomorphisms of FM({Fi|i ∈ I}). Therefore for every pair
(w1, w2) ∈ µV and every surjective endomorphism η : FM ({Fi|i ∈ I}) −→ FM({Fi|i ∈ I})
we have (η(w1), η(w2)) ∈ µV . Then by Theorem 2.8 there is a hypersubstitution σ such that
((ϕ ◦ σ̂ ◦ ϕ−1)(w1), (ϕ ◦ σ̂ ◦ ϕ−1)(w2)) ∈ µV . By definition of µV for every algebra A ∈ V
and hypersubstitution σ such that ϕ ◦ σ̂ ◦ ϕ−1 is surjective we get that from ϕ−1(w1) ≈
ϕ−1(w2) ∈ Id A there follows ϕ−1 ◦ (ϕ ◦ σ̂ ◦ ϕ−1)(w1) ≈ ϕ−1 ◦ (ϕ ◦ σ̂ ◦ ϕ−1)(w2) ∈ Id A
and thus σ̂[ϕ−1(w1)] ≈ σ̂[ϕ−1(w2)] ∈ Id A. This means that ϕ−1(w1) ≈ ϕ−1(w2) is an
O-hyperidentity in V . Since every regular identity s ≈ t ∈ Id V can be written in the form
ϕ−1(w1) ≈ ϕ−1(w2), this completes the proof.

In a similar way it can be shown that a regular and normal variety V of type τ0 is σ�-closed
iff it is O-solid. We generalize Definition 4.1 in the following way:

Definition 4.7 A variety V of type τ0 is said to be s-closed if for every algebra B of type
τ0, whenever A ∈ V and T (1)(B) is isomorphic to a submonoid of T (1)(A), it follows that
B ∈ V . The variety V is said to be v-closed if for every algebra B of type τ0, whenever
A ∈ V and Id T (1)(B) ⊇ Id T (1)(A) (that is, if T (1)(B) ∈ V (T (1)(A))), then it follows that
B ∈ V . (Analogous definitions can be made for v�-closed and s�-closed varieties, using the
transition semigroups S(A) and S(B).)

Proposition 4.8 If a variety V of type τ0 is v-closed, then it is σ-closed and s-closed.

Proof. Let V be v-closed, and let A ∈ V and T (1)(B) ∼= T (1)(A). Then Id T (1)(B) =
Id T (1)(A), and so B ∈ V since V is v-closed. Therefore V is σ-closed. If T (1)(B) is
isomorphic to a submonoid of T (1)(A), then Id T (1)(B) ⊇ Id T (1)(A) and so B ∈ V since
V is v-closed. This shows that V is s-closed.

In a corresponding way it can be shown that every v�-closed variety of type τ0 is σ�-closed
and s�-closed.

Theorem 4.9 A regular variety V of type τ0 is v-closed iff it is solid.

Proof. Let V be a solid regular variety. Then there exists a set Σ of regular equa-
tions with V = HModΣ, such that for every algebra A ∈ V we have A |=

hyp
Σ. Then

by Theorem 3.3 for every A ∈ V we have T (1)(A) |= ϕ(Σ). If B is an algebra with
Id T (1)(B) ⊇ Id T (1)(A) then T (1)(B) |= ϕ(Σ) and by Theorem 3.3 we have B |=

hyp
Σ;

thus B ∈ V = HMod Σ, and V is v-closed. Now let V be v-closed, and let A ∈ V
with A = (A; (fA

i )i∈I). We consider the derived algebra σ(A) = (A; (σ(fi)A)i∈I) for
a hypersubstitution σ. Since the operations σ(fi)A are term operations of A we have
〈{σ(fi)A|i ∈ I} ∪ {idA}〉 = T (1)(σ(A)) ⊆ T (1)(A) = 〈{(fi)A|i ∈ I} ∪ {idA}〉. Therefore
Id (T (1)(σ(A)) ⊇ Id T (1)(A). Since V is v-closed, we have σ(A) ∈ V . This shows that any
derived algebra formed from an algebra in V is also in V , and this is known to be equivalent
to solidity of V (see [Den-W;00]).
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In a corresponding way it can be shown that a regular and normal variety of type τ0 is v�-
closed iff it is pre-solid. Now we prove that v-closure and s-closure are equivalent concepts
for varieties of type τ0.

Theorem 4.10 Let V be a regular variety of type τ0. Then V is v-closed iff it is s-closed.

Proof. One direction is given by Proposition 4.8. Conversely, suppose that V is s-closed,
and let A ∈ V . Then as in the proof of Theorem 4.9 we have T (1)(σ(A)) ⊆ T (1)(A) and
then σ(A) ∈ V . This shows that V is solid, and hence by Theorem 4.9 it is also v-closed.

This means that for a regular variety of type τ0, the concepts of v-closure, s-closure and
solidity are equivalent. An analogous result holds for v�-closure, s�-closure and presolidity
of normal regular varieties. In Section 2 we introduced the concept of a B-solid variety.
Since B is a submonoid of O, every O-solid variety of type τ0 is also B-solid. Let V be a
B-solid regular variety of type τ0. Then there exists a set Σ of regular equations of type τ0
such that V = HBModΣ and if C ∈ V, then C |=

B-hyp
Σ. Therefore T (1)(C) |=

ψ(B)-id
ϕ(Σ).

If T (1)(A) ∼= T (1)(C) then T (1)(A) |=
ψ(B)-id

ϕ(Σ) and A |=
B-hyp

Σ by Theorem 3.7, and it

follows that A ∈ V and V is σ-closed. By Theorem 4.6 V is O-solid. This proves the
following result.

Theorem 4.11 A regular variety V of type τ0 is B-solid iff it is O-solid.

5 Example In this section we illustrate the application of Theorems 4.9 and 4.10 with
an example. We consider the unary type τ0 = (1, 1), so that we have two unary operation
symbols f and g. Let V be the model class of the following equations: f (f (x)) ≈
x, g(g(x)) ≈ x, f (g(f (x))) ≈ g(x), g(f (g(x))) ≈ f (x).

We want to show that V is solid. Since the four identities defining V are regular, the
variety V is regular, and we can use the fact that such varieties are solid iff they are s-closed.
Let A ∈ V , so A = (A; fA, gA) is an algebra of type (1, 1) satisfying the four identities above.
Then the transition monoid T (1)(A) has the presentation T (1)(A) := ({fA, gA}, {(fA)2 =
idA, (gA)2 = idA, f

A ◦ gA ◦ fA = gA, gA ◦ fA ◦ gA = fA}). T (1)(A) consists of the four
elements idA, fA, gA, and fAgA . The Cayley-table of T (1)(A) has the form

◦ idA fA gA fAgA

idA idA fA gA fAgA

fA fA idA fAgA gA

gA gA fAgA idA fA

fAgA fAgA gA fA idA

T (1)(A) has exactly 4 proper submonoids, which have the following sets as universes:

{idA}, {idA, fA}, {idA, gA}, {idA, fAgA}.

Since these submonoids are isomorphic to trivial monoids or two-element groups, by com-
mutativity the identities x2 ≈ x, xyx ≈ y, yxy ≈ x are satisfied. Let C be an arbitrary
submonoid of T (1)(A). If B is an algebra of type (1, 1) such that T (1)(B) ∼= C, then T (1)(B)
satisfies the identities x2 ≈ x, xyx ≈ y, yxy ≈ x, and this means B ∈ V . Therefore, V is
s−closed and using Theorem 4.9 and Theorem 4.10 V is solid.



SOLID VARIETIES, TRANSITION SEMIGROUPS AND UNARY CLONES 357

6 Extension to n-Clones and Type (n,n, . . . ) In this section we show that some
results of the previous sections also hold for n-clones of algebras whose operations are all
n-ary, for some n ≥ 1. We will call a type of algebras n-ary if all its operations are n-
ary, and an algebra of this type will be called an n-ary algebra. Throughout this section
we assume that τ is such an n-ary type, for some fixed n ≥ 1, and that the operation
symbols of type τ are (fi)i∈I , indexed by some set I. The set Wτ (Xn) of all n-ary terms
of type τ , on the alphabet Xn = {x1, x2, . . . , xn}, forms the universe of an algebra of
type (n + 1, 0, 0 . . . , 0), which has an n + 1-ary operation S

n,Wτ(Xn)
n called superposition

and n nullary operations or special elements e1, . . . , en, and which satisfies the three clone
axioms (see [Den-W;00]): (C1) Snn (Fj, Snn(Fi1, F2, . . . , Fn+1), . . . , Snn(Fin , F2, . . . , Fn+1))
= Snn(Snn (Fj, Fi1, . . . , Fin), F2, . . . , Fn+1),
(C2) Snn (ei, F1, . . . , Fn) = Fi, and
(C3) Snn (Fi, e1, . . . , en) = Fi
for 1 ≤ i ≤ n. The terms occurring in these axioms are terms of an language of type
τ = (n + 1, 0, . . . , 0) built up by operation symbols Snn , e1, . . . , en and an alphabet {Fi |
i ∈ I} with a bijection π between {Fi | i ∈ I} and {fi | i ∈ I}. Then an n-clone is
defined as any algebra of type τ = (n+1, 0, . . . , 0) satisfying (C1), (C2), (C3). The special
n-clone whose universe is the set Wτ (Xn) of all n-ary terms is called the n-clone of type
τ , and is denoted by Clonen(τ). (For convenience, the n+ 1-ary operation of this concrete
n-clone will also be denoted by Snn .) Notice that in the case n = 1 the clone axioms just
say that the superposition operation S1

1 is associative and that e1 is a two-sided identity
for S1

1 ; that is, that the 1-clone is a monoid. Then we can define a map ϕ : Wτ (Xn) →
〈{Fi | i ∈ I} ∪ {e1, . . . , en}〉, inductively by ϕ(xj) = ej , for 1 ≤ j ≤ n,

ϕ(fi(t1, . . . , tn)) = Snn (Fi, ϕ(t1), . . . , ϕ(tn)). Using this mapping ϕ, all the results
of Section 2 can be generalized to the n-clone case. Most of the proofs are very similar;
we give here only the proof that ϕ is a homomorphism, the analogue of Proposition 2.2, in
order to show the flavour of the proofs.

Proposition 6.1 The map ϕ is a homomorphism from Clonen(τ) to the free n-clone Fn
generated by {Fi | i ∈ I} ∪ {e1, . . . , en}.

Proof. We prove by induction on the complexity of term t that for any n-ary terms
t, s1, . . . , sn we have ϕ(Snn (t, s1, . . . , sn)) = Snn (ϕ(t), ϕ(s1), . . . , ϕ(sn)). First, if t is a vari-
able xj , for 1 ≤ j ≤ n, then ϕ(Snn (t, s1, . . . , sn))
= ϕ(Snn(xj, s1, . . . , sn))
= ϕ(sj), by the clone axioms,
= Snn (ϕ(t), ϕ(s1), . . . , ϕ(sn)). Inductively, let t = fi(t1, . . . , tn) for some i ∈ I and some
n-ary terms t1, . . . , tn. Then
ϕ(Snn(t, s1, . . . , sn))
= ϕ(fi(t1(s1, . . . , sn), . . . , tn(s1, . . . , sn))), by definition of Snn
= Snn(Fi, ϕ(Snn(t1, s1, . . . , sn)), . . . , ϕ(Snn(tn, s1, . . . , sn))), by definition of ϕ
= Snn(Snn (Fi, ϕ(t1), . . . , ϕ(tn)), ϕ(s1), . . . , ϕ(sn)), by the clone axioms
= Snn(ϕ(fi(t1, . . . , tn)), ϕ(s1), . . . , ϕ(sn))
= Snn(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

Since ϕ is easily shown to be a bijection (the analogue of Proposition 2.3), we have an
isomorphism between Clonen(τ) and the free n-clone Fn on our new language. Next we
define Substn to be the set of all substitutions η from the generating set {Fi | i ∈ I} to the
free n-clone Fn. We define a binary composition operation 
 on Substn by (η1 
 η2)(Fi)
= η1(η2(Fi)), where η1 is the obvious extension of η1. Then Substn forms a monoid under
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this operation, with the identity substitution as identity element. Then we can prove that
the monoid Hyp(τ ) of all hypersubstitutions of type τ is isomorphic to the monoid Substn,
using the isomorphism ψ : σ �→ ϕ ◦ σ ◦ π−1, as in the proof of Theorem 2.8. Now let A be
any algebra of our n-ary type τ . It is well known that every n-ary term t of type τ induces
an n-ary term operation tA on A, by tA = the j-th projection operation ej on A, for t = xj ,
for 1 ≤ j ≤ n,
tA = fA

i (tA1 , . . . , tAn ), for t = fi(t1, . . . , tn). The collection {tA | t ∈ Wτ (Xn)} forms the
universe of an n-clone T (n)(A), called the term n-clone of A. Then we can prove inductively,
as in Lemma 3.1, that for any n-ary term t, we have tA = h(ϕ(t)). Now we want to apply
this result to identities of the appropriate form, to get an analogue of Theorem 3.3. For
unary type, the property we needed was that only the variable x1 was used on either side
of the identity, which is equivalent to regularity for unary. For n ≥ 2, we need that the
identity is n-ary, meaning that it uses only the variables x1, . . . , xn so that ϕ can be applied;
note that this is not equivalent to regular for n ≥ 2. We will call a variety V n-ary if V =
ModΣ for some set Σ of n-ary identities. Note that the property on n-ary identities is not
an equational theory, since a variety V = ModΣ for a set Σ of n-ary identities still satisfies
identities which use more than just the variables x1, . . . , xn.

Theorem 6.2 Let V be an n-ary algebra of type τ . Then an n-ary identity s ≈ t is a
hyperidentity of A iff ϕ(s) ≈ ϕ(t) is an identity of the term n-clone T (n)(A).

In the unary case most of the results from Section 2 had two versions, one for the transition
monoid which is the unary clone, and one for the corresponding transition semigroup. For
n ≥ 2, it is also possible to consider this additional structure. We define S(n)(A) to be the
set of term operations on A induced by non-variable terms from Wτ (Xn). This set is closed
under the n+1-ary operation Snn , and we shall call the algebra (S(n)(A); Snn) the n-transition
algebra or the pre-n-clone of A. It is straightforward then to define the restriction ϕS of the
isomorphism ϕ to the set S(n)(A), and to prove analogous results in this case. We conclude
with an example. We take n = 2, and type τ = (2) with a single binary operation f . We let
Σ be the set consisting of the following identities of type (2) : f (x, x) ≈ x, f (x, f (y, x)) ≈
f (f (x, y), x) ≈ x, f (f (x, y), y) ≈ f (x, f (y, y)), f (x, f (x, y)) ≈ f (f (x, x), y). Now let V =
Mod Σ, the variety with the set Σ as a basis. Notice that the identities in Σ are all 2-ary,
and hence V is a 2-ary variety; and that V is not a variety of semigroups, since associativity
is not satisfied here, and indeed is not a 2-ary identity. It is easy to calculate that for any
algebra A ∈ V , we have T (2)(A) = {xA1 , xA2 , fA(x1, x2), fA(x2, x1)}. This 2-clone has only
two 2-subclones, the trivial (projection) clone {xA1 , xA2 } and the 2-clone itself. It is not
difficult to see that any algebra B of type (2) with a 2-clone isomorphic to a subclone of
T (2)(A) belongs to the variety V . Therefore V is s-closed. It is also straightforward to check
that V is a solid variety of type (2); any hypersubstitution of this type is ∼V equivalent to
one of σx1, σx2 , σf(x1,x2) or σf(x2,x1), and application of any of these to the basis identities
in Σ yields an identity of V .
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