
Scientiae Mathematicae Japonicae Online, e-2004, 361–375 361

WEAK AND STRONG MACHINE DOMINANCE
IN A NONPREEMPTIVE FLOWSHOP ∗

Petr Čáp , Ondřej Čepek and Milan Vlach

Received December 12, 2003

Abstract. Flowshop scheduling deals with processing a set of jobs through a set
of machines, where all jobs have to pass among machines in the same order. With
the exception of minimizing a makespan on two machines, almost all other flowshop
problems in a general setup are known to be computationally intractable. In this
paper we study a special case of flowshop defined by additional machine dominance
constraints. The main result of this paper shows that the flowshop problem with a
dominant machine (where dominance can be defined in several ways) can be solved in
a polynomial time for a broad class of objective functions. This result is achieved by
providing a general recipe how to obtain polynomial time optimization algorithms for
particular objective functions from the corresponding algorithms for single machine
problems.

1 Introduction Deterministic flowshop scheduling problems have been studied by both
theorists and practitioners since the pioneering work of Johnson [10] from the mid 50’s.
In [10] Johnson presented a polynomial time algorithm for minimizing the makespan of a
flowshop problem on two machines. Following the notation and terminology of the clas-
sification for deterministic scheduling problems proposed by Graham et al. [7], we denote
this problem as F2||Cmax. Further research revealed that this problem is in some sense
an exception, i.e. that most other flowshop problems in a general setup are computation-
ally intractable. Typical results demonstrating this phenomenon include the fact that the
F3||Cmax problem is NP-hard in the strong sense as well as an identical claim for the
F2||∑Cj problem [6]. The F2||Lmax problem was proved to be strongly NP-hard in [14].
The last two complexity results imply intractability on two machines for many other com-
monly used objective functions, and therefore justify a search for additional constraints
which would define tractable subcases of the general flowshop scheduling problem.

One way to impose such additional constraints is to consider a so called machine domi-
nance. This approach is quite extensively studied in the literature [1, 8, 9, 15, 16, 17]. This
paper is intended to integrate and generalize several results about nonpreemptive flowshop
scheduling with machine dominance which have appeared in [17] and [3]. Each of these
papers uses a different concept of machine dominance. In [3] two cases are considered:
when the first machine is a dominant machine and when the last machine is a dominant
machine. For the purposes of this paper we shall call that type of machine dominance strong
dominance. The concept used in [17] is more general: any machine can be dominant, and
moreover, the dominance condition in [17] is somewhat weaker than in [3], i.e. if a given
machine is dominant under the conditions in [3] it is also dominant using the conditions
in [17]. In this paper we shall call that type of machine dominance weak dominance. The
paper [17] contains two principal results for the flowshop problem with a weakly dominant
machine M� (we shall denote this problem by F |wM�|γ):

2000 Mathematics Subject Classification. 90B35.
Key words and phrases. flowshop scheduling, machine dominance.

∗This work was supported by the Grant Agency of the Czech Republic (grant 201/04/1102)

362 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

(1) For every regular objective function γ the set of permutation schedules contains an
optimal schedule.

(2) Polynomial time optimization algorithms exist (and are presented) for the f =
∑

wiCi

and the f = Lmax objective functions.

As mentioned above, the paper [3] deals with the cases when the first machine is strongly
dominant (we shall denote this problem by F |sM1|γ) and when the last machine is strongly
dominant (we shall denote this problem by F |sMm|γ). The following are the main results
of the paper:

(A) For every regular objective function γ the set of permutation schedules contains an
optimal schedule, both for the F |sM1|γ and F |sMm|γ problems as well as for the
F |sM1, nmit|γ and F |sMm, nmit|γ problems where the additional “no machine idle
time” (nmit) constraint is imposed.

(B) For a broad class of regular objective functions (which includes both functions in
(2) and many others) the F |sM1|γ and F |sMm|γ problems are tractable (solvable
in polynomial time) if and only if the corresponding single machine problem 1||γ is
tractable.

In this paper we will integrate and generalize the above results. The main new contributions
presented here are:

• We define a generalized concept of strong dominance allowing any machine (not just
the first or last one) to be the dominant machine. A flowshop problem with this type
of strong machine dominance will be denoted by F |sM�|γ.

• We show that the strong dominance is indeed a special case of the weak dominance, i.e.
that the F |sM�|γ problem is a special case of the F |wM�|γ problem. This immediately
proves that the result (1) is valid also for F |sM�|γ, and hence also for the special cases
� = 1 and � = m which constitute the first part of the result (A).

• We show that unlike the first part of the result (A), the second part (where the
additional nmit constraint is imposed) cannot be carried over to the more general
concepts of machine dominance, namely to the F |sM�, nmit|γ problem (with the
exception of f = Cmax) and to the F |wM�|γ problem (even for f = Cmax). This is
proved by constructing counterexamples, i.e. instances where no permutation schedule
is optimal.

• We prove that the result (B) can be extended to work also for the F |wM�|γ problem
(and thus also for its special case F |sM�|γ). This is achieved by showing how a
polynomial time algorithm for a single machine problem 1||γ can be turned into a
polynomial time algorithm for the corresponding flowshop problem F |wM�|γ.

The paper is organized as follows. Section 2 starts with a formal definition of the
nonpreemptive flowshop scheduling problem. Next, the concepts of strong and weak ma-
chine dominance are introduced and compared. After that, we define the notions of semi-
active schedules and permutation schedules. In the end of the section we present a formula
(from [17]) which is used to compute the completion times of jobs in permutation schedules.
In Section 3, we give the proof that the result (B) can be carried over to the F |wM�|γ prob-
lem. Finally, in Section 4, we present the counterexamples which show that the presence
of the nmit constraint spoils the properties of permutation schedules for the more general
concepts of machine dominace.

MACHINE DOMINANCE IN A FLOWSHOP 363

2 Flowshop with a dominant machine The deterministic flowshop scheduling prob-
lem can be described as follows. There are n jobs J1, J2, · · · , Jn to be processed through
m machines M1, M2, · · · , Mm. The technological constraints demand that the jobs pass
among the machines in the same order. Without loss of generality we may assume that the
machines are numbered according to the technological constraints, that is, we may assume
that each job must be processed first on machine M1, then on machine M2, and so on,
until it is finally processed on machine Mm. The order of jobs on any given machine is not
prescribed and may vary from machine to machine. No machine may process more than
one job at a time (machine constraint), and no job can be processed by several machines
simultaneously (job constraint). Each job consists of m operations, one operation per ma-
chine. The operation of job Jj on machine Mi is denoted by Oij and the processing time of
operation Oij is denoted by pij . Once a processing of an operation Oij starts, it cannot be
interrupted (nonpreemption constraint), i.e. operation Oij then occupies the machine Mi

for the next pij time units.
A schedule S for a nonpreemptive flowshop problem with n jobs to be scheduled on m

machines is a set of mn nonnegative numbers CS
ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, where each CS

ij

denotes the completion time of the operation Oij in the schedule S. Since the operations
cannot be preempted, the completion time fully specifies the span in which each operation is
processed, namely operation Oij is processed in the interval (BS

ij , C
S
ij) where BS

ij = CS
ij−pij .

For every job Jj , 1 ≤ j ≤ n, the job completion time CS
j is the completion time of its last

operation, i.e. CS
j = CS

mj .
A schedule S is called feasible if it fulfills the inequalities BS

ik ≥ 0 for every machine Mi

and job Jk, as well as all the machine and job constraints. These constraints can be stated
as follows.

• Machine constraint: each machine may process at most one job at any given time.
Formally

∀i ∈ {1, . . . , m} ∀k, � ∈ {1, . . . , n} : (k �= �) =⇒ (BS
ik, CS

ik) ∩ (BS
i�, C

S
i�) = ∅

• Job constraint: no job is processed on more than one machine simultaneously, and
moreover the operations of each job are processed in the prescribed order. Formally

∀i, j ∈ {1, . . . , m} ∀k ∈ {1, . . . , n} : (i < j) =⇒ (CS
ik ≤ BS

jk)

The quality of a schedule is measured by an objective function which assigns to every
schedule a real number. Every schedule that attains the minimum value of the objective
function among all schedules in a certain set S of schedules is called best in S. Every
schedule which is best in the set of all feasible schedules is called optimal. Typically, the
task of flowshop scheduling is to find an optimal schedule.

In this paper we restrict our attention to objective functions which depend only on the
job completion times and furthermore possess an additional property - a so called regularity.
An objective function γ is said to be regular if for every two distinct schedules S1 and S2 the
inequality γ(S1) < γ(S2) implies CS1

j < CS2
j for at least one j. Examples of commonly used

regular objective functions include Cmax(S) = maxn
j=1C

S
j , Lmax(S) = maxn

j=1{CS
j −dj} (so

called “minimax” criteria), and
∑

Cj(S) =
∑n

j=1 CS
j ,

∑
Tj(S) =

∑n
j=1 max{CS

j − dj , 0},
and

∑
Uj(S) =

∑n
j=1 sgn(max{CS

j − dj , 0}) (so called summation criteria), where dj , 1 ≤
j ≤ n, are nonnegative due dates associated with jobs. Regularity is preserved in all of
the above cases even if the criteria are made more complex by introducing positive weights
associated with jobs.

364 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

A feasible schedule is called semi-active if no operation Oij can be started earlier without
changing the order of operations on some machine or violating the feasibility constraints. It
is well-known that every feasible schedule S can be transformed into a unique semi-active
schedule S′ such that for each machine Mi, the schedules S and S′ have identical order of
operations on Mi (see e.g. [17] od [3] for details). Moreover, this transformation has the
property that the “new” completion times CS′

j are not larger than the “old” completion
times CS

j . Therefore, under an arbitrary regular objective function, the search for an
optimal schedule can be restricted to semi-active schedules.

Since in many cases it is very hard to optimize over the entire set of all semi-active
schedules, a common approach in flowshop scheduling is to restrict the attention yet further
to the set of the so-called permutation schedules. A schedule is a permutation schedule if it
is semi-active and the jobs are processed in the same order on all m machines. The name
“permutation schedule” reflects the fact that a single permutation in this case completely
specifies the entire schedule. Let π be an arbitrary permutation of the set {1, . . . , n}. Then
the permutation schedule specified by π, i.e. a semi-active schedule in which on every
machine the first scheduled job is Jπ(1), the second scheduled job is Jπ(2), and so on, will
be denoted by Tπ. Furthermore, we denote the set of all permutation schedules by P.
Unfortunately, unlike with the set of semi-active schedules, it may happen that the set
P of permutation schedules contains no optimal schedule. Although a simple interchange
argument shows that P always contains an optimal schedule for m = 2 for all regular
objective functions and for m = 3 for some “minimax” objective functions [5], already for
m = 4 one can construct instances in which no permutation schedule is optimal even for
the simplest objective function Cmax.

The above difficulty can be overcome by imposing certain additional conditions on the
processing times. Several types of such conditions called machine dominance constraints
appeared in the literature. It was proved in [17] and [3] that under some of these machine
dominance constraints, P always contains an optimal schedule regardless of the value of m.
Let us now define these machine dominance constraints. Let us start with the definition
from [3].

We shall say that a machine Mi dominates a machine Mj (denoted by Mi ·> Mj) if

∀k, � ∈ {1, . . . , n} : (k �= �) =⇒ pik ≥ pj�.

This definition is slightly more general (by not requiring any relation between the lengths
of operations of the same job) than a more commonly used definition which states that Mi

dominates Mj if

n
min
k=1

{pik} ≥ n
max
k=1

{pjk}.

A survey of results using this slightly “stronger” definition of machine dominance can be
found in [15].

There are two common ways how to extend the notion of dominance for two machines
to a set of m machines. Both were studied in several papers, e.g. in [1, 3, 9]. Machines
M1, . . . , Mm are said to form an increasing series of dominating machines (idm) if

Mm ·> Mm−1 ·> · · · ·> M2 ·> M1,

and to form a decreasing series of dominating machines (ddm) if

M1 ·> M2 ·> · · · ·> Mm−1 ·> Mm.

MACHINE DOMINANCE IN A FLOWSHOP 365

For the purposes of this paper we shall use a different notation. In the idm case we shall
say that the machine Mm is a strongly dominant machine and denote the corresponding
flowshop problem by F |sMm|γ. Similarly, in the ddm case we shall say that the machine
M1 is a strongly dominant machine and denote the corresponding flowshop problem by
F |sM1|γ.

This notation suggests a straightforward generalization of the described machine dom-
inance concept. We shall say that the machine M�, 1 ≤ � ≤ m, is a strongly dominant
machine if

M� ·> M�−1 ·> · · · ·> M2 ·> M1 and M� ·> M�+1 ·> · · · ·> Mm−1 ·> Mm.

The corresponding flowshop problem wil be denoted by F |sM�|γ.
In [18] and later independently in [17] a yet another concept of machine dominance

was defined. We say that machine M�, 1 ≤ � ≤ m, is a weakly dominant machine if the
processing times satisfy the following conditions:

r∑
k=�

pki ≥
r+1∑

k=�+1

pkj ∀i �= j ∈ {1, . . . , n}, ∀r ∈ {�, . . . , m − 1},(1)

and

�∑
k=r

pki ≥
�−1∑

k=r−1

pkj ∀i �= j ∈ {1, . . . , n}, ∀r ∈ {2, . . . , �}.(2)

It is not hard to verify that if the machine M� is strongly dominant it is also weakly
dominant. Let us verify conditions (1) by induction on r. In the basic step for r = � the
required inequality simply reduces to p�,i ≥ p�+1,j for all i �= j. However, that is exactly
the definition of M� ·> M�+1 which holds by our assumption. For the induction step from
an arbitrary r, � ≤ r ≤ m − 2, to r + 1 it is sufficient to break the required inequality

r+1∑
k=�

pki ≥
r+2∑

k=�+1

pkj

into two inequalities

r∑
k=�

pki ≥
r+1∑

k=�+1

pkj

and

pr+1,i ≥ pr+2,j.

The first inequality then follows from the induction hypothesis and the second inequality
from the assumption Mr+1 ·> Mr+2. Conditions (2) can be verified similarly.

Let us now consider the flowshop problem with a regular objective function γ and with
the machine M� being weakly dominant. We shall denote this problem by F |wM�|γ. The
key result in [17] (appearing there as Theorem 5) can be stated using the terminology of
this paper as follows.

Theorem 2.1 Let γ be an arbitrary regular objective function. Then the set P of all
permutation schedules contains an optimal schedule for the F |wM�|γ problem. Furthermore,

366 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

if π is an arbitrary permutation of {1, 2, . . . , n} and Tπ ∈ P is the corresponding permutation
schedule, then the job completion times in Tπ are given by the formula

CTπ

π(i) =
�−1∑
k=1

pkπ(1) +
i∑

k=1

p�π(k) +
m∑

k=�+1

pkπ(i).(3)

Theorem 2.1 guarantees that when searching for an optimal schedule for the F |wM�|γ
problem, we can restrict ourselves to the set P. Due to the above considerations relating
the different concepts of machine dominance, the same is true for the F |sM�|γ problem
and hence also for its special cases F |sM1|γ and F |sMm|γ. The last two results were
obtained independently in [3] together with the same results for the F |sM1, nmit|γ and
F |sMm, nmit|γ problems, i.e. problems where no machine idle time is allowed. The question
whether the set P also always contains an optimal schedule for the F |sM�, nmit|γ and
F |wM�, nmit|γ problems will be answered (in a negative way) in Section 4.

The second key result in [17] is that formula (3) can be used to find an optimal schedule
for the F |wM�|γ problem where f =

∑
wiCi or f = Lmax in polynomial time. For this

result, two polynomial time algorithms solving the above two problems are presented in
[17]. In the next section we shall see that formula (3) can be in fact used in a much more
general way, yielding algorithms for a broader class of objective functions which includes
both

∑
wiCi and Lmax as well as many others.

3 Reductions to single machine problems Let us start this section by noting that
the single machine scheduling problem is just a special case of the m-machine flowshop
scheduling problem for m = 1. Moreover, for m = 1 all of the considered machine dominance
constraints become trivially satisfied. Thus, given any objective function γ for which the
single machine scheduling problem 1||γ is known to be NP-hard, also the corresponding
flowshop scheduling problem F |wM�|γ is obviously NP-hard (and the same is true for its
special cases F |sM�|γ, F |sM1|γ, and F |sMm|γ). The simplest examples of such objective
functions are γ =

∑
Tj and γ =

∑
wjUj (proofs of NP-hardness can be found in [4] for the

1||∑Tj problem and in [11] for the 1||∑wjUj problem).
We shall show in this section that also the reverse is true for a reasonably broad class

of objective functions. By this we mean that given a polynomial time algorithm which
solves the single machine problem 1||γ for a given objective function γ, we can modify this
algorithm to solve the corresponding flowshop problem F |M�|γ also in polynomial time.
However, the complexity of the new algorithm goes up by a factor of n compared with
the complexity of the single machine algorithm. It should be noted here that for certain
functions γ it may be possible to design “custom made” optimization algorithms which
have a better complexity than what is achieved by using our generic approach. For instance
Ho and Gupta [9] present a O(n2) algorithm for the F |sMm|Lmax problem (which can be
shown to work also for the F |wMm|Lmax problem), while the modification of the O(n log n)
EDD algorithm for the 1||Lmax problem by our approach yields an O(n2 log n) algorithm.

As we have already indicated, these modifications unfortunately are not applicable to all
regular objective functions. However, the class of functions to which the modifications are
applicable is quite broad; in particular, it contains both functions used in [17] and also all
other commonly used objective functions introduced in Section 2. Let us be more specific.
We shall restrict our attention to objective functions of the form

γ(S) =
n

max
k=1

gk(CS
k)(4)

MACHINE DOMINANCE IN A FLOWSHOP 367

and of the form

γ(S) =
n∑

k=1

gk(CS
k)(5)

where in both cases gk(CS
k) is a penalty associated with job Jk given by some nondecreasing

function gk : R −→ R. Note, that since the functions gk are assumed to be nondecreasing,
every objective function defined by (4) or (5) is regular.

From now on let us consider a fixed instance A of the F |wM�|γ problem. We shall show
how to solve A in polynomial time, provided we have a polynomial time algorithm for the
single machine problem 1||γ. Let us start by rewriting formula (3) as

CTπ

π(j) =
�∑

k=1

pkπ(1) +
j∑

k=2

p�π(k) +
m∑

k=�+1

pkπ(j).(6)

Defining rk and tk by

rk =
�∑

i=1

pik, tk =
m∑

i=l+1

pik,

we can rewrite the job completion formula (6) as

CTπ

π(j) = rπ(1) +
j∑

k=2

p�π(k) + tπ(j).(7)

Now let us assume that we choose job Jq to be scheduled first. Then we have from (7)

CTπ

π(j) = rq +
j∑

k=2

p�π(k) + tπ(j)(8)

for every job Jj . Let us denote by Pq the set of those schedules Tπ in P for which π(1) = q,
and let us furthermore denote by Iq the index set of jobs that excludes job Jq, that is,
Iq = {k | 1 ≤ k ≤ n, k �= q}. Note that the sum

∑j
k=2 p�π(k) gives the job completion

time of job Jπ(j), 2 ≤ j ≤ n, in the permutation schedule given by π for the single machine
problem with n − 1 jobs Jk, k ∈ Iq, and processing times

pk = p�k, k ∈ Iq.(9)

Let us denote the set of all permutation schedules of the above 1||γ problem with n − 1
jobs by Q. Notice, that there exists an obvious bijection α : Q −→ Pq which assigns to
every schedule in Q the corresponding schedule in Pq with the same permutation of jobs
excluding job Jq. Now let S ∈ Q be an arbitrary schedule. Then due to (7) we get

C
α(S)
k = CS

k + rq + tk, k ∈ Iq.(10)

We shall see, that for a broad class of objective functions, the task of minimizing γ over Pq

can be reduced to minimizing γ over Q, which is to say that if we find a schedule S which is
best in Q for γ then α(S) is best in Pq for γ. Let us investigate which objective functions
have this property.

368 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

Lemma 3.1 Let γ be given by (5) and let each function gk, k ∈ Iq, have the following
property

∀t1, t2 : gk(t1 + t2) = gk(t1) + gk(t2).(11)

Then if S is best in Q for the 1||γ problem defined by (9) then α(S) is best in Pq for the
problem given by A.

Proof. Let S be the best schedule in Q. Using (5) and (10) we get

γ(α(S)) =
∑
k∈Iq

gk(Cα(S)
k) =

∑
k∈Iq

gk(CS
k + rq + tk)

which can be rewritten using (11) as
∑
k∈Iq

(gk(CS
k) + gk(rq) + gk(tk)) =

∑
k∈Iq

g(CS
k) + (n − 1)gk(rq) +

∑
k∈Iq

gk(tk).

Obviously, the second and third summands are independent of the schedule S, while the
first summand attains the minimum possible value over all schedules in Q due to the choice
of S. Therefore, since α is a bijection, γ(α(S)) also attains a minimum possible value over
all schedules in Pq and thus α(S) is best in Pq.

Examples of functions satisfying (11) include e.g. gk(t) = t or gk(t) = wkt. On the
other hand e.g. the function gk(t) = t2 does not satisfy (11). This means that Lemma 3.1
is applicable to regular objective functions

∑
Cj and

∑
wjCj , but it is not applicable to∑

C2
j despite the fact that this objective function is also regular.

Lemma 3.2 Let γ be given by (4) or (5) and let each function gk, k ∈ Iq, have the form

gk(t) = ϕk(t − dk)(12)

for some nondecreasing function ϕk : R → R. Then if S is best in Q for the 1||γ problem
defined by (9) with due dates given by

d′k = dk − (rq + tk), k ∈ Iq,(13)

then also α(S) is best in Pq for the problem given by A.

Proof. Let S be an arbitrary schedule in Q and let us first assume that γ is given by (4).
Then if we use (12) we obtain

γ(S) = max
k∈Iq

gk(CS
k) = max

k∈Iq

ϕk(CS
k − d′k)

which, using (13), can be rewritten as

max
k∈Iq

ϕk(CS
k − (dk − (rq + tk))) = max

k∈Iq

ϕk(CS
k + rq + tk − dk)

and furthermore, using (10) we get

max
k∈Iq

ϕk(Cα(S)
k − dk) = max

k∈Iq

gk(Cα(S)
k) = γ(α(S)).

MACHINE DOMINANCE IN A FLOWSHOP 369

If γ is given by (5), an almost identical computation to the one above can be made. We
leave this to the reader as an easy exercise. Hence, if γ(S) is the minimum value of γ over
Q then γ(α(S)) is the minimum value of γ over Pq which completes the proof.

Examples of functions satisfying (12) include e.g. gk(t) = t − dk, gk(t) = max{t −
dk, 0}, and gk(t) = sign(max{t− dk, 0}). This means that among other objective functions,
Lemma 3.2 is applicable to functions Lmax,

∑
Tj, and

∑
Uj. It is easy to see that Lemma 3.2

remains applicable for all of the above functions even if we add job related positive weights.
The only regular objective function from those introduced in Section 2 which fits neither

Lemma 3.1 nor Lemma 3.2 is Cmax. However, minimizing Cmax over the set Pq is trivial,
since Cmax attains the same value for every schedule in Pq, and hence every schedule in Pq

is best in Pq.
Now let us assume that γ fulfills the assumptions of Lemma 3.1 or Lemma 3.2 and

moreover that there is a polynomial time algorithm finding an optimal schedule for the
corresponding 1||γ problem defined by (9) (and by (13), if applicable). Then Lemma 3.1
and Lemma 3.2 give a recipe how to find the best schedule in the set Pq. Indeed, if we use
the given algorithm to obtain an optimal schedule S for the single machine problem, then
α(S) is the best schedule in Pq for the problem given by A.

Thus we now have a tool how to find the best schedule in Pq (for an arbitrary 1 ≤ q ≤ n)
for the problem given by A, as long as γ belongs to the above specified broad class of
regular objective functions which includes all of the commonly used functions introduced
in Section 2. It is obvious, that to find an optimal schedule for the problem given by A, it
is now enough to find the best schedule in every Pq, 1 ≤ q ≤ n, and then compare these n
candidates. It then follows that the complexity of finding the optimal schedule for problem
given by A is n times the complexity of the algorithm which solves the single machine
problem (unless this complexity is dominated by the time necessary for reading the input
data). Notice, that this last claim is not influenced by the preprocessing phase of computing
the “constants” rq and tk, as this computation clearly takes just O(nm) time while Ω(nm)
time is in any case necessary to read the input data.

Let us now give several concrete examples of how the general approach described above
can be used. The polynomial time algorithm for the 1||∑wjCj problem [12] yields a
polynomial time algorithm for the F |wM�|

∑
wjCj problem, and the polynomial time algo-

rithm for the 1||Lmax problem [2] yields a polynomial time algorithm for the Fm|wM�|Lmax

problem. This gives alternative proofs of polynomial time solvability for these two problems
(polynomial time algorithms for them were presented in [17]), which are the only F |wM�|γ
type problems known so far to be solvable in polynomial time. However, we can now ex-
tend this class by deriving new results. As an example let us take the polynomial time
algorithm for the 1||∑Uj problem [13]. This algorithm yields a polynomial time algo-
rithms for the F |wM�|

∑
Uj problem, a problem whose complexity was not known yet. The

same approach as for polynomial time algorithms works also for pseudopolynomial time
ones. Indeed an existence of a pseudopolynomial time algorithm for the 1||γ problem yields
(by the same argument) a pseudopolynomial time algorithm for the corresponding F |wM�|γ
problem (the complexity increases again by a factor of n). Let us give two examples demon-
strating this phenomenon. The pseudopolynomial algorithm for the 1||∑Tj problem [4]
yields a pseudopolynomial algorithm for the Fm|wM�|

∑
Tj problem, and the pseudopoly-

nomial algorithm for the 1||∑wjUj problem [13] yields a pseudopolynomial algorithm for
the Fm|wM�|

∑
wjUj problem.

In the next section we shall investigate, how do the so far discussed flowshop problems
change, and what results can be derived for them, if we add the no machine idle time (nmit)
constraint.

370 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

4 Problems with the no machine idle time constraint The no machine idle time
(nmit) constraint means that each machine, once it commences its work, has to process all
operations assigned to it without any interruption. Such a restriction may be very natural
in some real life situations, e.g if machines represent expensive pieces of equipment which
have to be rented only for the duration between the start of the first operation and the
completion of the last one.

Flowshop problems with machine dominance and the additional nmit constraint were
studied in [1], where polynomial time algorithms finding the best permutation schedule were
presented for the F |sM1, nmit|∑Cj and F |sMm, nmit|∑Cj problems. In [3] it was shown,
that the above algorithms in fact find an optimal schedule. This was achieved by proving
that the set of permutation schedules always contains an optimal schedule for both of the
above problems, moreover not just for γ =

∑
Cj but for every regular objective function γ.

In this section we shall investigate, whether the above described property of permutation
schedules carries over to the more general concepts of machine dominance, namely to the
F |sM�, nmit|γ and F |wM�, nmit|γ problems. We shall see that unfortunately with one
slight exception, the answer is negative.

Let us start with the F |sM�, nmit|γ problem. We shall construct instances of this
problem with γ = Lmax and γ =

∑
Cj where the set of permutation schedules fails to

contain an optimal schedule.

Lemma 4.1 The set of permutation schedules for the F |sM�, nmit|Lmax problem does not
always contain an optimal schedule.

Proof. Let us define an instance of the F |sM�, nmit|Lmax problem with m = n = 3 (three
jobs on three machines) by

machine/job J1 J2 J3

M1 1 4 4
M2 5 5 5
M3 3 2 1

It is easy to verify that this instance fulfils the sM2 constraint, or in other words that
M1 <· M2 ·> M3. Furtermore let us define the due date for job J2 by d2 = 13, and let
us set the due dates for jobs J1 and J3 sufficiently large so that they cannot influence the
objective function Lmax (e.g. d1 = d3 = 100).

Now let us check Figure 1 (for now ignore the numbers on the right margin). In the
topmost non-permutation schedule all three jobs meet their due dates (job J2 tightly) and
thus this schedule attains the value Lmax = 0. On the other hand, in all six permutation
schedules depicted below the job J2 is late, thus forcing in all six cases Lmax > 0. Therefore,
no permutation schedule is optimal.

Lemma 4.2 The set of permutation schedules for the F |sM�, nmit|∑Cj problem does not
always contain an optimal schedule.

Proof. Let us define an instance of the F |sM�, nmit|∑Cj problem in the same way as in
the previous proof (except that no due dates are needed now). Once again, let us check
Figure 1. For each schedule the job completion times C1, C2, and C3 as well as their sum
are presented on the right margin in the form C1 + C2 + C3 =

∑
Cj . We can see that

the topmost non-permutation schedule attains a smaller value of
∑

Cj than any of the six
permutation schedules, and hence no permutation schedule is optimal.

MACHINE DOMINANCE IN A FLOWSHOP 371

3 1 2 19+21+16=56
3 1 2

3 1 2

3 2 1 22+19+17=58
3 2 1

3 2 1

2 3 1 22+18+19=59
2 3 1

2 3 1

2 1 3 19+16+20=55
2 1 3

2 1 3

1 3 2 15+18+16=49
1 3 2

1 3 2

1 2 3 14+16+17=47
1 2 3

1 2 3

2 1 3 16+13+17=46
1 2 3

1 2 3

d2

Figure 1: Counterexample for F |sM�, nmit|Lmax and F |sM�, nmit|∑Cj problems

372 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

It is easy to see, that the counterexample for γ = Lmax works also for γ =
∑

Uj and
γ =

∑
Tj (the topmost non-permutation schedule has

∑
Uj =

∑
Tj = 0 while all six

permutation schedules have
∑

Uj =
∑

Tj > 0). Of course, the same counterexamples work
also for problems with added job related weights, i.e. for objective functions

∑
Cj ,

∑
Uj ,

and
∑

Tj (if we take all weights equal to one). Thus the statement of Lemma 4.1 and
Lemma 4.2 is true for all commonly used objective functions except for γ = Cmax. This
objective function really is an exception, as the following lemma shows.

Lemma 4.3 The set of permutation schedules for the F |sM�, nmit|Cmax problem always
contains an optimal schedule, and moreover such an optimal schedule can be constructed in
a polynomial time.

Proof. A trivial lower bound for the makespan of any feasible schedule is given by

min
1≤a≤n,1≤b≤n,a �=b

{ �−1∑
i=1

pia +
n∑

i=1

p�i +
m∑

i=�+1

pib

}
,(14)

where Ja is the first job processed on machine M�, Jb is the last job processed on machine
M�, and the formula takes the minimum over all possible pairs Ja, Jb. Notice that the
middle sum which represents the sum of lengths of all operations on machine M� is a
constant independent of the choice of Ja and Jb.

A permutation schedule with a makespan equal to the lower bound (14), i.e. an op-
timal permutation schedule, can be constructed as follows. Compute for each job Jj the
expressions rj =

∑�−1
i=1 pij and tj =

∑m
i=�+1 pij . Then select the two smallest rj ’s, i.e. let

ra = minj∈N rj and ra′ = minj∈N\{a} rj where N = {1, . . . , n}. Similarly let tb = minj∈N tj
and tb′ = minj∈N\{b} tj (in both cases break ties arbitrarily). Now if a �= b then select Ja to
be the first job and Jb to be last job. If a = b then compare ra + tb′ with ra′ + tb and instead
of the pair Ja, Jb select either Ja, Jb′ or Ja′ , Jb, whichever attains the smaller value. Once
the first and last jobs are chosen, finalize the permutation of jobs by putting the remaining
jobs inbetween the first and last one in an arbitrary order.

Now let us construct the desired optimal schedule. Starting at time zero schedule the
operations of job Ja (or Ja′ , whichever was selected) on machines M1, . . . , M�−1 one immedi-
ately after another (in a no-wait fashion). Then schedule all operations on M� in the chosen
order with no machine idle time inbetween operations, and follow with the operations of job
Jb (or Jb′) on machines M�+1, . . . , Mm (again in a no-wait fashion). Finally, schedule all
remaining operations in the order given by machine M� : on machines M1, . . . , M�−1 imme-
diately after the corresponding operation of job Ja (or Ja′) and on machines M�+1, . . . , Mm

immediately before the corresponding operation of job Jb (or Jb′), of course in both cases
without any machine idle time. It is easy to check, that due to the strong dominance of
machine M�, the schedule constructed above is feasible (no two operations of the same job
overlap).

Now let us turn our attention to the weak form of machine dominance, namely to the
F |wM�, nmit|γ problem. Since the F |sM�, nmit|γ problem is just a special case of this
problem (as was shown in Section 2), it is obvious that whenever the set of permutation
schedules for the F |sM�, nmit|γ problem fails to always contain some optimal schedule for a
given objective function γ, the same is true for the F |wM�, nmit|γ problem. Thus, because
of the results derived for the F |sM�, nmit|γ earlier in this section, the only open case for
F |wM�, nmit|γ is the case γ = Cmax.

We shall show now that for the F |wM�, nmit|Cmax problem no statement that would
be similar to Lemma 4.3 can be proved. The reason is that the weak machine dominance

MACHINE DOMINANCE IN A FLOWSHOP 373

2 3 1
2 3 1

2 3 1
2 3 1

3 2 1
3 2 1

3 2 1
3 2 1

1 3 2
1 3 2

1 3 2
1 3 2

3 1 2
3 1 2

3 1 2
3 1 2

2 1 3
2 1 3

2 1 3
2 1 3

1 2 3
1 2 3

1 2 3
1 2 3

1 2 3
1 2 3

2 1 3
2 1 3

Figure 2: Counterexample for the F |wM�, nmit|Cmax problem

374 PETR ČÁP, ONDŘEJ ČEPEK AND MILAN VLACH

is not enough to guarantee the feasibility of the permutation schedule constructed in the
proof of Lemma 4.3. In fact, just the opposite of Lemma 4.3 is true.

Lemma 4.4 The set of permutation schedules for the F |wM�, nmit|Cmax problem does not
always contain an optimal schedule.

Proof. Let us define an instance of the F |wM�, nmit|Cmax problem with m = 4 and n = 3
(three jobs on four machines) by

machine/job J1 J2 J3

M1 5 1 3
M2 3 5 5
M3 1 3 1
M4 3 1 1

It is easy to verify that this instance fulfils the wM2 constraint, i.e. that machine M2 is
weakly dominant. To check this fact it is enough to verify the inequalities (1) and (2) in
the definition of weak dominance, namely the inequality (1) for r = 2 and r = 3, and the
inequality (2) for r = 2. We leave this to the reader as an easy excercise.

Now let us check Figure 2. The topmost non-permutation schedule is clearly optimal
as it attains the lower bound (14) because both r2 and t3 are clearly minimal. On the
other hand, all six permutation schedules have a strictly longer makespan than the topmost
schedule, and hence no permutation schedule is optimal.

References

[1] Adiri, I. and Pohoryles, D. Flowshop/No-idle or No-wait scheduling to minimize the sum of
completion times, Naval Research Logistics Quarterly 29, 495-504 (1982)

[2] K.R. Baker, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan [1983], Preemptive scheduling of a
single machine to minimize maximum cost subject to release dates and precedence constraints,
Operations Research 31, (1983) 381-386.

[3] Čepek, O., Okada, M., and Vlach, M. Nonpreemtive Flowshop Scheduling with Machine Domi-
nance, Research report IS-RR-98-0007F, Japan Advanced Institute of Science and Technology
(1998).

[4] J. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Mathematics of
Operations Research 15, 3, (1990) 483-495.

[5] Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling, Addison-Wesley,
Reading, Mass.(1967)

[6] Garey, M. R. , Johnson, D. S., and Sethi, R. The complexity of flowshop and jobshop scheduling,
Mathematics of Operations Research 1, 117-129 (1976)

[7] Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. Optimization and
approximation in deterministic sequencing and scheduling, a survey. Annals of Discrete Math-
ematics 5, 287-326 (1979)

[8] Gupta, J. N. D. Optimal Schedules for Special Structure Flow-shops, Naval Research Logistics
Quarterly, Vol.22, 1975, pp. 255-269

[9] Ho, J. C. and Gupta, J. N. D. Flowshop Scheduling with Dominant machines, Computers Ops.
Res., 22, No. 2, 237-246 (1995)

[10] Johnson, S. M. Optimal Two-and Three-Stage Production Schedules with Setup Times Included,
Naval Research Logistics Quarterly, Vol. 1, No. 1 (March, 1954)

MACHINE DOMINANCE IN A FLOWSHOP 375

[11] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller, J.W. Thatcher: Com-
plexity of Computer Computations, Plenum Press, New York, (1972) 85-103.

[12] E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence
constraints, Annals of Discrete Mathematics 2, (1978) 75-90.

[13] E.L. Lawler, A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs, Annals of Operations Research 26, (1990) 125-133.

[14] Lenstra, J. K., Rinnooy Kan A. H. G., and Brucker, P. Complexity of machine scheduling
problems, Ann. Discrete Math., Vol.1, pp.343-362 (1977)

[15] Monma, C. L. and Rinnooy Kan, A. H. A Concise Survey of Efficiently Solvable Special Cases
of the Permutation Flow-Shop Problem, RAIRO, Vol. 17, No. 2 105-119(1983)

[16] Nabeshima, I. The Order of n Items Processed on m machines, J. Operations Research Society
Japan, Vol.3, 1961, pp. 170-175.

[17] van den Nouweland, A., Krabbenborg, M., and Potters, J. Flow-shops with a dominant ma-
chine, European Journal of Operational Research 62 (1992) 38-46.

[18] Tanaev, V.S., Sotskov, Y.N., and Strusevich, V.A. Teoriia raspisanii. Mnogostadiinye sistemy,
Nauka, Moscow, 1989. English translation Scheduling theory. Multi-stage systems, Kluwer,
Dordrecht, 1994.

Authors’ affiliations:
Petr Čáp: Charles University, Praha, Czech Republic
Ondřej Čepek: corresponding author, Department of Theoretical Informatics and Mathe-
matical Logic, Charles University, Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic
(e-mail: cepek@ksi.ms.mff.cuni.cz, phone: +420-221-914-246, fax: +420-221-914-323)
Milan Vlach: Charles University, Praha, Czech Republic

