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CONNECTED STABLE RANK OF THE ALGEBRAS OF

CONTINUOUS FUNCTIONS FROM SPACES TO C∗-ALGEBRAS
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��������� We estimate the connected stable rank of the C∗-algebras of continuous functions
from spaces to C∗-algebras in terms of the spaces and C∗-algebras in the images. As a corollary,
we obtain a result in the K-theory of C∗-algebras.

0. Introduction

The stable rank and connected stable rank for C∗-algebras were introduced by Rieffel
[Rf1] to study the dimension theory of C∗-algebras and its close connection with their K-
theory. These stable ranks also played a fundamental role in the study of homotopy groups
of the unitary groups of noncommutative tori [Rf2]. In particular, it has turned out that for
a C∗-algebra A, the estimate of the connected stable rank for the C∗-algebras C(Tn, A) of
continuous A-valued functions on the tori Tn is useful for estimating the homotopy groups
of the general linear groups GLn(A) over A ([Rf2, Theorem 3.3]). Inspired by this fact, our
first motivation of this paper is to estimate the connected stable rank of the C∗-algebras
C(Tn, A) in terms of Tn and A. This estimate has not been obtained previously, while
the estimate of the same type when spaces are compact and contractible was obtained by
Nistor [Ns] and Elhage Hassan [Eh], and the estimate of the stable rank of that type was
obtained by [Rf1, Corollary 7.2] and by Nagisa, Osaka and Phillips [NOP] and improved by
the author [Sd]. Also, the estimate of the real rank of that type was obtained as one of the
main results of [NOP].

Our strategy is as follows. As the main result, we estimate the connected stable rank
of the C∗-algebras C0(R,A) of continuous A-valued functions vanishing at infinity on the
real line R in terms of R and A. Moreover, we deduce several consequences from this
result, one of which is the estimate mentioned above. In particular, we obtain an improved
result in the homotopy theory of C∗-algebras and a somewhat interesting consequence in
the (non-stable) K-theory of C∗-algebras.

Notation and facts. Let A be a C∗-algebra. We denote by sr(A), csr(A), and gsr(A) the
stable rank, connected stable rank and general stable rank of A respectively ([Rf1]). Recall
that for A unital, sr(A) is the smallest n ∈ N such that Ln(A) = {(aj) ∈ An |

∑n
j=1 a∗

jaj

is invertible in A} is dense in An, csr(A) is the smallest n ∈ N such that Lm(A) is path-
connected for any m ≥ n, and for A non-unital, the respective ranks are defined by those
of the unitization A+.

(F1) : gsr(A) ≤ csr(A) ≤ sr(A) +1 for any C∗-algebra A [Rf1, Corollary 4.10 and p.328].
Let C0(X) be the C∗-algebra of all continuous functions on a locally compact Hausdorff
space X vanishing at infinity.
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(F2) : sr(C(X)) = [dim X/2] + 1, and csr(C(X)) ≤ [(dim X + 1)/2] + 1, where [x] means
the maximum integer ≤ x, X is compact, and C0(X) = C(X) ([Rf1, Proposition 1.7], [Ns]).
For a C∗-algebra A, we denote by C0(X, A) the C∗-algebra of continuous A-valued functions
on X vanishing at infinity. It is known that C0(X, A) is isomorphic to the C∗-tensor product
C0(X) ⊗ A (cf.[Mp, Theorem 6.4.17]). If X is compact, set C0(X, A) = C(X, A).

1. The main results

Theorem 1. Let A be a C∗-algebra. Then csr(C0(R,A)) ≤ max{2, csr(A), sr(A)}.

Proof. We first suppose that A is unital. Since C0(R,A) is nonunital, we consider its
unitization C0(R,A)+. As usual, the elements of the unitization are taken to be ordered
pairs (a, λ) with a ∈ C0(R,A) and λ ∈ C. Take any x = ((aj , λj))n

j=1 ∈ Ln(C0(R,A)+) with∑n
j=1(bj , µj)(aj , λj) = (0, 1) ∈ C0(R,A)+ for some ((bj , µj))n

j=1 ∈ (C0(R,A)+)n. Then x =
((aj , λj))n

j=1 is regarded as a continuous function Φx from the one-point compactification
R+ = R ∪ {∞} of R to Ln(A+) by Φx(∞) = ((0, λj))n

j=1, and Φx(t) = ((aj(t), λj))n
j=1 ∈

Ln(A+) for t ∈ R since
∑n

j=1(bj(t), µj)(aj(t), λj) = (0, 1) ∈ A+. Also, we have the following
inclusion: Ln(C0(R,A)+) ⊂ C(R+, (A+)n).

Now suppose max{csr(A), sr(A)} ≤ N (and in addition N ≥ 2 later). Note that
csr(A+) ≤ max{csr(A), csr(C)} = csr(A) by [Sh, Theorem 3.9] and sr(A) = sr(A+) for
A unital. Thus, Ln(A+) is path-connected and dense in (A+)n for any n ≥ N . Hence any
element of Ln(A+) is connected to ((1, 1), · · · , (1, 1)) ∈ Ln(A+). In the following we use the
identification C(R+, (A+)n) ∼= C(R+) ⊗ (A+)n (cf.[Mp, Theorem 6.4.17], that is, any ele-
ment of the left hand side is approximated by finite sums of simple tensors in the right hand
side. Since Ln(A+) is open in (A+)n, it follows from the above inclusion and the standard
approximation in the above identification that for any t ∈ R, the restriction x|U of Φx (or x)
to some open neighborhood U of t is approximated closely by a sum of two simple tensors,
fU ⊗(ck, 0)n

k=1+1U ⊗(0, νk)n
k=1 for 1U ∈ C(U) and fU ∈ C0(U) with 1U = 1 and 0 ≤ fU ≤ 1

with fU (t) = 1, and (fU (s)ck, νk)n
k=1 ∈ Ln(A+) for s ∈ U . Thus, x|U is connected to

fU ⊗ (ck, 0)n
k=1 + 1U ⊗ (0, νk)n

k=1. Since (ck, νk)n
k=1 is connected to ((1, 1), · · · , (1, 1)) ∈

Ln(A+), the restriction x|U is connected to fU ⊗(1, 0)n
k=1+1U ⊗(0, 1)n

k=1, which is regarded
as the restriction of an element of Ln(C(R+)) to U . We may assume that U is an open
interval. Similarly, for s 	∈ U (near U) we can take an open interval V such that V ∩U is non-
empty, and x|V ∪U is approximated by fV ⊗ (dk, 0)n

k=1 + fU ⊗ (ck, 0)n
k=1 +1V ∪U ⊗ (0, νk)n

k=1

for fV ∈ C0(V ) with 0 ≤ fV ≤ 1 and fV (s) = 1, and (fV (t)dk + fU (t)ck, νk)n
k=1 ∈ Ln(A+)

for t ∈ V ∪U , where in this process we may change fV , ck and νk as chosen above. Then the
sum of three simple tensors is connected to fV ⊗(1, 0)n

k=1+fU ⊗(1, 0)n
k=1+1V ∩U ⊗(0, 1)n

k=1,
and so is x|V ∩U . Note also that the space C(V ∪U, Ln(A+)) is contractible since C(V ∩U)
and Ln(A+) are contractible (cf. [Mp, Theorem 7.5.3]). By using this argument inductively
for a suitable locally finite open covering {Uj} (possibly finite) of R associated with Φx, and
using the density of Ln(A+) for replacing the restrictions with such sums of simple tensors as
above, we obtain that Φx is connected to an element Ψx = fx⊗(1, 0)n

k=1 +1R+ ⊗(0, 1)n
k=1 of

Ln(C(R+)), where fx is regarded as an element of C0(R) and 1R+ is the identity of C(R+).
Note that it is possible to make fx by putting together fUj corresponding to the restrictions
Uj by adjusting values of fUj at points near the boundary of Uj (if necessary by using
partition of unity of R associated with the covering {Uj} or its (inductive) refinements),
where it seems that in the final step we are using of R contractible, and note that the space
of elements of C0(R,A) with compact supports are dense in C0(R,A), and since dim R = 1
(the covering dimension one) there exists an open covering of R such that intersections of
more than two members of the covering must be empty (cf. [Ng]). Since csr(C0(R)) = 2
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[Sh, p.381], Ln(C0(R)+) = Ln(C(R+)) is connected for any n ≥ 2. Thus, Ψx is connected
to (1, · · · , 1) ∈ Ln(C0(R)+), and Ln(C0(R)+) ⊂ Ln((C0(R) ⊗ A)+) since A is unital.

Next suppose that A is nonunital. Then we can follow almost the same argument as
in the unital case. Note that the element ((1, 1), · · · , (1, 1)) ∈ Ln(A+) taken above should
be replaced with a certain fixed ((d1, 1), · · · , (dn, 1)) with each dk ∈ A nonzero and small
enough so that ((dk, 1))n

k=1 ∈ Ln(A+) since it is near ((0, 1), · · · , (0, 1)) ∈ Ln(A+), and
the continuous functions on R of the form fx ⊗ ((dk, 0))n

k=1 + 1R+ ⊗ ((0, 1))n
k=1 can be

identified with elements of Ln(C(R+)) = Ln(C0(R)+). Also, under this identification the
space Ln(C0(R)+) is regarded as a subspace of Ln((C0(R) ⊗ A)+). �
Corollary 2. Let A be a C∗-algebra. Then csr(C0(R,A)) ≤ sr(A) + 1.

Proof. Use the fact that csr(A) ≤ sr(A) + 1 for any C∗-algebra A (F1). �
Remark. The estimate: csr(C0(R,A)) ≤ sr(C0(R,A)) + 1 ≤ sr(A) + 2 can be obtained by
(F1) and [NOP, Theorem 1.13]. When A = C in Theorem 1 and Corollary 2 we obtain the
equality of each estimate. In this sense those estimates are the best possible. On the other
hand, if the K1-group of C0(R,A) is nontrivial, then csr(C0(R,A)) ≥ 2 by [Eh, Corollary
1.6]. Note that the K1-group K1(C0(R,A)) ∼= K0(A) the K0-group of A.

Theorem 3. Let A be a C∗-algebra. Then for any k ≥ 1,

csr(C(Tk, A)) ≤ max{2, csr(A), sr(C(Tk−1, A))}.

Furthermore, it follows that csr(C(Tk, A)) ≤ max{sr(A) +1, sr(C(Tk−1, A))}. In particular,
gsr(C(T,A)) ≤ csr(C(T,A)) ≤ max{2, csr(A), sr(A)} ≤ sr(A) + 1. Moreover, when A is
unital, if p ≥ max{2, csr(A), sr(C(Tk−1, A))} for all k, then for n ≥ p − 1 and k ≥ 0,

πk(GLn(A)) ∼=
{

K1(A) if k even,
K0(A) if k odd,

where πk(GLn(A)) mean the homotopy groups of GLn(A).

Proof. We consider the exact sequence: 0 → C0(R,A) → C(T,A) → A → 0 when k = 1.
Using [Sh, Theorem 3.9] and Theorem 1, we obtain

csr(C(T,A)) ≤ max{csr(C0(R,A)), csr(A)} ≤ max{2, csr(A), sr(A)}.

Our first idea for calculating the rank csr(C(T,A)) is the reduction to the estimate of
csr(C0(R,A)). For k ≥ 2, we use this estimate inductively as follows. Since C(Tk, A) ∼=
C(T) ⊗ C(Tk−1, A), we have

csr(C(Tk, A)) ≤ max{2, csr(C(Tk−1, A)), sr(C(Tk−1, A))}
≤ max{2, csr(C(Tk−2, A)), sr(C(Tk−2, A)), sr(C(Tk−1, A))}
≤ · · · · · · · · · · · · · · · · · · ≤ max{2, csr(A), sr(C(Tk−1, A))}.

Note that sr(C(Tl, A)) ≤ sr(C(Tk−1, A)) for 0 ≤ l ≤ k − 2 by [Rf1, Theorem 4.3] since
C(Tl, A) is a quotient of C(Tk−1, A). By [Rf2, Theorem 3.3], when A is unital, if p ≥
csr(C(Tk, A)) for all k, then for n ≥ p − 1 and k ≥ 0, we obtain

πk(GLn(A)) ∼=
{

K1(A) if k even,
K0(A) if k odd.
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Combining this result with the above inequality for csr(C(Tk, A)), we obtain the desired
conclusion. �

Remark 3.1. The first and second estimates of the connected stable rank of Theorem 3
suggest that it is impossible to estimate the rank csr(C(Tk, A)) in terms of A only in
general. Also, max{2, csr(A), sr(C(Tk−1, A))} is not bounded as k varies in general (cf.
[Rf2, Theorem 3.3] the result for calculating homotopy groups). However, for example, if
we take A to be an inductive limit of homogeneous C∗-algebras of slow dimension growth,
then sr(C(Tk−1, A)) ≤ 2 and csr(A) ≤ 2 by using [Rf1, Theorems 5.1 and 6.1], [Rf2, Theorem
4.7] and (F2) and by induction, but csr(C(Tk, A)) and gsr(C(T,A)) can be strictly smaller
than csr(A). Also, it is harder to calculate the ranks csr, gsr than the stable rank in general.

Remark 3.2. Note that C(Tk, A) is regarded as a crossed product A�α Zk with α the trivial
action since A �α Zk ∼= A ⊗ C∗(Zk) and C∗(Zk) ∼= C(Tk). When A is unital, we obtain
csr(A �α Zk) ≤ sr(A �α Zk−1) + 1 ≤ sr(A) + k by using [Rf1, Corollary 8.6 and Theorem
7.1]. This estimate is valid for α any nontrivial action. Also note that for any k ≥ 1,
csr(A �α Zk) ≥ 2 for A a unital C∗-algebra by [Eh, Theorem 2.2]. In particular, for any
k ≥ 1, csr(C(Tk, A)) ≥ 2 for A unital.

Remark 3.3. For X any locally compact Hausdorff space and A a C∗-algebra, the esti-
mate: csr(C0(X, A)) ≤ max{csr(C0(X)), csr(A), sr(A)} is wrong in general. For example,
let C0(X) = C0(Rm) = A for m ≥ 2. Note that csr(C0(R2)) = 1, and csr(C0(Rn)) =
[(n + 1)/2] + 1 for n ≥ 3 (cf. [Sh, p.381]).

Corollary 4. We have csr(C(Sn, A)) ≤ max{2, csr(A), sr(C0(Rn−1, A))} for a C∗-algebra
A and n ≥ 1, where Sn means the n-dimensional sphere.

Proof. We have the exact sequence: 0 → C0(Rn, A) → C(Sn, A) → A → 0. Using [Sh,
Theorem 3.9] and Theorem 1 repeatedly, we obtain

csr(C(Sn, A)) ≤ max{csr(C0(Rn, A)), csr(A)}
≤ max{2, csr(C0(Rn−1, A)), sr(C0(Rn−1, A)), csr(A)}
≤ · · · · · · · · · · · · · · · · · · ≤ max{2, csr(A), sr(C0(Rn−1, A))}. �

Remark 4.1. By the Künneth formula (cf. [Wo, 9.3.3]), we obtain

K1(C(Sn, A)) ∼= K0(C(Sn)) ⊗ K1(A) + K1(C(Sn)) ⊗ K0(A)
∼= K0(C0(Rn)+) ⊗ K1(A) + K1(C0(Rn)+) ⊗ K0(A)

∼=
{

Z2 ⊗ K1(A) n even,

Z ⊗ K1(A) + Z ⊗ K0(A) n odd

if A is in the class X ([Wo, 11.2.3]) or the bootstrap category ([Bl, 22.3.4]) and its K-groups
are torsion free.

Remark 4.2. Note that csr(C(X, A)) = csr(A) for X a contractible compact space and A
a C∗-algebra by [Eh, Corollary 2.12] (cf. [Ns, Corollary 2.9]). For example, we may let
X = [0, 1]n. Also, csr(A) ≤ csr(C(K, A)) for K a compact space [Eh, 2.13] since the
quotient from C(K, A) to A by the point evaluation splits.

As an important application to the K-theory of C∗-algebras,
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Theorem 5. Let A be a C∗-algebra. Then for any n ≥ max{2, csr(A), sr(A)}, the map
from the quotient GLn−1(A)/GLn−1(A)0 to GLn(A)/GLn(A)0 is an isomorphism so that
GLn−1(A)/GLn−1(A)0 is isomorphic to the K1-group K1(A), where GLn−1(A)0 is the con-
nected component of the identity in GLn−1(A).

Proof. If A is nonunital, we consider its unitization A+. Let n ≥ {2, csr(A), sr(A)}. By
the third estimate in Theorem 3, n ≥ max{csr(A), gsr(C(T,A))}. The conclusion of the
theorem now follows by [Rf2, Theorem 2.9]. �

Remark. This partially improves Rieffel’s result [Rf2, Theorem 2.10].

Corollary 6. Let A be a C∗-algebra with sr(A) ≤ 2 and csr(A) ≤ 2. Then the K1-group
K1(A) of A is isomorphic to GL1(A)/GL1(A)0 = A−1/A−1

0 , where A−1 is the group of all
invertible elements of A.

Remark 6.1. Let T be the Toeplitz algebra. It is well known that T is an extension of C(T)
by the C∗-algebra of compact operators (cf. [Mp, Section 3.5]). By [Rf1, Examples 4.13],
[Sh, Theorem 3.9 and p.381] and [Eh, Proposition 1.15], we have sr(T ) = 2 and csr(T ) = 2.
Note that the K1-group of T is trivial (cf. [Wo, Exercises 9.L]), but T is not (stably) finite,
from which we also have csr(T ) 	= 1.

Remark 6.2. It is shown in [Bl, 8.1] (cf. [Wo]) that A−1/A−1
0

∼= K1(A) if A = C(S1),
and A−1/A−1

0 	∼= K1(A) if A = C(S3). Note that sr(C(S1)) = 1 and csr(C(S1)) = 2
while sr(C(S3)) = 2 and csr(C(S3)) = 3. For X a contractible compact space, we have
C(X)−1/C(X)−1

0 = 0 = K1(C(X)) (cf. [RLL, Chapter 8]). Moreover, if A is an AF-
algebra, then A−1/A−1

0
∼= K1(A) = 0 since sr(A) = 1 by [Rf2, Theorem 2.10]. Also, for

any C∗-algebra A, we have (A⊗ K)−1/(A⊗ K)−1
0 = K1(A) ∼= K1(A⊗K), and sr(A⊗K) =

min{2, sr(A)}, csr(A ⊗ K) ≤ min{2, csr(A)}, where K is the C∗-algebra of all compact
operators on a separable infinite dimensional Hilbert space ([Rf1, Theorems 3.6 and 6.4], [Sh,
Theorem 3.10] and [Ns, Corollaries 2.5 and 2.12]). Moreover, note that csr(C0(R2n)⊗K) = 1
for n ≥ 0 and csr(C0(R2n+1) ⊗ K) = 2 for n ≥ 0, and K1(C0(R2n)) ∼= K1(C) = 0 and
K1(C0(R2n+1)) ∼= K1(C0(R)) ∼= Z (cf. [Sh, p.386] and [Wo, Sections 7 and 9]).

Remark 6.3. If A is a purely infinite C∗-algebra, then A−1/A−1
0

∼= K1(A) while it is known
that sr(A) = ∞ by [Rf1, Proposition 6.5], and if A is unital, simple and purely infinite, then
csr(A) = ∞ when the unit of K0(A) has torsion and csr(A) = 2 when the unit of K0(A)
has no torsion, and if A is nonunital, simple and purely infinite, then csr(A) = 2 (see [X]).
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