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CONNECTED STABLE RANK OF THE ALGEBRAS OF
CONTINUOUS FUNCTIONS FROM SPACES TO C*-ALGEBRAS
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ABSTRACT. We estimate the connected stable rank of the C*-algebras of continuous functions
from spaces to C'*-algebras in terms of the spaces and C*-algebras in the images. As a corollary,
we obtain a result in the K-theory of C'*-algebras.

0. INTRODUCTION

The stable rank and connected stable rank for C*-algebras were introduced by Rieffel
[Rf1] to study the dimension theory of C*-algebras and its close connection with their K-
theory. These stable ranks also played a fundamental role in the study of homotopy groups
of the unitary groups of noncommutative tori [Rf2]. In particular, it has turned out that for
a C*-algebra 2, the estimate of the connected stable rank for the C*-algebras C(T",2l) of
continuous A-valued functions on the tori T" is useful for estimating the homotopy groups
of the general linear groups GL, () over & ([Rf2, Theorem 3.3]). Inspired by this fact, our
first motivation of this paper is to estimate the connected stable rank of the C*-algebras
C(T™,2) in terms of T™ and A. This estimate has not been obtained previously, while
the estimate of the same type when spaces are compact and contractible was obtained by
Nistor [Ns] and Elhage Hassan [Eh], and the estimate of the stable rank of that type was
obtained by [Rf1, Corollary 7.2] and by Nagisa, Osaka and Phillips [NOP] and improved by
the author [Sd]. Also, the estimate of the real rank of that type was obtained as one of the
main results of [NOP].

Our strategy is as follows. As the main result, we estimate the connected stable rank
of the C*-algebras Cy(R,2() of continuous 2-valued functions vanishing at infinity on the
real line R in terms of R and 2. Moreover, we deduce several consequences from this
result, one of which is the estimate mentioned above. In particular, we obtain an improved
result in the homotopy theory of C*-algebras and a somewhat interesting consequence in
the (non-stable) K-theory of C*-algebras.

Notation and facts. Let % be a C*-algebra. We denote by sr(2), csr(2), and gsr(2A) the
stable rank, connected stable rank and general stable rank of 2 respectively ([Rf1]). Recall
that for 2 unital, sr(2) is the smallest n € N such that L, (A) = {(a;) € A" | Z?Zl aja;
is invertible in A} is dense in 2A™, csr(2A) is the smallest n € N such that L,,(2) is path-
connected for any m > n, and for 2l non-unital, the respective ranks are defined by those
of the unitization AT,

(F1): gsr(A) < csr(A) < sr(A)+ 1 for any C*-algebra 2 [Rf1, Corollary 4.10 and p.328].
Let Cp(X) be the C*-algebra of all continuous functions on a locally compact Hausdorff
space X vanishing at infinity.
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(F2) :sr(C(X)) = [dim X/2] + 1, and csr(C(X)) < [(dim X +1)/2] + 1, where [z] means
the maximum integer < z, X is compact, and Cy(X) = C(X) (|[Rf1, Proposition 1.7], [Ns]).
For a C*-algebra 2, we denote by Cp(X,2) the C*-algebra of continuous 2-valued functions
on X vanishing at infinity. It is known that Cy(X,2() is isomorphic to the C*-tensor product
Co(X) @A (cf.[Mp, Theorem 6.4.17]). If X is compact, set Co(X,2) = C(X,A).

1. THE MAIN RESULTS

Theorem 1. Let A be a C*-algebra. Then csr(Co(R,2A)) < max{2, csr(A),sr(A)}.

Proof. We first suppose that 2 is unital. Since Co(R,2d) is nonunital, we consider its
unitization Co(R,2A)*. As usual, the elements of the unitization are taken to be ordered
pairs (a, \) with a € Co(R,2l) and A € C. Take any = = ((a;,A;))7_; € Ln(Co(R,2A)*) with
> iz (b 1) (ag, Aj) = (0,1) € Co(R,2A)* for some ((by, 17))7=; € (Co(R,A)*)". Then x =
((aj,Aj))j=; is regarded as a continuous function ®, from the one-point compactification
R =R U {oo} of R to L, (A") by ®,(c0) = ((0,;))7_y, and () = ((a;(t), Aj))j=; €
L, (A7) for t € Rsince 327, (b;(t), py)(a;(t), Aj) = (0,1) € A*. Also, we have the following
inclusion: L, (Cp(R,A)T) C C(RT, (AT)™).

Now suppose max{csr(2),sr(A)} < N (and in addition N > 2 later). Note that
esr(AT) < max{csr(™A), csr(C)} = csr(™A) by [Sh, Theorem 3.9] and sr(2A) = sr(AT) for
2A unital. Thus, L, (A") is path-connected and dense in (AT)™ for any n > N. Hence any
element of L, (A1) is connected to ((1,1),---,(1,1)) € L,(AT). In the following we use the
identification C(R™, (2A)") = C(RT) @ (A*)™ (cf.[Mp, Theorem 6.4.17], that is, any ele-
ment of the left hand side is approximated by finite sums of simple tensors in the right hand
side. Since L, (") is open in (A1)™, it follows from the above inclusion and the standard
approximation in the above identification that for any ¢ € R, the restriction x|y of @, (or )
to some open neighborhood U of ¢t is approximated closely by a sum of two simple tensors,
fu®(ek,0)7_ +1u®(0, )} for 1y € C(U) and fy € Co(U) with 1y =1and 0 < fy <1
with fy(t) = 1, and (fu(s)ex, vk)i_; € Ln(AT) for s € U. Thus, z|y is connected to
fu ® (e, 0)7_1 + 1y ® (0,v)7_,. Since (cg,vk)p_; is connected to ((1,1),---,(1,1)) €
L, (A1), the restriction x|y is connected to fy®(1,0)7_; + 1y ®(0,1)}_,, which is regarded
as the restriction of an element of L, (C(R')) to U. We may assume that U is an open
interval. Similarly, for s ¢ U (near U) we can take an open interval V such that VNU is non-
empty, and z|yuy is approximated by fy ® (di, 0)7_ + fu ® (ck, 0)7_; + 1vur @ (0, vk) 7y
for fy € Co(V) with 0 < fyy <1 and fv(s) =1, and (fv (¢)dk + fu(t)ck,ve)i—y € Ln(AT)
for t € VUU, where in this process we may change fy, ¢ and vy as chosen above. Then the
sum of three simple tensors is connected to fy ®(1,0)7_; + fu®(1,0)7_; +1lvau®(0,1)7_;,
and so is x|yny. Note also that the space C(V UU, L, (AT)) is contractible since C(V NU)
and L, (A") are contractible (cf. [Mp, Theorem 7.5.3]). By using this argument inductively
for a suitable locally finite open covering {U;} (possibly finite) of R associated with ®,, and
using the density of L, (/) for replacing the restrictions with such sums of simple tensors as
above, we obtain that ®, is connected to an element ¥, = f, ®(1,0)}_; +1g+ ®(0,1)7_; of
L,(C(RT)), where f, is regarded as an element of Co(R) and 1g+ is the identity of C(RT).
Note that it is possible to make f, by putting together fy, corresponding to the restrictions
U; by adjusting values of fy, at points near the boundary of U; (if necessary by using
partition of unity of R associated with the covering {U;} or its (inductive) refinements),
where it seems that in the final step we are using of R contractible, and note that the space
of elements of Cy(R, ) with compact supports are dense in Cy(R,2l), and since dimR = 1
(the covering dimension one) there exists an open covering of R such that intersections of
more than two members of the covering must be empty (cf. [Ng]). Since csr(Co(R)) = 2
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[Sh, p.381], L,,(Co(R)*) = L, (C(R")) is connected for any n > 2. Thus, ¥, is connected
to (1,--+,1) € L,(Co(R)™), and L, (Co(R)T) C L, ((Co(R) @ A)T) since A is unital.

Next suppose that 2 is nonunital. Then we can follow almost the same argument as
in the unital case. Note that the element ((1,1),---,(1,1)) € L, (") taken above should
be replaced with a certain fixed ((dy,1),---,(dn,1)) with each di € 2 nonzero and small
enough so that ((dx,1))7_; € Ln(A") since it is near ((0,1),---,(0,1)) € L,(~A"), and
the continuous functions on R of the form f,; ® ((dk,0))7_; + 1g+ ® ((0,1))7_; can be
identified with elements of L, (C(RT)) = L,(Co(R)™). Also, under this identification the
space L, (Co(R)T) is regarded as a subspace of L,((Co(R) @ 0)T). O

Corollary 2. Let A be a C*-algebra. Then csr(Co(R,2()) < sr(A) + 1.
Proof. Use the fact that csr(A) <sr(A) + 1 for any C*-algebra 2 (F1). O

Remark. The estimate: csr(Co(R,2)) < sr(Co(R,A)) +1 < sr(A) + 2 can be obtained by
(F1) and [NOP, Theorem 1.13]. When 2 = C in Theorem 1 and Corollary 2 we obtain the
equality of each estimate. In this sense those estimates are the best possible. On the other
hand, if the Kj-group of Co(R, ) is nontrivial, then csr(Co(R,)) > 2 by [Eh, Corollary
1.6]. Note that the Kj-group K;(Cp(R,A)) = Ko(A) the Ko-group of 2.

Theorem 3. Let A be a C*-algebra. Then for any k > 1,
est(C(TF, 2A)) < max{2, csr(2), sr(C(TF1 2))}.

Furthermore, it follows that csr(C(T*, 21)) < max{sr(A) + 1,sr(C(T*=1,A))}. In particular,
gsr(C(T,2A)) < csr(C(T,A)) < max{2,csr(A),sr(A)} < sr(™A) + 1. Moreover, when A is
unital, if p > max{2, csr(A), sr(C(TF1,2A))} for all k, then forn >p—1 and k > 0,

Ki1() if k even,

ﬂk(GLn(Ql)) = { KO(Q[) ka odd,

where (G Ly (X)) mean the homotopy groups of GL, ().
Proof. We consider the exact sequence: 0 — Cp(R, ) — C(T,A) — A — 0 when k = 1.
Using [Sh, Theorem 3.9] and Theorem 1, we obtain

csr(C(T,2A)) < max{csr(Co(R,A)), csr(A)} < max{2, csr(A), sr(A)}.

Our first idea for calculating the rank csr(C(T,2l)) is the reduction to the estimate of
csr(Co(R,21)). For k > 2, we use this estimate inductively as follows. Since C(T*,%)
C(T) ® C(T*~1,2), we have

1%

est(C(TF,2)) < max{2, csr(C(TF1, ), sr(C(TF 1, 2))}
< max{2, csr(C(TF2,2)), sr(C(T 2, ), sr(C(TH, 21))}
oo < max{2, csr(A), sr(C(TF1,2A))}.

Note that sr(C(T!, 2A)) < sr(C(TF1,21)) for 0 < I < k — 2 by [Rfl, Theorem 4.3] since
C(T',2A) is a quotient of C(T*~1 2A). By [Rf2, Theorem 3.3], when 2 is unital, if p >
est(C(T*,21)) for all k, then for n > p — 1 and k > 0, we obtain

K1) if k even,

(G L () = {Ko(Ql) if & odd.
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Combining this result with the above inequality for csr(C(T*,2()), we obtain the desired
conclusion. 0

Remark 3.1. The first and second estimates of the connected stable rank of Theorem 3
suggest that it is impossible to estimate the rank csr(C(T* 2)) in terms of 2 only in
general. Also, max{2, csr(2),sr(C(T*~1 2A))} is not bounded as k varies in general (cf.
[Rf2, Theorem 3.3] the result for calculating homotopy groups). However, for example, if
we take 2 to be an inductive limit of homogeneous C*-algebras of slow dimension growth,
then sr(C(T*~1,21)) < 2 and csr(2) < 2 by using [Rfl, Theorems 5.1 and 6.1], [Rf2, Theorem
4.7) and (F2) and by induction, but csr(C(T*,2)) and gsr(C(T,2l)) can be strictly smaller
than csr(2). Also, it is harder to calculate the ranks csr, gsr than the stable rank in general.

Remark 3.2. Note that C(T*, ) is regarded as a crossed product 2 x,, Z*F with « the trivial
action since A x, Z¥ = A ® C*(Z*) and C*(ZF) = C(T*). When 2 is unital, we obtain
esT( X o ZF) < st(U x4 ZF7L) + 1 < sr(A) + k by using [Rfl, Corollary 8.6 and Theorem
7.1]. This estimate is valid for « any nontrivial action. Also note that for any k£ > 1,
cst(2 X, ZF) > 2 for 2 a unital C*-algebra by [Eh, Theorem 2.2]. In particular, for any
k> 1, cst(C(T*,24)) > 2 for 2 unital.

Remark 3.3. For X any locally compact Hausdorff space and 2 a C*-algebra, the esti-
mate: csr(Co(X,2A)) < max{csr(Co(X)), csr(A),sr(A)} is wrong in general. For example,
let Co(X) = Co(R™) = 2 for m > 2. Note that csr(Co(R?)) = 1, and csr(Co(R™)) =
[(n+1)/2] + 1 for n > 3 (cf. [Sh, p.381)).

Corollary 4. We have csr(C(S™,2)) < max{2, cst(2A), st(Co(R"~1,2A))} for a C*-algebra
A and n > 1, where S™ means the n-dimensional sphere.

Proof. We have the exact sequence: 0 — Cy(R™,2) — C(S™,2) — A — 0. Using [Sh,
Theorem 3.9] and Theorem 1 repeatedly, we obtain

csr(C(S™,A)) < max{csr(Co(R"™,2A)), csr(A) }
< max{2, csr(Co(R™ 1, 2A)), st(Co(R™ 1, 2A)), csr(2A) }
o < max{2, cst(A), sr(Co(R™ 1, 2))}. O

Remark 4.1. By the Kiinneth formula (cf. [Wo, 9.3.3]), we obtain

K1(C(S™,2)) = Ko(C(S™)) © K1(24) + K1(C(S™)) @ Ko()
= Ko(Co(R™)") @ K1(A) + K1 (Co(R™) ") © Ko(2)
N { 72 @ K1() n even,
Z@K\(%)+Z® Ko@) nodd

if 20 is in the class X ([Wo, 11.2.3]) or the bootstrap category ([Bl, 22.3.4]) and its K-groups
are torsion free.

Remark 4.2. Note that csr(C(X,2)) = csr(2) for X a contractible compact space and 2
a C*-algebra by [Eh, Corollary 2.12] (cf. [Ns, Corollary 2.9]). For example, we may let
X = [0,1]™. Also, csr(A) < csr(C(K,2)) for K a compact space [Eh, 2.13] since the
quotient from C(K,2) to 2 by the point evaluation splits.

As an important application to the K-theory of C*-algebras,
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Theorem 5. Let A be a C*-algebra. Then for any n > max{2, csr(A),sr(A)}, the map
from the quotient GLp_1(A)/GLp_1(A)o to GL,(A)/GLy,(A)o is an isomorphism so that
GLy—1(A)/GLyp—1(A)g is isomorphic to the Kq-group K1(2A), where GLy,_1(A)o is the con-
nected component of the identity in GL,_1(2L).

Proof. If 2 is nonunital, we consider its unitization A*. Let n > {2, csr(2A),sr(A)}. By
the third estimate in Theorem 3, n > max{csr(), gsr(C(T,2A))}. The conclusion of the
theorem now follows by [Rf2, Theorem 2.9]. O

Remark. This partially improves Rieffel’s result [Rf2, Theorem 2.10].

Corollary 6. Let A be a C*-algebra with sr(A) < 2 and csr(A) < 2. Then the K;-group
K1 (A) of A is isomorphic to GL1(A)/GLy(A)g = A~ /A", where A" is the group of all
invertible elements of 2.

Remark 6.1. Let T be the Toeplitz algebra. It is well known that 7 is an extension of C/(T)
by the C*-algebra of compact operators (cf. [Mp, Section 3.5]). By [Rfl, Examples 4.13],
[Sh, Theorem 3.9 and p.381] and [Eh, Proposition 1.15], we have sr(7) = 2 and csr(7) = 2.
Note that the Kj-group of T is trivial (cf. [Wo, Exercises 9.L]), but 7 is not (stably) finite,
from which we also have csr(7) # 1.

cf. [Wo]) that A71/5" = Ky () if & = C(SY),
and A1/ 2 K () if 2 = C(S?). Note that sr(C(S')) = 1 and csr(C(S?)) = 2
while st(C(S?)) = 2 and esr(C(S%)) = 3. For X a contractible compact space, we have
C(X)"'/C(X)y' = 0 = K1(C(X)) (cf. [RLL, Chapter 8]). Moreover, if 2 is an AF-
algebra, then 271/2;" = K;(A) = 0 since sr(2A) = 1 by [Rf2, Theorem 2.10]. Also, for
any C*-algebra 2, we have (A®@K)™!/(A@K);' = K1 (A) = K; (A K), and sr(A@ K) =
min{2,sr(2A)}, csr(A @ K) < min{2,csr(™A)}, where K is the C*-algebra of all compact
operators on a separable infinite dimensional Hilbert space ([Rf1, Theorems 3.6 and 6.4], [Sh,
Theorem 3.10] and [Ns, Corollaries 2.5 and 2.12]). Moreover, note that csr(Cp(R?")®K) = 1
for n > 0 and csr(Co(R?" ) @ K) = 2 for n > 0, and K;(Co(R?"*)) = K;(C) = 0 and
K1(Co(R?"H1)) = K (Co(R)) = Z (cf. [Sh, p.386] and [Wo, Sections 7 and 9]).

Remark 6.2. It is shown in [Bl, 8.1] (
3

Remark 6.3. If 2 is a purely infinite C*-algebra, then A~ /A5 = K, (A) while it is known
that sr(2) = oo by [Rf1, Proposition 6.5], and if 2 is unital, simple and purely infinite, then
csr(21) = oo when the unit of Ky(2) has torsion and csr(2) = 2 when the unit of Ko(2)
has no torsion, and if 2 is nonunital, simple and purely infinite, then csr(2) = 2 (see [X]).
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