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IDEAL THEORY OF SUBTRACTION ALGEBRAS
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ABSTRACT. The notion of ideals in subtraction algebras is considered. Characterizations
of ideals are given.

1. Introduction.

B. M. Schein [3] considered systems of the form (®;o0,\), where ® is a set of functions
closed under the composition “o” of functions (and hence (®;0) is a function semigroup)
and the set theoretic subtraction “\” (and hence (®;\) is a subtraction algebra in the sense
of 2]).

In this paper, we define the notion of ideals of subtraction algebras, and then we give
some of its characterizations. We show that any ideal A of a subtraction algebra X can be

represented as the union of ideals of the form X (a,b) for all a,b € A.
2. Preliminaries

A subtraction algebra is defined as an algebra (X; —) with a single binary operation “—”
that satisfies the following identities: for any z,y,z € X,
(S1) & —(y —x) = x;
(52) 2 —(x—y) =y —(y —2);
(83) (e-y)—z=(z-2) -y
The last identity permits us to omit parentheses in expressions of the form (xr — y) — z.
The subtraction determines an order relation on X: a <b < a—b =0, where 0 =a —a
is an element that does not depend on the choice of @ € X. The ordered set (X;<) is
a semi-Boolean algebra in the sense of [2], that is, it is a meet semilattice with zero 0 in
which every interval [0,a] is a Boolean algebra with respect to the induced order. Here
aANb=a— (a—Db); the complement of an element b € [0,a] is a — b; and if b, ¢ € [0, b], then

bve = (WU ANd)Y =a—((a—Db)A(a—2c))
= a—((a=b) = ((a=b) - (a—c))).

In a subtraction algebra, the following are true:

(Pl) (r—y)—y=2—y.

(p2) x— 0=z and 0 — 2z = 0.
(P3) (z—y)—z=0.

(pd) z—(z—y) <y

P5) (x—y)—(y—z)=z—y.
(P6) v —(z—(z—y))=2—y.
@7 (z-y)—(z—-y)<z—2

2000 Mathematics Subject Classification. 03G25, 06B10, 06D99.
Key words and phrases. Subtraction algebra, ideal.
*Corresponding author. Tel:4+82 55 740 1232.



398 Y. B. JUN, H. S. KIM AND E. H. ROH

3. Ideal Theory of Subtraction Algebras
We begin with the following propositions.
Proposition 3.1. In a subtraction algebra X, we have
(i) z <y if and only if x =y — w for some w € X.
(ii) z <y impliesx —z<y—z and z—y < z—x for all z € X.
(iii) z,y < z impliesx —y =z A (2 — y).
Proof. (i) If © <y, then by taking w =y — = we have
r=r—0=z—(z-y=y—(y—z)=y—w
Conversely, if x = y — w for some w € X, then
r—y=@W-w -—y=@y—-y -—w=0-w=0,
that is, z < y.

(ii) If z <y, then 2 =y — w for some w € X. Hence z — 2 = (y —w) — 2 = (y — 2) — w,
and so x — z <y — z by (i). Next if z <y, then x — y = 0. Thus
(z-y)—(-2) = -(-2)-y=@-(-2) -y
= (z—y)—(z—2)=0—(xz—2) =0,
that is, z —y < z — x.
(iii) f # < z, then x —y < z —y by (ii). But z —y <z, and thus x —y < z A (z — y).
Let w=x2A(z—y). Then w <z,and sow =z Aw =2 — (r —w). Also
yAGE-—y)=GE-y)-(E-y) -y =(E-y) -(z-y) =0,
hence w — (w —y) =y Aw =x Ay A (z —y) = 0. Therefore

w—(r-y) = (w=0)—(z—-y)
= (w=(w—(w=-y)))—(z—y)
= (w—y)—(z—y)
= (@-(z-w))—y)—(z—y)
= (e-y)—(@-w)—(z—-y)
= (e—y)—-(@@-y) - (z-w)
= 0—(z—w)=0,

and thus z A (z —y) = w <z —y. Consequently, z —y =z A (z — y). O

Proposition 3.2. Let X be a subtraction algebra and let x,y € X. If w € X is an upper
bound for x and y, then the element

2V y = w— ((w—y) - )
is a least upper bound for x and y.

Proof. Let w € X be an upper bound for = and y. Since w — y < w, it follows from
Proposition 3.1(iii) that

(w—y)—z=(w-yN(w-—2)<w-z
which implies from Proposition 3.1(ii) that
r=cAhw=w—(w—2z)<w-—((w—y)—x).

Similarly, y <w — (w — ) —y) =w — ((w —y) — x). Hence w — ((w — y) — ) is an upper
bound for z and y. Let a be any other upper bound for = and y. Using Proposition 3.1(ii),
we have w —a < w —y and w —a < w — z. It follows that w —a < (w — y) A (w — ).
Applying Proposition 3.1(ii) again, we get

w=((w=-y)—r)=w—((w=y) N(w—-12)) <w—(w=-a) <a
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Therefore  Vy := w — ((w — y) — x) is a least upper bound for z and y. O
Definition 3.3. A nonempty subset A of a subtraction algebra X is called an ideal of

X if it satisfies:

(I1) a—x e Aforallae Aand z € X.

(12) for all a,b € A, whenever a V b exists in X then a Vb € A.

Let A be a nonempty subset of a subtraction algebra X satisfying (I1). If a € A and
x < a, then z = a — w for some w € X, and hence € A by (I1). Thus every ideal of a
subtraction algebra contains the zero element 0.

Theorem 3.4. Let w be a nonzero element of a subtraction algebra X. Then the set
(w] ={zreX|z<w}
is the least nonzero ideal of X containing w.

Proof. Obviously w € (w]. Let a € (w] and z € X. Then a — 2 < ¢ < w, and so
a—2 € (w]. Now let a,b € (w] and z € X. Then a,b < w, and hence a V b exists by
Proposition 3.2. It follows from (I2) that a V b € (w]. Therefore (w] is an ideal of X
containing w. Let B be any ideal of X containing w and let y € (w]. Then y < w, and thus
y € B, that is, (w] C B. This completes the proof. O

We provide characterizations of ideals.

Theorem 3.5. A nonempty subset A of a subtraction algebra X is an ideal of X if and
only if it satisfies (I1) and
(I3) x — ((x —a)—b) € A foralla,be A and x € X.
Proof. Let A be a nonempty subset of X satisfying (I1) and (I3). Suppose that a Vb
exists for a,b € A. Putting w = a V b, we get
aVb=w—((w—a)—b)e A

by Proposition 3.2 and (I3). Hence A is an ideal of X.
Conversely, let A be an ideal of X, and let 4 be a relation on X defined by

(x,y) €0a oz —y,y—x € A Ve,y e X.

It is routine to check that 64 is a congruence relation on X. Let a,b € A and = € X. Then
(x,x) € 04, (a,0) € 04, and (b,0) € 4. Hence

(z—((z—a)=b),0)=(z - ((z —a) =b), z — ((z = 0) = 0)) € b4,
and so x — ((x — a) — b) € A. This completes the proof. O

Lemma 3.6. Let A be a nonempty subset of a subtraction algebra X such that

(I4) 0 € A.
I5) (x—y)—z€Aandy € A implyx —z € A for all z,y,z € X.

Ifa € A and x < a, then x € A.

Proof. Let © € X and a € A be such that © < a. Then (r —a) —0 =0 € A, and so
r=z—-0€A (|

Theorem 3.7. Let X be a subtraction algebra. A nonempty subset A of X is an ideal
of X if and only if it satisfies the conditions (14) and (I5).
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Proof. Assume that A is an ideal of X. Obviously 0 € A. Let z,y,z € X be such
that (zr —y) — 2z € A and y € A. Taking b = 0 and a = y in (I3) and using (p2), we get
z— (x—y) € A. Tt follows from (p2), (p7), and (I3) that

x—z = (x—2)—0
= (@=2)-(((w=2)=((z—y) —2) — (z = (x —y))) € 4,
proving (I5). Conversely suppose that A satisfies (I4) and (I5). Then (a —a) —x =0—1z =
0€ Aforalla € Aand z € X, and so a —x € A by (I5). Since (z —a) — (x —a) =
0€ Aforalla € A and z € X, it follows from (I5) that x — (x — a) € A. Note that
((x=b)—((x—a)—b))—(x—(x—a)) =0, that is, (x = b) — ((r —a) = b) < x — (z — a)
for all b € A. Using Lemma 3.6, we have (x —b) — ((z —a) — b) € A. Since b € A, it follows
from (I5) that  — ((x — a) — b) € A which shows (I3). Hence A is an ideal of X. O

Theorem 3.8. A nonempty subset A of a subtraction algebra X is an ideal of X if and
only if it satisfies (14) and
(I6) ye Aandx —y € A imply x € A for all z,y € X.

Proof. Let A be an ideal of X. (I6) is by taking z = 0 in (I5) and using (p2). Conversely
assume that A satisfies (I4) and (I6). Let v € X and y € A. Since (y—2)—y = (y—y)—2 =
0—x=0¢€ A, it follows from (I6) that y — x € A which proves (I1). Note that

(z—((z—a)=0)-b=(x-b)—-(z—a)=-b)<z—(xz—0a)<a,

that is, ((x — ((r —a) = b)) —b) —a=0¢€ A for all a,b € A and x € X. Using (I6), we get
x — ((x —a) —b) € A, that is, (I3) is valid. Hence, by Theorem 3.5, A is an ideal of X. [

Theorem 3.9. Let A be a nonempty subset of a subtraction algebra X. Then A is an
ideal of X if and only if it satisfies:
(I7) for any a,b € A, x —a < b implies x € A.

Proof. Assume that A is an ideal of X and let a,b € A. If v —a < b, then (z —a) — b=
0 € A, and so x € A by (I6). Conversely suppose that A satisfies (I7). Since A is nonempty,
we can take a € A, and then 0 —a = 0 < a. Using (I7), we get 0 € A. Let x,y € X be such

that y € A and x —y € A. Since z — (z — y) < y, we obtain x € A by (I7). It follows from
Theorem 3.8 that A is an ideal of X. O

Lemma 3.10. Fvery subtraction algebra satisfies the right self-distributive law, that is,
the equality (v —y) — z = (x — z) — (y — 2) s valid.

Proof. Let X be a subtraction algebra and x,y,z € X. Then
(z—y)—2)—((z-2)—(y—2))
(z—2)—y)—((z—2)—(y—2))

< -2)-y=0,
and so ((z —y) —2) — ((x —2) — (y — 2)) = 0. Since (z —y) — (z — 2) < z —y, it follows
from (S3) and Proposition 3.1(ii) that
(z-y)-—w)—(@-2)=(r-y)-@-2)-—w<(z-y)—w

for all w € X. Substituting z — z for =, y — z for y, (z — z) — z for z, and (v —y) — 2 for w
in the above inequality, we have
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and thus ((z — z) — (y — 2)) — ((z —y) — z) = 0. Therefore the right self-distributive law is
valid. O

Theorem 3.11. If A is an ideal of a subtraction algebra X, then the set
Ay ={zeX|z-—weA},weX
is the least ideal of X containing A and w.

Proof. Let w € X. Since 0 —w =0 € A, we have 0 € A,,. Let z,y € X be such that
ye Ay and x—y € Ay,. Then y—w € A and (z —y) —w € A. Tt follows from Lemma 3.10
that

(z-w)—(y-w)=(r-y)-—weA

so from (I6) that x —w € A, that is, z € A,,. Hence A, is an ideal of X. Obviously
A, contains A and w. Let B be an ideal of X containing A and w. If x € A, then
x—w € A C B, and hence z € B by (I6). Thus A,, C B, and consequently A, is the least
ideal of X containing A and w. O

Theorem 3.12. Let X be a subtraction algebra. For u,v € X, the set
X(u,v):={xeX|(x—u)—v=0}
is an ideal of X, and u,v € X (u,v).

Proof. Obviously 0,u,v € X(u,v). Let z,y € X be such that y € X (u,v) and x —y €
X(u,v). Then (y —u) —v =0and ((r —y) —u) —v = 0. It follows from (p2) and Lemma
3.10 that

0 = ((w—y) —u)—v
= (z—u)—(y—wu))—v
= ((z—u)—v) = ((y —u) —v)
= ((z—uw)—v)—0
= (z—u)—v
so that z € X (u,v). Hence X (u,v) is an ideal of X. O

Lemma 3.13. Every ideal A of a subtraction algebra X contains the ideal X (a,b) for
all a,b € A.

Proof. Let x € X(a,b). Then (x —a) —b =0 € A, and hence = € A. This shows that
X (a,b) C A for all a,b € A. O

Theorem 3.14. FEvery ideal A of a subtraction algebra X can be represented as the

union of ideals of the form X (a,b) for all a,b € A, that is, A= |J X(a,b).
a,beA

Proof. Let A be an ideal of X and z € A. Since x € X(x,0), we have

Ac |JX@oc | X(ab).

T€A a,be A

Now let x € |J X(a,b). Then there exist u,v € A such that x € X (u,v). It follows from
a,beA
Lemma 3.13 that € A so that |J X(a,b) C A. This completes the proof. O
a,be A
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