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��������� In this paper we examine a two-person zero-sum timing game with the following structure:
Player I has a gun with two bullets and player II has a gun with one bullet and they fight a duel. Both
guns are silent so that neither player can determine whether his opponent has fired the bullets or not.
Player I is at the place 0 at the moment when the duel begins and he can move as he likes and player
II is always at the place 1. Accuracy functions, which denote the probability of hitting the opponent
when each player fires his bullet, are identical for both players. If player I hits player II without being
hit himself first, then the payoff is +1; if player I is hit by player II without hitting player II first, the
payoff is -1; if they hit each other at the same time or both survive, the payoff is 0.

The objective of this paper is to obtain the game value and the optimal strategies for the timing
game.

1. Introduction

A duel under arbitrary motion is a two-person zero-sum timing game with the following structure:
Each of two competitors, denoted by player I and player II, has a gun and he can fire his bullets
aiming at his opponent. At the moment when the duel begins these two players are one distance
apart on a line and each player can move on the line as he likes. The maximum speed of player I is
v1, the maximum speed of player II is v2 and we assume v1 > v2 � 0. Without loss of generality, we
can suppose v1 = 1 and v2 = 0, and hence, player II is motionless. Thus we assume that player II is
at the place 1 all the time and player I is at the place 0 at the moment when the duel begins and he
can move towards player II, he can move away from player II, and he can stay in one place. If player
I or player II fires his bullet when player I is at a place x, he hits his opponent with probability
p(x) or q(x), respectively. The functions p(x) and q(x) are called accuracy functions for players I
and II, respectively, and they are continuous and strictly increasing on [0, 1] with p(0) = q(0) = 0
and p(1) = q(1) = 1. The duel ends when at least one player is hit or both players fire all of their
bullets; otherwise it continues indefinitely. The gun is said to be silent if the shot of the owner is
not heard by his opponent and the gun is said to be noisy if the shot of the owner is heard by his
opponent as soon as the owner of the gun fires the bullet. Thus if a player has a silent gun, then
his opponent does not know whether the owner of the gun has fired or not. On the other hand, if a
player has a noisy gun, then his opponent always knows whether the owner has fired or not. If each
player has a silent gun, the duel is said to be silent and if each player has a noisy gun, the duel is
said to be noisy. If player I hits player II without being hit himself first, then the payoff of the duel
is +1; if player I is hit by player II without hitting player II first, the payoff is -1; if they hit each
other at the same time or both survive, the payoff is 0. The objective of player I is to maximize the
expected payoff and the objective of player II is to minimize it.
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Trybula [8, 9] solved a silent duel with arbitrary accuracy functions under arbitrary motion. In his
model, each player has a silent gun with one bullet and accuracy functions p(x) and q(x) increase with
a continuous second derivative each. Trybula [5-7] also solved noisy duels under arbitrary motion.
Furthermore Trybula [10] solved an m-versus-n silent duel with arbitrary accuracy functions under
arbitrary motion. In the model, player I has a silent gun with m bullets and he has to fire all his
bullets simultaneously, whereas player II has a silent gun with n bullets and he can fire each of his
bullets at different moments.

The author [2] dealt with a silent-versus-noisy duel under arbitrary motion in which player I has
a silent gun with one bullet and player II has a noisy gun with one bullet and the accuracy functions
are p(x) and q(x) for players I and II, respectively. The author [3] also dealt with a noisy-versus-
silent duel under arbitrary motion in which player I has a noisy gun with one bullet and player II
has a silent gun with one bullet and the accuracy functions are arbitrary. Further the author [4]
solved a one-noisy-versus-two-silent duel with arbitrary accuracy functions under arbitrary motion.

Further researches on duels under arbitrary motion have been done by Trybula [11, 12] and
general researches on games of timing are summarized by Karlin [1].

In this paper, we examine a duel with equal accuracy functions under arbitrary motion. In
the duel, player I has a silent gun with two bullets and he may fire these two bullets at different
moments, and player II has a silent gun with one bullet. We assume that the accuracy functions
are identical.

2. Problem

In this paper, we examine a two-versus-one silent duel with equal accuracy functions under
arbitrary motion. Player I has a silent gun with two bullets and he is at the place 0 at the moment
when the duel begins. He can move as he likes. On the other hand, player II has a silent gun with
one bullet and he is always at the place 1. The accuracy functions p(x) and q(x) are identical for
both players so that, without loss of generality, we suppose p(x) = q(x) = x for all x over [0, 1]. If
player I hits player II without being hit himself first, then the payoff of the duel is +1; if player I
is hit by player II without hitting player II first, the payoff is -1; if they hit each other at the same
time or both survive, the payoff is 0. The objective of player I is to maximize the expected payoff
and the objective of player II is to minimize it. We denote the game mentioned above by G∗. Note
that, in the paper by Trybula [10], player I has to fire all his bullets simultanuously, whereas in our
model player I may fire his bullets at different moments.

Before solving the game G∗, we consider the following auxiliary game G. In G, player I has a
silent gun with two bullets and player I has a silent gun with one bullet, and both players’ accuracy
functions are identical and thus we assume, without loss of generality, p(x) = q(x) = x for all x in
[0, 1]. Player I is at the place 0 at the moment when the duel begins and player II is at the place
1 all the time. In game G∗, player I can move as he likes, however, we suppose that, in game G,
player I can move towards player II but he can not move away from player II. Further we assume
that the payoff of G is as follows:
(i) if player I hits player II before player II hits player I, then the payoff is +1,
(ii) if player I misses his two bullets before player II fires, then the payoff is 0,
(iii) if player II hits player I before player I fires both of his bullets, then the payoff is -1,
(iv) if both players hit each other at the same time or they miss all their bullets, then the payoff is
0.
Suppose that player I fires both his bullets and misses them before player II fires. In this case, the
payoff is always 0 in the game G, whereas in the game G∗ the payoff is 0 or -1 according to player
II misses (or he does not fire) his bullet or player II hits his opponent.

Let M(x, y, z) be the expected payoff of the game G when player I fires his first bullet and second
when he is at the places x and y, respectively (0 � x � y � 1), and player II fires his bullet at
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the moment when player I is at the place z (0 � z � 1). The function M(x, y, z), called the payoff
kernel of the game G, is of the form

M(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + (1 − x)y, if 0 � x � y < z,

x − (1 − x)z + (1 − x)(1 − z)y, if 0 � x < z < y � 1,

−z + (1 − z)x + (1 − z)(1− x)y, if 0 � z < x � y � 1,

x, if 0 � x < y = z,

(1 − x)2y, if 0 � x = z < y � 1,　

x(1 − x), if 0 � x = y = z.

For the game G, we shall search for an optimal strategy for player I with the following structure:
(i) player I fires both his bullets simultaneously with probability α and he fires his bullets at different
moments with probability 1 − α,
(ii) if player I fires both his bullets simultaneously, he fires his bullets at a place in [a, b] according
to the conditional distribution with a density function f1(x) under the condition that he fires both
his bullets simultaneously,
(iii) if player I fires his bullets at different moments, then he fires his first bullet when he is at a
place in [b, c] according to the conditional distribution with a density part f2(x) under the condition
that player I fires his bullets at different moments and he fires his second bullet at a place y in
[c, 1], independently of the place where he has fired his first bullet, according to the distribution
with a density part g(y) and mass part β on 1, where

∫ b

a

f1(x) dx =
∫ c

b

f2(x) dx =
∫ 1

c

g(y) dy + β = 1

and
0 < a < b < c < 1.

We denote such a strategy by {α, f1(x), f2(x), g(y), β}. Further we shall search for an optimal
strategy for player II which is denoted by {h(z)}. By the strategy {h(z)}, player II fires his bullet
when player I is at z in [a, 1] according to the distribution with the probability density function
h(z), where ∫ 1

a

h(z) dz = 1.

3. Preliminary lemmas

In this section we prove two lemmas which will be used in the following sections.
It is seen that the equation

(1) log
1 + x

2x
=

1 − 4x2 + 4x3 − 5x4

4x2(1 − x)2

has a unique root in the interval (0, 1). We denote by c the unique root in (0, 1) of the equation (1).
We set

b =
1 − c

1 + c
.

The values of b and c are approximately 0.3106 and 0.5261, respectively. We note that b and c
satisfy

(2) log
1 + c

2c
=

1
c
− 1

2
− (c − b)(b + c − 2bc)

4b2c2
.
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Furthermore it is shown that the equation

(3)
1 − x

x(1 + 2x − x2)
−

∫ b

x

dt

t2(1 + 2t − t2)
=

(1 − b)2 − b2(1 + b)2

4b2(1 − b)2

has a unique root in the interval (0, b). We denote by a the unique root of the equation (3). The
value of a is nearly equal to 0.2025.

Lemma 1. Set

α = 1 − a(1 + 2a − a2)(c2 − b2)
4(1 − a)b2c2

(= 0.4153),

f1(x) =
k1

x2(1 + 2x − x2)
, a � x � b,

f2(x) = k2x
−3 , b � x � c,

g(y) =
k3

y2(1 + y)
, c � y � 1

and

β =
k3

2
,

where

k1 =
a(1 + 2a − a2)

α(1 − a)
,

k2 =
2b2c2

c2 − b2

and

k3 =
4b2c2

(c − b)(b + c − 2bc)
.

Then the following equations hold:

(i)
∫ b

a

f1(x) dx =
∫ c

b

f2(x) dx =
∫ 1

c

g(y) dy + β = 1,

(ii) (1 − α)
{∫ 1

c

(1 + y)g(y) dy +
∫ c

b

xf2(x) dx

∫ 1

c

(1 − y)g(y) dy + 2β

}
=

αk1

b
,

(iii)
∫ c

b

(1 + x)f2(x) dx +
{∫ c

b

(1 − x)f2(x) dx

}{∫ 1

c

yg(y) dy + β

}
=

2k2

b
.

Proof. (i) Since a is the root of the equation (3), we have

∫ b

a

dx

x2(1 + 2x − x2)
=

1 − a

a(1 + 2a − a2)
− c2 − b2

4b2c2

=
1 − a

a(1 + 2a − a2)

{
1 − a(1 + 2a − a2)(c2 − b2)

4(1 − a)b2c2

}
=

α(1 − a)
a(1 + 2a − a2)

=
1
k1

.

Thus we get ∫ b

a

f1(x) dx = 1.
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We can directly show ∫ c

b

f2(x) dx = 1.

Further, we have ∫ 1

c

g(y) dy + β = k3

{
− log

1 + c

2c
− 1

2
+

1
c

}
.

Thus, from (2), it follows that

∫ 1

c

g(y) dy + β =
k3(c − b)(b + c − 2bc)

4b2c2
= 1.

(ii) We get

(4) αk1 =
a(1 + 2a − a2)

1 − a

and

(5) (1 − α)k3 =
a(1 + 2a − a2)(b + c)
(1 − a)(b + c − 2bc)

.

We further get

∫ 1

c

(1 + y)g(y) dy +
∫ c

b

xf2(x) dx

∫ 1

c

(1− y)g(y) dy + 2β = k3

[
1
c

+
2bc

b + c

{
− 2 log

1 + c

2c
− 1 +

1
c

}]
.

Thus by (2), (4) and (5), we have

(1−α)
{∫ 1

c

(1+y)g(y) dy +
∫ c

b

xf2(x) dx

∫ 1

c

(1−y)g(y) dy +2β

}
=

k3(1 − α)(b + c − 2bc)
b(b + c)

=
αk1

b
.

(iii) By (2), we get

∫ 1

c

yg(y) dy + β = k3

{
log

1 + c

2c
+

1
2

}
=

(b + c)(b − c + 2bc)
(c − b)(b + c − 2bc)

.

Since ∫ c

b

(1 + x)f2(x) dx =
b + c + 2bc

b + c

and ∫ c

b

(1 − x)f2(x) dx =
b + c − 2bc

b + c
,

we get
∫ c

b

(1 + x)f2(x) dx +
{∫ c

b

(1 − x)f2(x) dx

}{∫ 1

c

yg(y) dy + β

}

=
b + c + 2bc

b + c
+

b − c + 2bc

c − b
=

4bc2

c2 − b2
=

2k2

b
.

This completes our proof.
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Lemma 2. Set

h(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(1 + 2a − a2)(1 − z)
z(1 + 2z − z2)2

, a � z � b,

k4z
−3, b � z � c,

k5

z(1 + z)2
, c � z � 1,

where

k4 =
b(1 − b)(1 + 2a − a2)

2(1 + 2b − b2)

and

k5 =
(1 + b)(1 + 2a − a2)

1 + 2b − b2
.

Then the following statements hold:

(i)
∫ 1

a

h(z) dz = 1,

(ii)
∫ c

a

zh(z) dz = 1 − k5

1 + c
,

(iii) For all x in [b, c],

(1 + c)
∫ c

x

zh(z) dz � (c − x)
{

1 −
∫ x

a

zh(z) dz

}
.

Proof. (i) It suffices to show that

2
∫ b

a

1 − z

z(1 + 2z − z2)2
dz +

b(1 − b)
2(1 + 2b − b2)

∫ c

b

dz

z3
+

1 + b

1 + 2b − b2

∫ 1

c

dz

z(1 + z)2
=

1
1 + 2a − a2

.

Since a is the root of the equation (3), we have

2
∫ b

a

1 − z

z(1 + 2z − z2)2
dz =

1
a(1 + 2a − a2)

− 1
b(1 + 2b − b2)

−
∫ b

a

dz

z2(1 + 2z − z2)
(6)

=
1

1 + 2a − a2
− 1

b(1 + 2b − b2)
+

1 − 2b − 2b3 − b4

4b2(1 − b)2

and we get

(7)
b(1 − b)

2(1 + 2b − b2)

∫ c

b

dz

z3
=

1 − 2b − 2b3 − b4

4b(1 − b)(1 + 2b − b2)
.

Further, from (2), it follows that

1 + b

1 + 2b − b2

∫ 1

c

dz

z(1 + z)2
=

1 + b

1 + 2b − b2

{
log

1 + c

2c
+

1
2
− 1

1 + c

}
(8)

=
(1 + b)(−1 + 4b − 4b2 + 6b3 + b4 − 2b5)

4b2(1 − b)2(1 + 2b − b2)
.
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By (6), (7) and (8), we obtain the desired result.
(ii) We directly get ∫ b

a

zh(z) dz = (1 + 2a − a2)
{

1
1 + 2a − a2

− 1
1 + 2b − b2

}
and ∫ c

b

zh(z) dz =
(1 + 2a − a2)(1 − 2b − b2)

2(1 + 2b − b2)
.

Accordingly, we have ∫ c

a

zh(z) dz = 1 − (1 + 2a − a2)(1 + b)2

2(1 + 2b − b2)
= 1 − k5

1 + c
.

(iii) It is seen that

x

{
2

c(1 − c)
+

1
x
− 1

c

}
� 2

1 − c
− 1

x
+

1
c

for every x in [b, c], thus we get

x

{
k5

1 + c
+ k4

(
1
x
− 1

c

)}
� ck5

1 + c
− k4

(
1
x
− 1

c

)
.

Therefore, by (ii) in Lemma 2, we obtain

x

{
1 −

∫ c

a

zh(z) dz +
∫ c

x

zh(z) dz

}
� c

{
1 −

∫ c

a

zh(z) dz

}
−

∫ c

x

zh(z) dz,

i.e.,

(1 + c)
∫ c

x

zh(z) dz � (c − x)
{

1 −
∫ x

a

zh(z) dz

}
for all x in [b, c]. This completes our proof.

4. Strategies in the game G

In what follows, we denote by v1(z) the expected payoff of the game G when player I applies the
strategy {α, f1(x), f2(x), g(y), β} given in Lemma 1 and player II fires his bullet when player I is at
the point z in [0, 1]. Similarly, we denote by v2(x, y) the expected payoff of the game G when player
II applies the strategy {h(z)} given in Lemma 2 and player I fires his first bullet and second when
he is at the points x and y, respectively.

Lemma 3. For all z in [a, 1), v1(z) = 2a − a2 (= 0.3640).

Proof. For all z in [a, b], we have

v1(z) = α

∫ z

a

{x + (1 − x)x}f1(x) dx + α

∫ b

z

{−z + (1 − z)(2x − x2)}f1(x) dx

+ (1 − α)
∫ c

b

∫ 1

c

{−z + (1 − z)x + (1 − z)(1 − x)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

{−z + (1 − z)x + (1 − z)(1 − x)}f2(x) dx

= −1 + α

∫ z

a

(1 + 2x − x2)f1(x) dx + α(1 − z)
∫ b

z

(1 + 2x − x2)f1(x)dx

+ (1 − α)(1 − z)
{∫ c

b

∫ 1

c

{1 + x + (1 − x)y}g(y)f2(x) dydx + 2β

}
.
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Thus by (ii) in Lemma 1, we get

v1(z) = −1 + α

∫ z

a

(1 + 2x − x2)f1(x) dx + α(1 − z)
∫ b

z

(1 + 2x − x2)f1(x)dx +
α(1 − z)k1

b
.

Therefore we obtain
v1(z) = 2a − a2

for all z in [a, b]. For every z in [b, c], we get

v1(z) = α

∫ b

a

(2x − x2)f1(x) dx + (1 − α)
∫ z

b

∫ 1

c

{x − (1 − x)z + (1 − x)(1 − z)y}g(y)f2(x) dydx

+ (1 − α)β
∫ z

b

{x − (1 − x)z + (1 − x)(1 − z)}f2(x) dx

+ (1 − α)
∫ c

z

∫ 1

c

{−z + (1 − z)x + (1 − z)(1 − x)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

z

{−z + (1 − z)x + (1 − z)(1 − x)}f2(x) dx

= −1 + α

∫ b

a

(1 + 2x − x2)f1(x) dx + (1 − α)(1 − z)
{∫ c

b

(1 − x)f2(x) dx

}{∫ 1

c

yg(y)dy + β

}

+ (1 − α)
∫ z

b

{1 + x − (1 − x)z}f2(x) dx + (1 − α)(1 − z)
∫ c

z

(1 + x)f2(x) dx.

Thus, we have

v1(z) = −1 + α

∫ b

a

(1 + 2x − x2)f1(x) dx + (1 − α)ϕ1(z),

where

ϕ1(z) = 2z

∫ z

b

xf2(x) dx + (1 − z)
∫ c

b

(1 + x)f2(x) dx

+ (1 − z)
{∫ c

b

(1 − x)f2(x)dx

}{∫ 1

c

yg(y) dy + β

}
.

Consequently, by (iii) in Lemma 1, we get

ϕ1(z) = 2z

∫ z

b

xf2(x) dx +
2(1 − z)k2

b
=

2k2(1 − b)
b

.

Therefore by (4) and

(9) (1 − α)k2 =
a(1 + 2a − a2)

2(1 − a)
,

we obtain
v1(z) = 2a − a2
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for every z in [b, c]. For all z in [c, 1), we have

v1(z) = α

∫ b

a

(2x − x2)f1(x) dx + (1 − α)
∫ c

b

∫ z

c

{x + (1 − x)y}g(y)f2(x) dydx

+ (1 − α)
∫ c

b

∫ 1

z

{x − (1 − x)z + (1 − x)(1 − z)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

{x − (1 − x)z + (1 − x)(1 − z)}f2(x) dx

= −1 + α

∫ b

a

(1 + 2x − x2)f1(x) dx

+ (1 − α)
∫ c

b

(1 + x)f2(x) dx + (1 − α)ϕ2(z)
∫ c

b

(1 − x)f2(x) dx,

where

ϕ2(z) =
∫ z

c

yg(y) dy +
∫ 1

z

{−z + (1 − z)y}g(y) dy + β(1 − 2z)

=
∫ z

c

(1 + y)g(y) dy + (1 − z)
∫ 1

z

(1 + y)g(y) dy + 2β(1 − z) − 1.

It is seen that
ϕ2(z) =

k3

c
− k3 − 1

for all z in [c, 1), and thus,

v1(z) = −1 + α

∫ b

a

(1 + 2x − x2)f1(x) dx

+
k3(1 − α)(1 − c)

c

∫ c

b

f2(x) dx + (1 − α)
{

2 − k3(1 − c)
c

} ∫ c

b

xf2(x) dx

= −1 + αk1

(
1
a
− 1

b

)
+

k3(1 − α)(1 − c)
c

+ 2k2(1 − α)
(

1
b
− 1

c

)
− 2bk3(1 − α)(1 − c)

b + c
.

Thus, by (4), (5) and (9), we obtain
v1(z) = 2a − a2

for all z in [c, 1). This completes our proof.

We get, for all x and y such that a � x � y � 1,

(10) v2(x, y) =
∫ x

a

{−z + (1 − z)x + (1 − z)(1− x)y}h(z) dz

+
∫ y

x

{x − (1 − x)z + (1 − x)(1 − z)y}h(z) dz +
∫ 1

y

{x + (1 − x)y}h(z) dz

= −1 + {1 + x + (1 − x)y}
{

1 −
∫ x

a

zh(z) dz

}
− (1 − x)(1 + y)

∫ y

x

zh(z) dz.
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Lemma 4. The following statements hold:
(i) For all x in [a, b], v2(x, x) = 2a − a2,
(ii) For all x and y such that b � x � y � 1, v2(x, y) � 2a − a2.

Proof. (i) For each x in [a, b], we directly get

v2(x, x) = −1 + (1 + 2x − x2)
{

1 −
∫ x

a

zh(z) dz

}
= 2a − a2.

(ii) For all x and y such that b � x � c � y � 1, from (10), we have

v2(x, y) = −1 + {1 + x + (1 − x)y}
{

1 −
∫ c

a

zh(z) dz

}

+ 2x

∫ c

x

zh(z) dz − (1 − x)(1 + y)
∫ y

c

zh(z) dz.

Thus, by (ii) in Lemma 2, we get

v2(x, y) = −1 +
k5{1 + x + (1 − x)y}

1 + c
+

2k4(c − x)
c

− k5(1 − x)(1 + y)
(

1
1 + c

− 1
1 + y

)

= −1 + 2k4 + k5 + x

(
2k5

1 + c
− k5 − 2k4

c

)
= 2a − a2.

For every x and y with c � x � y � 1, from (ii) in Lemma 2 and (10), it follows that

v2(x, y) = −1 +
k5(1 + 2x − x2)

1 + x
.

Consequently, v2(x, y) is decreasing in x for each y in [c, 1] since
√

2 − 1 < c � x � y � 1. Thus we
have

v2(x, y) � v2(c, y) = 2a − a2

for all x and y such that c � x � y � 1. For every x and y with b � x � y � c, from (10), we get

∂2v2(x, y)
∂y2

=
2k4(1 − x)

y3
> 0.

Further from (iii) in Lemma 2, we have

v2(x, x) = −1 + (1 + 2x − x2)
{

1 −
∫ x

a

zh(z) dz

}

� −1 + {1 + x + (1 − x)c}
{

1 −
∫ x

a

zh(z) dz

}
− (1 − x)(1 + c)

∫ c

x

zh(z) dz

= v2(x, c) = 2a − a2

for each x in [b, c]. Therefore we obtain

v2(x, y) � 2a − a2

for all x and y such that b � x � y � c. This completes our proof.
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5. A Theorem

Theorem 1. For the game G, the strategy {α, f1(x), f2(x), g(y), β} given in Lemma 1 is optimal
for player I, and the strategy {h(z)} given in Lemma 2 is optimal for player II. Moreover, the game
value of G is 2a − a2.

Proof. It suffices to show that
v1(z) � 2a − a2

for all z in [0, 1] and
v2(x, y) � 2a − a2

for all x and y such that 0 � x � y � 1. From Lemma 3, we have

v1(z) = 2a − a2

for every z in [a, 1). For each z in [0, a], we get

v1(z) = α

∫ b

a

{−z + (1 − z)(2x − x2)}f1(x) dx

+ (1 − α)
∫ c

b

∫ 1

c

{−z + (1 − z)x + (1 − z)(1 − x)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

{−z + (1 − z)x + (1 − z)(1 − x)}f2(x) dx.

It is seen that v1(z) is decreasing in z over [0, a], and thus

v1(z) � v1(a) = 2a − a2.

Further since ∫ c

b

(2x − 1)f2(x) dx =
k2(1 − 2b − b2)(−1 + 4b − 5b2)

2b2(1 − b)2
< 0,

we get

v1(1) = α

∫ b

a

(2x − x2)f1(x) dx + (1 − α)
∫ c

b

∫ 1

c

{x + (1 − x)y}g(y)f2(x) dydx

> α

∫ b

a

(2x − x2)f1(x) dx + (1 − α)
∫ c

b

∫ 1

c

{x + (1 − x)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

(2x − 1)f2(x) dx

= 2a − a2.

Therefore we obtain
v1(z) � 2a − a2

for all z in [0, 1]. Now, from Lemm 4, it follows that

v2(x, y) � 2a − a2

for all x and y such that b � x � y � 1 and

v2(x, x) = 2a − a2
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for every x in [a, b]. For all x and y such that a � x � y � b, from (10), we get

∂v2

∂y
= (1 − x)

{
1 −

∫ y

a

zh(z) dz − y(1 + y)h(y)
}

=
(1 − x)(1 + 2a − a2)(−1 + 2y + y2)

(1 + 2y − y2)2
< 0.

Thus we have
v2(x, y) � v2(x, x) = 2a − a2.

Further, for all x and y with a � x � b and c � y � 1, we have

∂v2

∂x
= (1 − y)

{
1 −

∫ x

a

zh(z) dz

}
− 2x2h(x) + (1 + y)

∫ y

x

zh(z) dz

=
2(1 + 2a − a2)(1 + x2)

(1 + 2x − x2)2
− (1 + 2a − a2)(1 + b)

1 + 2b − b2
.

It is shown that
∂v2

∂x
is decreasing in x over [a, b] for each y in [c, 1]. Moreover we can show that

∂v2(x, y)
∂x

∣∣∣∣
x = b

=
(1 + 2a − a2)(1 − b)(1 − 2b − b2)

(1 + 2b − b2)2
> 0

for every y in [c, 1], and thus v2(x, y) is increasing in x over [a, b] for each y in [c, 1]. Therefore we
get

v2(x, y) � v2(b, y) ≤ 2a − a2

for all x in [a, b] and y in [c, 1]. For every x and y such that a � x � b � y � c, we have

1
1 − x

∂v2

∂y
=

k5

1 + b
− k4

b
− k4

y2

and hence
∂2v2

∂y2
> 0.

Furthermore since
v2(x, b) � 2a − a2

and
v2(x, c) � 2a − a2

for each x in [a, b], we have
v2(x, y) � 2a − a2

for all x and y with a � x � b � y � c. It is easily seen that

v2(x, y) � v2(a, y) � 2a − a2

for every x in [0, a] and y in [x, 1]. Therefore we obtain

v2(x, y) � 2a − a2

for all x and y such that 0 � x � y � 1. This completes our proof.
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6. Optimal Strategies

In this section, we examine the game G∗ defined at the beginning of section 2. For any ε such
that 0 < ε < 1, we define N as the smallest natural number that is larger than 1/ε. For the N , we
define constants ai (i = 0, 1, 2, · · · , n1 + 1) and ci (i = 1, 2, · · · , n2 + 1) as follows:

a0 = a,

α

∫ ai

ai−1

f1(x) dx =
1
N

, i = 1, 2, · · · , n1,

an1+1 = b,

c0 = c,

(1 − α)
∫ ci

ci−1

g(y) dy =
1
N

, i = 1, 2, · · · , n2,

cn2+1 = 1,

where

α

∫ b

a

f1(x) dx > α

∫ an1

a

f1(x) dx � α

∫ b

a

f1(x) dx − 1
N

and

(1 − α)
∫ 1

c

g(y) dy > (1 − α)
∫ cn2

c

g(y) dy � (1 − α)
∫ 1

c

g(y) dy − 1
N

.

Now we define the strategy {α, f1(x), f2(x), g(y), β}ε of player I in the game G∗ as follows:
(i) Player I fires both his bullets simultaneously with probability α and he fires his bullets at different
moments with probability 1 − α.
(ii) Player I moves back and forth in the following manner: at first between 0 and a1, then between
0 and a2, · · · , and then between 0 and an1+1. At the i-th step (i = 1, 2, · · · , n1 + 1), he fires both
of his bullets simultaneously at random only if he is between ai−1 and ai and goes forward, and
he fires them with conditional probability density f1(x) under the condition that he fires both his
bullet simultaneously. After he has fired both of his bullets at the i-th step, he reaches the point
ai, escapes to 0 and never approaches player II.
(iii) When player I has not fired his bullets in [a, b], he further moves back and forth between 0 and
c and he fires his first bullet between b and c, only if he goes forward, according to the conditional
distriburion with density f2(x) under the condition that he fires his bullets at different moments.
Furthermore player I moves back and forth between 0 and c1, then between 0 and c2, · · · , and then
between 0 and cn2+1. When he moves back and forth between 0 and ci, he fires his second bullet at
random only if he is between ci−1 and ci and goes forward, and he fires his bullet with conditional
distribution with density part g(y) and mass part β at 1, independently of the point where he has
fired his first bullet. If he has fired his second bullet between ci−1 and ci, he reaches the point ci,
escapes to 0 and never approaches player II.

Theorem 2. For the game G∗, the strategy {α, f1(x), f2(x), g(y), β}ε is ε-optimal for player I, and
the strategy {h(z)} given in Lemma 2 is optimal for player II. Moreover, the game value of G∗ is
2a − a2.

Proof. It is seen that if player I fires his bullets at a point, then he has to fire the bullets when he is
at the point for the first time. Similarly, if player II fires his bullet when player I is at a point, then
player II has to fire his bullet when player I is at the point for the first time. Thus, in what follows,
we assume that player I fires at points when he is at these points for the first tme, and player II fires
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his bullet when player I is at a point for the first time. Now we denote by v∗1(z) the expected payoff
of the game G∗ when player I applies the strategy {α, f1(x), f2(x), g(y), β}ε and player II fires his
bullet when player I is at the point z in [0, 1]. Similarly, we denote by v∗2(x, y) the expected payoff
of the game G∗ when player II applies the strategy {h(z)} and player I fires his bullets when he is
at the points x and y. Clearly,

v∗1(z) = v1(z) � 2a − a2

for all z in [0, a). For every z in (ai, ai+1] (i = 0, 1, 2, · · · , n1), we get

v∗1(z) = α

∫ ai

a

{x + (1 − x)x}f1(x) dx + α

∫ z

ai

{x + (1 − x)x − (1 − x)2z}f1(x) dx

+ α

∫ b

z

{−z + (1 − z)(2x − x2)}f1(x) dx

+ (1 − α)
∫ c

b

∫ 1

c

{−z + (1 − z)x + (1 − z)(1 − x)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

{−z + (1 − z)x + (1 − z)(1 − x)}f2(x) dx

= v1(z) − α

∫ z

ai

z(1− x)2f1(x) dx � 2a − a2 − 1
N

> 2a − a2 − ε.

For every z in [b, c], we directly get

v∗1(z) = v1(z) = 2a − a2.

Further, for all z in (ci, ci+1] (i = 0, 1, 2, · · · , n2), we have

v∗1(z) = α

∫ b

a

(2x − x2)f1(x) dx + (1 − α)
∫ c

b

∫ ci

c

{x + (1 − x)y}g(y)f2(x) dydx

+ (1 − α)
∫ c

b

∫ z

ci

{x + (1 − x)y − (1 − x)(1 − y)z}g(y)f2(x) dydx

+ (1 − α)
∫ c

b

∫ 1

z

{x − (1 − x)z + (1 − x)(1 − z)y}g(y)f2(x) dydx

+ (1 − α)β
∫ c

b

{x − (1 − x)z + (1 − x)(1 − z)}f2(x) dx

= v1(z) − (1 − α)
∫ c

b

∫ z

ci

(1 − x)(1 − y)zg(y)f2(x) dydx

� v1(z) − 1
N

> 2a − a2 − ε.

It is obvious that
v∗1(1) = v1(1) � 2a − a2.

Therefore we obtain
v∗1(z) � 2a − a2 − ε

for all z in [0, 1]. It is clear that

v∗2(x, y) = v2(x, y) � 2a − a2
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for all x and y such that 0 � x � y � 1. We suppose that player I fires his first bullet when he is
at a place x in (0, 1], and escapes to 0 and stays in 0 forever. We denote such a strategy by (x, ∗)
and we denote by v∗2(x, ∗) the expected payoff when players I and II apply the strategies (x, ∗) and
{h(z)}, respectively. Then we get

v∗2(x, ∗) =
∫ x

a

{−z + (1 − z)x}h(z) dz �
∫ 1

a

{−z + (1 − z)}h(z) dz

= 1 − 2
∫ 1

a

zh(z) dz = −1 + k5 = −1 +
(1 + b)(1 + 2a − a2)

1 + 2b − b2
� 2a − a2

for every x in [a, 1] and
v∗2(x, ∗) = a � 2a − a2

for all x in [0, a]. Thus we can conclude that, if player II applies the strategy {h(z)}, the expected
payoff is at most 2a − a2 whatever stratedy player I may apply. This completes our proof.

In this paper, we have assumed that player I may fire his two bullets at different moments and we
have figured out that the game value is 2a − a2 = 0.3640. As was mentioned in section 1, Trybula
[10] solved an m-versus-n silent duel with arbitrary accuracy functions under arbitrary motion. In
Trybula’s model, player I has to fire his m bullets simultaneously, whereas player II can fire his n
bullets at different moments. If we put m = 2, n =1 and p(x) = q(x) = x in Trybula’s model, then
the game value is 2â − â2 (= 0.3241), where â = 0.1779 is the unique root in (0, 1) of the equation

∫ 1

x

dt

t2(1 + 2t − t2)
+

1
2

=
1 − x

x(1 + 2x − x2)
.

Thus, the game value of our model is larger than the game value of the Trybula’s model as might
be expected.

References

1. S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics Vol. 2, Addison-Wesley,
Reading, 1959.

2. T. Kurisu, Noisy-vs.-Silent Duel and Silent-vs.-Noisy Duel under Arbitrary Moving, Mathematica Japonica 43
(1996), 473-482.

3. T. Kurisu, Noisy-vs.-Silent Duel with Arbitrary Accuracy Functions under Arbitrary Motion, Mathematica
Japonica 51 (2000), 259-271.

4. T. Kurisu, A One-Noisy-Versus-Two-Silent Duel with Arbitrary Accuracy Functions under Arbitrary Motion,
Scientiae Mathematicae Japonicae 56 (2002), 547-566.

5. S. Trybula, A Noisy Duel under Arbitrary Moving, I, Zastosowania Matematyki 20 (1990), 491-496.
6. S. Trybula, A Noisy Duel under Arbitrary Moving, II, Zastosowania Matematyki 20 (1990), 497-516.
7. S. Trybula, A Noisy Duel under Arbitrary Moving, III, Zastosowania Matematyki 20 (1990), 517-530.
8. S. Trybula, A Silent Duel under Arbitrary Moving, Zastosowania Matematyki 21 (1991), 99-108.
9. S. Trybula, Solution of a Silent Duel under General Assumptions, Optimization 20 (1991), 449-459.

10. S. Trybula, An m-vs.-n Bullets Silent Duel with Arbitrary Motion and Arbitrary Accuracy Functions, Zastosowa-
nia Matematyki 21 (1993), 545-554.

11. S. Trybula, A Silent versus Partially Noisy One-Bullet Duel under Arbitrary Motion, Zastosowania Matematyki
21 (1993), 561-570.

12. S. Trybula, A Silent versus Partially Noisy Duel under Arbitrary Moving and under General Assumptions on
the Payoff Function, Control and Cybernetics 26 (1997), 625-634.

�	
����	�� 
� ����	������� ������� 
� �����		����� ������ ����	������ �����	� ������ ������

 !"#$!$%� &�
��


