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PERIODIC MOTION OF PUNCTURES ON DISKS

Eijirou Hayakawa
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Abstract. In this article, we show that for any positive integer r ≥ 3 there is a
pseudo Anosov homeomorphism ϕ : Dr → Dr on an r times punctured disk satisfying
the following conditions :
1) its associated invariant unstable foliation Fu has no inner singular points.
2) r punctures form a periodic orbit of period r under ϕ.

1 Introduction Let Dr be a closed disk with r ≥ 3 points deleted. In this paper we deal
with pseudo Anosov homeomorphisms ϕ on Dr. Generally speaking, for an orientable surface
S with negative Euler characteristic, a pseudo Anosov homeomorphism ϕ on S is a canonical
homeomorphism in its isotopy class. For ϕ, there exist two foliations Fs, Fu, called stable
and unstable respectively, such that they have finite number of common singular points, and
their leaves are transverse to each other except at singular points, and they are preserved by
ϕ. Furthermore they have transverse measures µs, µu under which the lengths of transverse
intervals to each foliation are expanded and contracted by the action of ϕ respectively (see
[3], [4] for details).

Let us assume that for an orientable surface S, a set of data which consists of the number
of singular points and the numbers of prongs at them is given. Then there is an already
solved interesting question that asks whether this set of numerical data can be realized as
the data for the associated foliations of a pseudo Anosov ϕ : S → S. The answer given by
[5] is that for all orientable surfaces S with χ(S) < 0 except some specified ones, all sets of
numerical data which satisfy the Euler-Poincaré formula [4] for S can be realized.

Here we will investigate this realization problem with an additional condition on the
dynamical motion of singular points under a pseudo Anosov homeomorphism realizing them.
As the first step, we restrict ourselves to the case when 1) surfaces S are punctured disks
Dr, 2) pseudo Anosov homeomorphisms have stable and unstable foliations without inner
singular points. This case is very simple and elementary, but an important step to the more
general situation.

By a generalized pseudo Anosov homeomorphism, we mean a pseudo Anosov homeomor-
phism admitted to have prong 1 singularities on its associated invariant foliations. Then
a pseudo Anosov homeomorphism on Dr, ϕ : Dr → Dr, we have a generalized pseudo
Anosov homeomorphism ϕ on a closed disk D without punctures as follows. Capping on
inner boundary of Dr by circles and collapsing these boundary circles to single points, we
have a closed disk D without punctures. Then naturally ϕ induces a generalized pseudo
Anosov ϕ : D → D.

We have the following theorem.

Theorem. For any integer r ≥ 3, there exists a pseudo Anosov homeomorphism ϕ :
Dr → Dr such that
1) its invariant foliations have no singular points except on the boundary of Dr,
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2) its induced generalized pseudo Anosov ϕ has r prong 1 singular points which are the image
of inner boundary under collapsing, and the set of these singular points forms a periodic
orbit of period r under ϕ.

Remark. In this paper, by a pseudo Anosov homeomorphism we mean an orienta-
tion preserving one, and if we deal with orientation reversing ones, explicitly we call them
orientation reversing pseudo Anosov homeomorphisms.

In [5], Masur and Smillie use technique on quadratic differentials on Riemann surfaces
and the result by [7], but we employ the technique that, from 2 dimensional objects,
i.e. surfaces and homeomorphisms on them, constructs 1 dimensional objects, i.e. graphs
and Markov maps on them, which keep essential property of dynamics on surfaces, and this
technique is useful for investigating the dynamical property.

In §2, we give a brief exposition on this technique reducing 2 dimensinal objects to 1
dimensional ones. §3 and §4 are devoted to prove the theorem.

2 Preliminaries There are several theories which reduce homeomorphisms on surfaces
to Markov maps on graphs [1], [2], [6], and they have much common structure, but have each
special feature also. Among them we adopt the one developed by Franks and Misiurewicz,
which is the most suitable to the investigation on the dynamics on disks. In this section we
will give a brief exposition on this technique.

As described in §1, for a homeomorphism f : Dr → Dr, there exists the blow down
homeomorphism f : D → D on a closed disk without punctures, and we have the set of
specified r points qi which are the images of attached boundary components. To construct a
graph, i.e. a 1 dimensional simplicial complex, T from D, we will decompose D into s closed
disks Bj , s ≥ r, and q rectangles Rk. Each rectangle has specified two boundary edges which
are not adjacent to each other and called vertical edges, and the rest two boundary edges
are called horizontal. Rk are naturally equipped with vertical and horizontal foliations
according to the specification of edges. Let pj be the center of Bj , and we assume that
pj = qj for 1 ≤ j ≤ r.

Figure 1.1.

In order to show the way of decomposition of D, we will show the way of reconstruction of
D from Bj and Rk by gluing them. Along all vertical edges of Rk and part of the boundary
of Bj , they are glued such that the resulting space is homeomorphic to a disk, and in this disk
all vertical edges are disjoint to each other (see Figure 1.1). We denote this reconstructed
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disk by T, and identify it with D preserving the identification qj = pj, 1 ≤ j ≤ r. This
decomposition of D is called a thick tree structure.

Now we will construct T from this thick tree structure D = T. Let us collapse each Bj to
a single point, and Rk to a closed segment by collapsing each vertical leaf to a single point.
We give the quotient set the quotient topology, and obtain a desired graph T . Obviously T
is contractible, and thus called a tree. Let vj be the vertex which is the image of Bj , and
ek the edge which is the image of Rk, and πT : T → T denotes the projection. Let V be
the set of vertices of T .

Next we will construct from f : D = T → D = T a Markov map fT : T → T which
inherits the dynamical property of f. As preparation for this construction, we will induce an
embedding fT from f as follows. Let Q = {pj|1 ≤ j ≤ r}. Deforming f : T → T through
embeddings of T into itself leaving Q fixed, we may have an embedding fT : T → T such
that
0) fT(T) ⊂ intT,
1) if f(qj) = qσ(j), 1 ≤ j ≤ r, then fT(Bj) ⊂ intBσ(j), where σ(j) are integers and satisfy
that 1 ≤ σ(j) ≤ r and furthermore

σ =
(

1 2 · · · r
σ(1) σ(2) · · · σ(r)

)

is an element of the symmetric group of degree r,
2) for j ≥ r + 1, fT(Bj) lie in intBj′ for some 1 ≤ j′ ≤ s,
3) for any vertical leaf lv in any Rk, fT(lv) is included in a single vertical leaf of some Rk′

or in a single disk Bj ,
4) for any horizontal leaf lh in any Rk, there exist a finite number of horizontal leaves lα of
Rkα and disks Bjβ

such that fT(lh) ⊂
(
∪βBjβ

)
∪ (∪αlα) .

We call an embedding of T into itself which satisfies the above conditions a thick tree map
on T.

Then fT : T → T determines a Markov map fT : T → T which satisfies πT◦fT = fT ◦πT

up to homotopy relative to Q and V, where we mean by a Markov map a simplicial map.
Remark that we have a “section” sT : T → T and a “lift” f̃T : T → T as follows. There
exist injective continuous maps sT : T → T and f̃T : T → T such that πT ◦ sT and πT ◦ f̃T
are homotopic to the identity and fT relatively to V respectively, and furthermore they
are strictly monotone on each connected component of T − s−1

T (∪Dj) and T − f̃−1
T (∪Dj)

respectively.
When we construct an embedding fT, we may choose it from vast amount of candidates,

because there is only restriction that fT is connected with f by a path of embeddings leaving
Q fixed. Therefore we may have the huge number of Markov maps fT . However starting from
any Markov maps, by only finitely many times of deformations which reduce the dynamical
complexity, we can obtain a reduced map f∗

T : T ∗ → T ∗, which has the minimum dynamical
complexity, e.g. the Perron-Frobenius eigenvalue of its transition matrix is the minimum,
and is called irreducible. To prove our theorem we do not need the detail of this deformation
process, and thus we will not give its exposition. Readers, for this algorithmic process, refer
the references, especially [1] and [6].

Finally we will make a brief review for a reconstruction process of a Thurston canonical
form f∗ : Dr → Dr in the isotopy class of f from an irreducible Markov map f∗

T : T ∗ → T ∗.
Since, in this paper, we deal with only pseudo Anosov cases, and more restrictively with two
special cases only, we give its exposition only for the following two cases. The graphs T ∗

1

and T ∗
2 for this two cases are as shown in Figure 1.2. Let f∗

T1
and f∗

T2
be Markov maps on

T ∗
1 and T ∗

2 corresponding to pseudo Anosov homeomorphisms which satisfy the condition
of Theorem in the cases when r are odd and even respectively. Remark that the reducing
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procedure keeps the correspondence of 1 dimensional objects to 2 dimensional objects, i.e.
for a deformed Markov map fT ′ : T ′ → T ′ there exist disk T′ with a thick tree structure
and a thick tree map fT′ : T′ → T′ such that fT′ and fT ′ have a lift f̃T ′ .

T

T

Figure 1.2.

The Markov map f∗
Tε

: T ∗
ε → T ∗

ε , ε = 1, 2, defines a transition matrix Mε by assigning
the number of times of the image f∗

Tε
(ei) of an edge ei under f∗

Tε
passing through ej as its

(i, j) entry aε
ij . Generally speaking, from a transition matrix N for an irreducible Markov

map we can judge the type of a canonical form of an original homeomorphism g : Dr → Dr,
and for example if N is indecomposable with the Perron-Frobenius eigenvalue > 1, then a
canonical form of g is pseudo Anosov. Under our assumption, the square matricise Mε of
order r − 1 are indecomposable and have Perron-Frobenius eigenvalues > 1. Let λε be the
Perron-Frobenius eigenvalue of Mε, and lε = (lε1, lε2, · · · , lεr−1) and wε = (wε

1, wε
2, · · · , wε

r−1)
be eigenvectors of λε for Mε andtMε respectively, i.e. λεlε = Mεl

ε and λεwε =tMεw
ε. Since

lε and wε are strictly positive, to rectangles Rj , corresponding to edges ej , of the thick tree
structure T∗

ε corresponding to T ∗
ε , we give a geometric structure by wε and lε , i.e. we

define the width and length of Rj by wε
j and lεj .

We first deal with the case of f∗
T1

: T ∗
1 → T ∗

1 . For simplicity on notation, we drop off the
suffix 1. We will reconstruct the disk D using only rectangles Rj , and thus we will glue Rj

with Rj+1 as follows. Put Rj and Rj+1 in the plane such that they have as the only common
point their single vertices, which are the end points of vertical edges bv

j,j+1, bv
j+1,j+1 lying

on ∂Bj+1 in T∗, and these edges form one smooth edge bj+1 = bv
j,j+1 ∪ bv

j+1,j+1 of length
wj + wj+1 as shown in Figure 1.3. Then let us choose the middle point mj+1 of bj+1, and
bend Rj or Rj+1 at mj+1 and glue them by identifying each two points on two halves of
bj+1 devided by mj+1 and with the same distance from mj+1 as shown in Figure 1.3. For
the vertical edges of R1 and Rr−1 glued with ∂B1 and ∂Br in T∗, let us also choose the
middle points m1 and mr, and bend R1 and Rr−1 at them respectively, and glue each of
them with itself.
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From this gluing procedure, we obtain a topological disk D0, and by thickening f∗
T we

can define a continuous map f0 : D0 → D0 since f∗
T has a lift f̃∗

T : T ∗ → T∗. Furthermore
by our way of defining width and length of Rj , f0 can be constructed as to be linear with
respect to the coordinate on Rj , precisely to say, to be linearly contracting and expanding
with multiplier 1/λ and λ in the vertical and horizontal direction of any Rj , and to be
surjective, precisely to say, to cover D0 totally by tiling it with ‘tiles’ f0(Rj).

Figure 1.3.

Since the image of horizontal edges consists of the set of double points of f0, f0 is not
injective, and thus not homeomorphic. To overcome this defect, we will construct a sphere
S0 from D0. On the boundary of D0, ui, i = 1, 2, · · · , r − 2, are cusp points, and they
devide ∂D0 into r − 2 smooth arcs αi with end points ui and ui+1, where ur−1 is equal to
u1. Then there is an integer n > 0 such that fn

0 (αi) ⊃ αi for any i, and thus we can find
exactly one fixed point zi on each αi. By definition of l, two arcs βii+1 and βi+1i+1 in αi

and αi+1 bounded by zi and ui+1, and ui+1 and zi+1 have the same length. Therefore we
glue ∂D0 with itself by identifying points on βii+1 and βi+1i+1 with the same distance from
ui+1, and we obtain a sphere and the naturally induced map f0, which is homeomorphic.
Finally after suitably smoothing f0 around the single point w0 which is the image of all
zi, we blow up f0 at w0, and by puncturing D0 at {mj}, obtain a desired homeomorphism
f∗ : Dr → Dr.

Remark that the vertical and horizontal foliations on Rk form the associated stable and
unstable foliations for f∗, and that mj come to be prong 1 singular points for the generalized
pseudo Anosov f

∗
: D → D.

For f∗
T2

: T ∗
2 → T ∗

2 , the reconstruction procedure of f∗
2 : Dr → Dr is the almost same

as for f∗
T1

. The only different point is the gluing procedure of Rj . In this case, the vertical
edges of all Rj lying in ∂B1 are connected to form a single smooth edge, and at the center
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point of this single edge we bend ∪jRj , and perform the same process on other all ‘free’
vertical edges as on R1 and Rr−1 in the case of f∗

T1
, and obtain a topological disk with r−2

cusps on its boundary.

3 Proof of Theorem (1) In this section we will prove the theorem in the case of r odd.
We will construct an example which satisfies the property asserted in the theorem. Set
r = 2m + 1, m ≥ 1.

Thick tree structure. To give a thick tree structure on D, let us choose just r disks
Bj , j = 1, 2, · · · , r, and r− 1 rectangles Rj , and glue them such that each Rj is glued with
Bj and Bj+1. This reconstruction of D is also denoted by T, and from T we obtain a very
simple tree, a segment, T , which is shown in Figure 1.2 as T ∗

1 .

Figure 2.1.

Construction of Markov map. Here we will not trace the algorithmic reducing
process starting from a reducible Markov map, but we will construct an already irreducible
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Markov map fT : T → T such that its corresponding canonical form f∗ : Dr → Dr satisfies
the desired property, i.e. f∗ is an example of ϕ. Therefore each vertex of T will correspond
to a prong 1 singular point, and according to this property of T we add an additional
structure to T . At each vertex vj we give T cusped form as shown in Figure 2.1.

Note that there are many other cusped structures on T if we do not care about whether
such structures support Markov maps with desired property or not, but we choose the
structure shown as below, like bellows of an accordion, for our construction.

We will construct an irreducible Markov map f ′
T : T → T on the cusped tree T such that

it defines an orientation reversing pseudo Anosov f ′∗, and fT = f ′
T ◦ f ′

T and f∗ = f ′∗ ◦ f ′∗

are a desired Markov map and a desired pseudo Anosov.
If f∗ satisfies the desired property, f ′

T is factored into the composition of continuous
maps pT : T → I and qT : I → T , where I denotes an interval, in other words, any two
edges with the same vertex their common end point are glued with each other, or precisely
saying, one of them is glued with a part of the other. This corresponds to the necessity that
f ′
T is the projection of a thick tree map f ′

T;T → T, or f ′
T has a lift f̃ ′

T : T → T, because
any vertex of T will correspond to a prong 1 singular point and T has no vertex of valence
k ≥ 3, and the contracting property of the transverse measure on Fu requires that any two
rectangles adjacent to each other are glued and mapped into the same rectangle. Therefore
to construct f ′

T , we will construct two continuous map pT : T → I, which irons out the
cusped graph T into the flat graph I, and qT : I → T , which winds the flat graph around
T .

First we will construct pT . The image of a vertex v under pT , needless to say, lies on
I, but in order to reconstruct f ′

T or to construct f̃ ′
T , it is necessary to determine which

side of the image pT (e) of an edge e, with pT (e) � pT (v), pT (v) lies on virtually. Then
to indicate the virtual position of pT (v) explicitly, we draw the images of vertices such
that they pop up slightly from I. Let us define pT by showing its image in Figure 2.1. In
order to show how T is stretched on I, we draw the process from the top to the bottom
of Figure 2.1. When we thicken I to a disk, then the third arrow will be the projection
of an orientation reversing homeomorphism on a disk, and in fact it is simply identity of
I if the information on the virtual position of vertices is neglected. We orient I such that
going from left to right is according to its orientation. Then going through I in the positive
direction, pT (v4) is the left end, pT (v2k), k = 3, 4, , · · · , m − 1, lie virtually on the right
hand side in this order, and then we meet pT (v2) on the left and pT (v2m) on the right, and
then pT (v2k−1), k = 1, 2, · · · , m, lie on the left hand side in this order, and finally we meet
the right end pT (v2m+1).

To complete the definition of f ′
T we will describe qT : I → T . Let us show the image of

qT in Figure 2.2. The image of qT is, needless to say, on T , but in order to show how qT is
lifted to a planar map, we draw it in offsetting way from T . Thus the complete qT is the
one which succeedingly pushes the offset image onto T . In Figure 2.2 we denote p(vi) by v′i.

First we assign pT (v4) to v2, and we will map I such that the image goes for the right
of T . Note that it is impossible to assign pT (v2j), j = 3, 4, · · · , m − 1, to v2k+1 for any k
before the image turns around the right end point v2m+1, because pT (v2j) pop up to the
right hand side, and along the image we must turn to the left at cusped vertices v2k+1. We
pass through v3 of T and put pT (v6) on v4 and succeesively pass through v2j−3 and put
pT (v2j) on v2j−2, j = 4, 5, · · · , m − 1, respectively in this order.

After that we turn around the right end point v2m+1 and go back to the left end point
v1 without putting any point pT (vi) to any vertex of T , and then put pT (v2) to v1. Turning
around v1 to the left, we again go through until we arrive at the right end point, and set
pT (v2m) on v2m+1 and then turn around this point to the right. We turn back to the left
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Figure 2.2.

end point again, this is the second time, and turn around it. Going to the right, this is the
third time, we put pT (v2j−1) on v2j+1, j = 1, 2, · · · , m − 1, in this order, and then turn
around the right end and put pT (v2m−1) on v2m and pT (v2m+1) on v2m−2. This completes
the definition of qT .

Irreducibility and the transition matrix. We can easily confirm that f ′
T : T → T

is irreducible, because whenever the image of a lift f̃ ′n
T = f̃ ′

T ◦ f ′n−1
T : T → T of f ′n

T
passes through a rectangle Rj±1, enters Bj and then turns back to the same rectangle, it
turns around the center point qj , which corresponds to a puncture of Dr, and therefore we
cannnot perform any gluing and tightening procedures [6]. It is obvious that fT = f ′

T ◦ f ′
T

is also irreducible. Therefore to show that fT reproduces a pseudo Anosov homeomorphism
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f∗, it is sufficient to show that the transition matrix M for f ′
T is indecomposable and has

a Perron-Frobenius eigenvalue > 1. By definition of f ′
T , M is as follows :

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 2 2 2 2 2 2 2 · · · 2 2 2 2 2 2
3 3 3 3 2 2 2 2 2 · · · 2 2 2 2 2 2
4 5 5 5 4 4 4 4 4 · · · 4 4 4 4 4 4
4 5 5 5 5 5 4 4 4 · · · 4 4 4 4 4 4
4 4 4 5 5 5 4 4 4 · · · 4 4 4 4 4 4
4 4 4 5 5 5 5 5 4 · · · 4 4 4 4 4 4
4 4 4 4 4 5 5 5 4 · · · 4 4 4 4 4 4
...

...
...

...
...

...
...

4 4 4 4 4 4 4 4 4 · · · 4 5 5 5 4 4
4 4 4 4 4 4 4 4 4 · · · 4 5 5 5 5 5
2 2 2 2 2 2 2 2 2 · · · 2 2 2 2 2 3
2 2 2 2 2 2 2 2 2 · · · 2 2 2 3 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus it is clear that M is indecomposable, and Perron-Frobenius eigenvalue > 1.

Periodic motion. Finally we will show the motion of punctures as an element of the
symmetric group of degree r. For an orientation reversing pseudo-Anosov f ′∗ corresponding
to f ′

T , we have the following element :

σ =
(

1 2 3 4 5 · · · 2j 2j + 1 · · · 2m − 4 2m − 3 2m − 2 2m − 1 2m 2m + 1
3 1 5 2 7 · · · 2j − 2 2j + 3 · · · 2m − 6 2m − 1 2m − 4 2m 2m + 1 2m − 2

)
It is easy to see that the order of σ is r = 2m + 1, and thus the order of σ2 corresponding
to fT = f ′2

T is also r. This completes the proof of Theorem in the case of r odd.

By the above proof, we have the following proposition.

Proposition. For any odd integer r ≥ 3, there exists an orientation reversing pseudo
Anosov homeomorphism ϕ : Dr → Dr which satisfies the condition 1) and 2) in Theorem.

4 Proof of Theorem (2) To complete the proof of Theorem, we will deal with the rest
case in this section. Thus let us assume that r = 2m for a positive integer m ≥ 2.

Thick tree structure. We choose the cusped graph T as shown in Figure 3.1, and
choose the corresponding thick tree structure on D. T has one valence 2m − 1 vertex, and
all the other vertices are valence 1.

Markov map. As in the previous case, we will construct a Markov map fT : T → T
as the composite of two continuous maps pT : T → I and qT : I → T , but in this case
qT ◦ pT itself, not its 2 times iteration, is a desired Markov map fT , and therefore pT will
correspond to an orientation preserving map on a 2-disk.

The collapsing map pT is given as shown in Figure 3.1. To indicate the virtual position
of the image of vertices, they are also popped up from I. The definition of qT is shown by
its image in Figure 3.2. In this figure v′i denote pT (vi) again. Also in this case we draw the
image as to be offset from T . We start from the right end point of I, which is pT (vm+1), and
go to the left along I. First qT assigns pT (vm+1) to v1, and then pT (vm+2) to vm+1. At vm+1

the image turns to the right virtually, goes back to v1, and then at v1 turns to the right.
After that pT (vj) is set on v2m+2−j for 2 ≤ j ≤ m, and on v2m+3−j for m + 3 ≤ j ≤ 2m,
and at the vertices on the right half of T , the image turns to the left and at the vertices on
the left half, it turns to the right. Finally pT (v1) is put on v2.
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Figure 3.1.

Irreducibility and transition matrix. By definition, fT : T → T is irreducible. The
transition matrix M of fT is as follows.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0 0 0 · · · 0 0 1
1 2 0 · · · 0 0 0 0 0 · · · 0 1 2
1 2 2 · · · 0 0 0 0 0 · · · 1 2 2
...

...
...

. . .
...

...
...

...
...

...
...

...
1 2 2 · · · 2 0 0 0 1 · · · 2 2 2
1 2 2 · · · 2 2 0 1 2 · · · 2 2 2
1 2 2 · · · 2 2 2 2 2 · · · 2 2 2
1 2 2 · · · 2 2 1 2 2 · · · 2 2 2
1 2 2 · · · 2 1 0 0 2 · · · 2 2 2
...

...
...

...
...

...
...

...
. . .

...
...

...
1 2 2 · · · 0 0 0 0 0 · · · 2 2 2
1 2 1 · · · 0 0 0 0 0 · · · 0 2 2
1 1 0 · · · 0 0 0 0 0 · · · 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to verify that M is indecomposable and has the Perron-Frobenius eigenvalue > 1.
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Figure 3.2.

Periodic motion. The element of the symmetric group corresponding to the motion
of qj under a reconstructed planar map f∗ is

σ =
(

1 2 3 4 · · · m − 1 m m + 1 m + 2 · · · 2m − 2 2m − 1 2m
2 2m 2m − 1 2m − 2 · · · m + 3 m + 2 1 m + 1 · · · 5 4 3

)
Clearly the order of σ is r = 2m. Therefore f∗ is a desired pseudo Anosov homeomorphism.
This completes the proof.
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