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Abstract. A space in which every infinite set contains an infinite subset with only
a finite number of accumulation points is said to have the finite derived set property.
We study this property in the class of spaces in which compact sets are closed – the
KC-spaces – and apply our results to show that among hereditarily Lindelöf spaces,
minimal KC-spaces are compact. This result generalizes a theorem of [2] and gives a
partial answer to a question of R. Larson.

1 Which spaces have the FDS-property? A space X is said to have the finite derived
set property (hereafter abbreviated as the FDS-property) if each infinite subset A ⊆ X
contains an infinite subset with only finitely many accumulation points (inX). This concept
was introduced in [8] in order to study properties of the lattice of T1-topologies on a set
X . In a subsequent paper [2], we studied the class of KC-spaces, that is to say the class
of spaces in which all compact subsets are closed; such spaces are clearly T1 and every
Hausdorff space is KC. The KC-spaces have also been called TB-spaces (for instance in
[6]). A problem ascribed to R. Larson in [6] is whether a space is maximal with respect to
being compact if and only if it is minimal with respect to being KC. In [2], it was shown
that in the class of KC-spaces, each countable space has the FDS-property and this result
was used to prove that every countable minimal KC-space is compact, thus giving a (very)
partial answer to the above-mentioned question of Larson. A KC-space (X, τ) is said to
be Katětov-KC if there is a minimal KC-topology σ ⊆ τ . In [6], Fleissner showed that not
every KC-space is Katětov-KC, but no characterization of Katětov-KC spaces is known.

In the first section of this paper we continue our study of those spaces which have
the FDS-property, while in Section 2, we apply our results to show that in some fairly
wide classes of KC-spaces, including all hereditarily Lindelöf spaces, minimal KC implies
compact. We also prove that certain classes of KC-spaces are Katětov-KC. All spaces
considered here are (at least) T1 and all undefined notation and terminology can be found
in [5], but note that the symbol ⊂ is used exclusively to denote proper containment. The
following result is obvious:

Remark 1.1 If X is a KC-space, then no infinite subspace of X can have the cofinite
topology.

Lemma 1.2 Each infinite subspace of a KC-space contains an infinite discrete subspace.

Proof: Let (X, τ) be a KC-space and suppose A ⊆ X is infinite; since A does not have
the cofinite topology, there is some open set U0 in X such that A ∩ U0 �= ∅ and A \ U0 is
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infinite; choose x0 ∈ A∩U0. Having chosen open sets U0, . . . , Un−1 and points x0, . . . , xn−1

in such a way that for all m ∈ {0, . . . , n− 1},
i) xm ∈ A ∩ Um;
ii) xk �∈ Um if k �= m; and
iii) An−1 = A \ (

⋃{Um : 0 ≤ m ≤ n− 1}) is infinite.
Then, by Remark 1.1, An−1 does not have the cofinite topology and so we can find Un ∈ τ
such that xm �∈ Un for each m < n, Un∩An−1 �= ∅ and An−1 \Un is infinite; we then choose
xn ∈ Un ∩An−1. This completes our inductive construction; let D = {xn : n ∈ ω}. Clearly
D is infinite and is discrete since Un ∩D = {xn} for all n ∈ ω.

A family A = {Aα : α ∈ κ} ⊆ [ω]ω (the set of of infinite subsets of ω) has the strong
finite intersection property if the intersection of any finite subfamily of A is infinite. If
A,B ∈ [ω]ω and A \ B is finite, then we write A ⊆∗ B. A set B is a pseudointersection
of the family A if B ⊆∗ Aα for all α ∈ κ. Recall that p is the smallest cardinal such that
there exists a family of infinite subsets {Aα : α < p} of ω with the strong finite intersection
property but no infinite pseudointersection. It is known that ω1 ≤ p ≤ c.

Theorem 1.3 A KC-space with the property that χ(p,X) < p for each p ∈ X has the
FDS-property.

Proof: Let (X, τ) be a KC-space such that χ(p,X) < p for all p ∈ X and let A ⊆ X be
infinite. By Lemma 1.2, we can find a countably infinite discrete subspace D ⊆ A. If D
is closed in X then we are done. If not, then let x be an accumulation point of D and let
{Uα : α < λ} be a local base of open sets at x, where λ = χ(x,X) < p. Then the family
{Uα ∩D : α < λ} is a family of subsets of D with the strong finite intersection property.
By the definition of p, there is an infinite subset S ⊆ D such that S \ Uα is finite for each
α < λ. Clearly then, the countably infinite set S converges to x and so S ∪ {x} is compact
and hence closed in X . Therefore |cl(S) \ S| = 1.

Remark 1.4 A similar argument can be used to show that if X is a KC-space such that
χ(x,X) < p for each x ∈ X, then every separable subspace of X is Hausdorff.

If (X, τ) is a Hausdorff space, then for each p ∈ X , set ψc(p,X) = min{|U| : U ⊂ τ ,
p ∈ U for all U ∈ U and

⋂{U : U ∈ U} = {p}; as in [7], we can then define the closed
pseudocharacter of X , ψc(X) = sup{ψc(p,X) : p ∈ X}.

If in the above theorem, the space (X, τ) is Hausdorff, then in order to conclude that
x is the only possible accumulation point of S, it suffices that there exist λ < p such that⋂{Uα : α < λ} = {x}. Hence we have proved:

Theorem 1.5 Each Hausdorff space X such that ψc(x,X) < p for any x ∈ X has the
FDS-property.

Bounding the size of X also allows us to prove that a space has the FDS-property in
case it is either Tychonoff or compact and KC.

Theorem 1.6 Every Tychonoff space of cardinality less than c has the FDS-property.

Proof: Suppose to the contrary that X is a Tychonoff space of cardinality less than c in
which there is an infinite subset A ⊆ X (which we may suppose to be discrete) such that
every infinite subset of A has infinitely many accumulation points. Clearly Y = clX(A)
is pseudocompact and hence if f : Y → R is continuous, then f [Y ] is a compact subset
of R of cardinality less than c; thus f [Y ] must be countable. Let fβ : βY → R be the
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extension of f to βY ; clearly fβ [βY ] = f [Y ] and so every real-valued continuous image of
βY is countable. Thus by a result of Shapirovski, (see [9]), βY , and hence Y , is scattered.
But then, if x is an isolated point of Y \ A, it follows by the regularity of Y that there is
a closed neighbourhood U of x in Y contained in A ∪ {x}. Since U is compact, there is a
sequence in A converging to x, contradicting our hypothesis regarding the set A.

Before our next result, we note that a countable compact KC-space with only a finite
number of accumulation points is either finite or a topological union of convergent sequences.
Thus a countably compact KC-space has the FDS-property if and only if it is sequentially
compact.

Theorem 1.7 A compact KC-space of cardinality less than c has the FDS-property (and
hence is sequentially compact).

Proof: Suppose that (X, τ) is a compact KC-space and |X | < c. We assume to the
contrary that X does not have the FDS-property and so there is some countably infinite
subset A ⊆ X such that every infinite subset of A has infinitely many accumulation points
in X . By Lemma 1.2, without loss of generality, we can assume that A is discrete and that
clX(A) = X . Let x ∈ X \ A; if every neighbourhood U of x is such that A \ U is finite,
then A ∪ {x} is compact, hence closed in X and so x is the unique accumulation point of
A, a contradiction. Thus we can choose an open neighbourhood V of x, such that A \ V
is infinite. The closed subspace X \ V of X is compact and A is countable, and hence
Lindelöf, and so A ∪ (X \ V ) is Lindelöf. This in its turn implies that A ∪ (X \ V ) is not
countably compact, for otherwise it would be compact, but being a proper dense subspace
of X , it is not closed in X , a contradiction. Thus there is a discrete set D ⊆ A ∪ (X \ V )
which is closed in A ∪ (X \ V ). However, since X \ V is compact, only a finite number of
points of D lie in X \ V and hence D ∩ V is infinite and all its accumulation points (by
our hypothesis, an infinite number in X) must lie in V ; that is to say, clX(D ∩ V ) ⊆ V .
Thus we have constructed two infinite sets D ∩ V and A \ V whose closures are disjoint
in X . Since D ∩ V ⊆ A, each of these sets has the property that every infinite subset has
an infinite number of accumulation points and the above argument can be repeated using
D ∩ V and A \ V in place of A. A standard binary tree argument can now be used to show
that |X | ≥ c.

Remark 1.8 Since any topology stronger than a topology with the FDS-property has the
FDS-property, it follows from Theorem 1.7 that in the search for a KC-topology (respec-
tively Hausdorff topology) with no weaker compact KC-topology, assuming ω1 < c, it suf-
fices to find a KC-topology (respectively, Hausdorff topology) on a set of size ω1 without the
FDS-property.

Note that if ω1 = c then there is a countably compact subspace of βω of cardinality
ω1 which does not have the FDS-property. On the other hand, if ω1 < p, and τ is any
Hausdorff topology on ω1, then (ω1, τ) can be condensed onto a Hausdorff topology of
weight ω1, which, by Theorem 1.5, has the FDS-property, implying in its turn that τ has
the FDS-property.

Question 1.9 If p = ω1 < c, does there exist a KC (or even a Hausdorff) topology on ω1,
without the FDS-property?

Again using a tree argument, it is easy to show, under ω1 < c, that a countably compact
Hausdorff topology on ω1 without the FDS-property cannot be Urysohn or even weakly
regular (each non-empty open set contains the closure of a non-empty open set).
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Theorem 1.10 A hereditarily Lindelöf KC-space has the FDS-property.

Proof: Suppose to the contrary that (X, τ) is a hereditarily Lindelöf KC-space which does
not have the FDS-property. Then there is some infinite subset D ⊆ X , which by Lemma
1.2 we may assume to be discrete, such that every infinite subset of D has infinitely many
accumulation points. As a consequence, for all infinite C ⊆ D, and x ∈ clτ (C) \C, there is
an open neighbourhood Ux of x such that C\Ux is infinite, for otherwise, C∪{x} is compact,
hence closed in X , contradicting our assumption regarding D. Clearly we can assume also
that D is countable. We will construct recursively a strictly increasing nested family of open
sets in a subspace of X of length ω1, contradicting the fact that X is hereditarily Lindelöf.

To this end, let D = D0 and choose x0 ∈ cl(D) \D and an open neighbourhood U0 of
x0 such that D1 = D0 \ U0 is infinite.

Suppose that for some ordinal α ∈ ω1 we have chosen points {xβ : β ∈ α}, infinite
subsets {Dβ : β ∈ α} of D and open sets {Uβ : β ∈ α}, such that

i) xβ ∈ Uβ for all β ∈ α,

ii) xβ ∈ (cl(Dβ) \Dβ) \ Uγ for all γ < β < α,

iii) Dβ ⊆∗ Dγ \ Uγ for all γ < β < α, and

iv) Dβ \ Uβ is infinite for all β ∈ α,

we proceed to choose xα, Dα and Uα as follows:
By iii) and iv), Dβ ∩Dγ is infinite for each γ ∈ β ∈ α and, since |α| = ω < p , there is

some infinite set Dα ⊆∗ Dβ for all β ∈ α. Again by iii), we have Dα ⊆∗ Dβ ⊆∗ Dγ \ Uγ

for all γ ∈ β ∈ α whence it follows that Dα ⊆∗ D \ Uγ for all γ ∈ α and hence all
accumulation points of Dα lie outside Uγ for each γ ∈ α. Choose xα ∈ cl(Dα) \Dα and an
open neighbourhood Uα of xα such that Dα \ Uα is infinite. It is clear that {xβ : β ≤ α},
{Dβ : β ≤ α} and {Uβ : β ≤ α} satisfy i)- iv) above.

Let L = {xα : α ∈ ω1}; by construction, each xα ∈ L has an open neighbourhood Uα∩L
contained in {xβ : β ≤ α}; that is to say, for each α ∈ ω1, {xβ : β ∈ α} is open in L and
the result follows.

We note that the above result can be somewhat improved since the recursive construction
can be continued as far as any cardinal µ < p. Thus we have actually proved:

Corollary 1.11 If X is a KC-space with hL(X) < p, then X has the FDS-property.

Since consistently p = c and c is regular we have:

Corollary 1.12 It is consistent that every KC-space X with hL(X) < c has the FDS-
property.

A space X is said to be weakly discretely generated if whenever A ⊂ X is not closed, then
there is some discrete subset D ⊆ A such that cl(D) \ A �= ∅. It was shown in Proposition
3.1 of [4] that every compact Hausdorff space is weakly discretely generated and a similar
proof applying Lemma 2.3 of [1] can be used for compact KC-spaces.

Of course, a space with a countable network is hereditarily Lindelöf and so it is worth
noting that a Hausdorff space with σ-discrete network need not have the FDS-property.
The Katětov extension, κω of ω (see [5, 3.12.6]) is strongly σ-discrete, hence has a σ-discrete
network, but lacks the FDS-property. A modification of the topology of the Stone-Čech
compactification βX of van Douwen’s countable maximal space X (see [3]) obtained by
declaring X and each of its supersets to be open is an H-closed space with a σ-discrete
network which is neither weakly discretely generated nor has the FDS-property.
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2 Properties of minimal KC-spaces. Our first lemma in this section generalizes The-
orem 10 of [2] and gives a partial answer to the question of R. Larson mentioned in the first
paragraph of Section 1.

Lemma 2.1 A hereditarily Lindelöf, minimal KC-space is compact.

Proof: Suppose that (X,σ) is a hereditarily Lindelöf minimal KC-space; by Theorem 1.10,
X has the FDS-property. If (X,σ) is not compact then since it is Lindelöf, it is not
countably compact and hence there is some countably infinite closed discrete subspace
D = {dn : n ∈ ω} ⊆ X . Fix p ∈ X and a free ultrafilter G ∈ βω \ ω and define a new
topology µ on X as follows:

(i) If p �∈ U , then U ∈ µ if and only if U ∈ σ,

and

(ii) If p ∈ U , then U ∈ µ if and only if U ∈ σ and {n ∈ ω : dn ∈ U} ∈ G.

Clearly (X,µ) is a T1-space, µ ⊂ σ and for each B ⊆ X , clµ(B) ⊆ clσ(B) ∪ {p}; since
(X,σ) has the FDS-property, it follows that (X,µ) does as well. We proceed to show that
(X,µ) is a KC-space. To this end, suppose to the contrary that A is a non-closed, compact
subset of (X,µ). Obviously p ∈ clµ(A) and there are two cases to consider:

(a) If p �∈ A, then µ|A = σ|A and so A is compact and hence closed in (X,σ). Thus
U = X \ A is open and p ∈ U . If {n ∈ ω : dn ∈ A} �∈ G, then {n ∈ ω : dn ∈ D \ A} ∈ G
and for each d ∈ D \ A, d ∈ U and so p ∈ U ∈ µ contradicting the fact that p ∈ clµ(A).
Thus {n ∈ ω : dn ∈ A} ∈ G and hence there is some infinite set S ⊂ A ∩ D such that
{n ∈ ω : dn ∈ S} �∈ G and S is then an infinite closed discrete subset of A in (X,µ),
implying that (A,µ|A) is not compact, again a contradiction.

(b) If p ∈ A, then clµ(A) = clσ(A), implying that A is not closed in (X,σ). Thus A is
not compact and since A is Lindelöf, it is not countably compact in (X,σ). Thus there is
a countably infinite, discrete subset C ⊆ A which is closed in (A,σ|A). However, C is not
closed in (A,µ|A) and so clµ(C)∩A = C∪{p}. This implies that {n ∈ ω : dn ∈ clµ(C)} ∈ G.
If P = {n ∈ ω : dn ∈ C} is infinite, then there is some infinite subset S ⊆ P such that
S �∈ G and hence {dn : n ∈ S} is a closed, discrete subspace of (A,µ|A), contradicting
the compactness of this space. If, on the other hand, P is finite, then since (X,µ) has the
FDS-property, there is an infinite subset B ⊆ C with only a finite number of accumulation
points in (X,µ). Thus {n ∈ ω : dn ∈ clµ(B)} �∈ G which implies that B is closed and
discrete in (A,µ|A), implying in its turn that A is not compact in (X,µ).

In fact Lemma 2.1 can be improved.

Theorem 2.2 A hereditarily Lindelöf minimal KC-space is compact and sequential.

Proof: Suppose that (X, τ) is a hereditarily Lindelöf minimal KC-space; the previous
lemma shows that X is compact and we proceed to show that it is sequential. To this
end, suppose that A ⊂ X is not closed and hence not compact. Since X is hereditarily
Lindelöf, A is not countably compact and hence we can find a countable discrete subset
D = {xn : n ∈ ω} ⊆ A which is closed in A; that is to say, all of the accumulation points
of D lie outside of A. By Theorem 1.10, X has the FDS-property, and so there is some
countably infinite set E ⊆ D with only a finite number of accumulation points in X , all of
which lie in cl(A) \ A. Thus cl(E) is a countable, compact KC-space and it follows from
Corollary 3 of [2], cl(E) is sequential; thus there is a sequence in E converging out of E and
hence out of A.
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Clearly, we have shown in the previous theorem that a compact, hereditarily Lindelöf
KC-space is sequential but need not be first countable as the one-point compactification
of the rationals illustrates. It is interesting to note that there are H-closed, hereditarily
Lindelöf, Hausdorff spaces which are not sequential. Let µ denote the usual metric topology
on [0, 1] and consider the topology τ on [0, 1] generated by the family of sets of the form

{U \D : U ∈ µ and D is closed and discrete in [0, 1] \Q},
where Q denotes the set of rational numbers.

The completely Hausdorff space ([0, 1], τ) has a countable network, and is H-closed (since
its semiregularization is the compact space ([0, 1], µ)), but is not sequential, because [0, 1]\Q
is sequentially closed but not closed.

In a first countable non-Hausdorff space there always exists a sequence convergent to
two distinct points and hence it is clear that a first countable KC-space is Hausdorff. Hence
in Theorem 2.2 we have actually proved:

Corollary 2.3 A second countable minimal KC-space is compact Hausdorff.

By way of contrast, second countable, non-compact, minimal Hausdorff spaces are known
and the one-point compactification of the rationals is a non-Hausdorff, Fréchet-Urysohn,
minimal KC-space. The question then arises as to whether a first countable minimal KC-
space is compact. In fact, we can prove a stronger result:

Theorem 2.4 A sequential minimal KC-space is compact.

Proof: Let (X, τ) be a non-compact space satisfying the hypothesis of the theorem. Fix
a ∈ X and define a new topology σ on X as follows:

σ = {U ∈ τ : a �∈ U} ∪ {U ∈ τ : a ∈ U and X \ U is compact}.
Clearly (X,σ) is a compact T1-space and σ ⊂ τ . Thus to complete the proof, it suffices

to show that (X,σ) is a KC-space. To this end, suppose that S ⊆ X is a compact subset
of (X,σ). It is clear that clσ(S) ⊆ clτ (S) ∪ {a} and that if a �∈ S, then σ|S = τ |S. There
are then two possibilities:

(i) If a �∈ S, then by the preceding remarks, S is compact, and hence closed, in (X, τ)
and so X \S is an open σ-neighbourhood of a. Thus a �∈ clσ(S) and so clσ(S) = clτ (S) = S.

(ii) If a ∈ S then clσ(S) = clτ (S) and so if S is not closed in (X,σ), then it is not closed
in (X, τ) either. Thus there is some x ∈ clτ (S) \S and a sequence {xn}n∈ω in S convergent
to x. Since a �= x, we may assume that xn �= a for all n ∈ ω. Then K = {xn : n ∈ ω} ∪ {x}
is compact in (X, τ), hence closed in (X, τ) and since a �∈ K, it is closed in (X,σ). Thus
K ∩S = {xn : n ∈ ω} is a closed subset of the compact space (S, σ|S) and thus is compact.
Since a �∈ K ∩ S, we have σ|(K ∩ S) = τ |(K ∩ S) so K ∩ S is compact in (X, τ) and hence
closed in (X, τ). However, x ∈ clτ (K ∩ S) \ (K ∩ S) which is a contradiction.

The next result is an immediate consequence of Theorem 2.4 and the comments preceding
Corollary 2.3.

Corollary 2.5 A first countable KC-space is minimal KC if and only if it is compact
Hausdorff.

Corollary 2.6 Every sequential KC-space is Katětov-KC.

Corollary 2.7 Each countable Hausdorff space is Katětov-KC.
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Proof: If (X, τ) is a countable Hausdorff space, then it can be condensed onto a second
countable Hausdorff space. Now apply Corollary 2.6.

A proof very similar to that of Theorem 2.4 can be used to show the following:

Theorem 2.8 A Hausdorff k-space is minimal KC if and only if it is compact.

Proof: The sufficiency is clear. For the necessity, let (X, τ) be a non-compact space which
satisfies the hypothesis of the theorem. Define σ as in Theorem 2.4. Again, we claim that
(X,σ) is a KC-space. If S is a compact subset of (X,σ) and a �∈ S, then the proof proceeds
as in (i) of Theorem 2.4. If on the other hand, a ∈ S, then clσ(S) = clτ (S) and so if S
is not closed in (X,σ), then it is not closed in (X, τ) either. Since (X, τ) is a k-space,
there is some compact set C in (X, τ) such that C ∩ S is not closed in C. Furthermore,
if the chosen compact set C has the property that a ∈ C, then since (X, τ) is Hausdorff,
given x ∈ clτ (C ∩ S) \ (C ∩ S), we can find disjoint open neighbourhoods U, V of x and a
respectively. Then C \ V is a compact subset of (X, τ) with the property that S ∩ (C \ V )
is not closed in C \ V . Hence we have shown that it is possible to choose C so that a �∈ C.
Then clτ (C ∩ S) ⊆ C is a closed, hence compact subset of (X, τ) which does not contain a
and hence is also closed in (X,σ). Thus T = S ∩ clτ (C ∩ S) is a σ-closed subset of S and
hence is compact in (X,σ). However, since a �∈ T , it follows that τ |T = σ|T and hence T is
compact in (X, τ), a contradiction, since x ∈ clτ (T ) \ T .

In the proof of the above theorem, we have constructed a compact KC-topology σ on
X with σ ⊂ τ . Thus we have also proved:

Corollary 2.9 A Hausdorff k-space is Katětov-KC.

Larson’s original question remains open but appears to be a difficult problem. However,
considering the results obtained above, a number of interesting and possibly more tractable
questions remain; below we mention a few of them.

Question 2.10 Can a non-compact minimal Hausdorff space be minimal KC? Alterna-
tively, is every Hausdorff minimal KC-space compact? Is every minimal Hausdorff space a
k-space?

Question 2.11 Is a closed subspace of a minimal KC-space, minimal KC?

Note that a positive answer to the last question implies that a minimal KC-space is
countably compact. Furthermore, if X is Hausdorff and every closed subspace is minimal
KC, then every closed subspace is H-closed and then by a result of Stone (see [5, 3.12.5]),
X is compact. Since a hereditarily Lindelöf Hausdorff space has countable pseudocharacter.
we are led to ask:
Question 2.12. Does a Lindelöf KC-space with countable pseudocharacter have the FDS-
property?
Question 2.13. Can every KC-space (or each T2-space) be embedded in a compact KC-
space? Is the Wallman compactification of a KC-space KC?

However, there is no way of embedding a KC-space in some power of a compact KC-
space since the square of a non-Hausdorff compact KC-space is never KC (the diagonal is
compact but not closed). Indeed, it is easy to show that if X is a KC-space then for each
κ ≥ 2, Xκ is KC if and only if each compact subspace of X is Hausdorff.
Question 2.14. Does there exist a compact KC-space in which every open set is dense?

If the answer to Question 2.13 is affirmative, then so is the answer to Question 2.14, for
if X is the co-countable topology on an uncountable set, then in any T1-compactification of
X , all open sets are dense.
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