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Abstract. This paper incorporates fuzzy random variables with a portfolio selection
problem based on the single index model. The rate of return on each investment
can be represented with a fuzzy random variable. A novel decision-making model
based both on possibilistic programming and on stochastic programming. It is shown
that the formulated problem is transformed into the deterministic equivalent nonlinear
programming problem. The deterministic problem is solved by utilizing the property
that the problem is regarded as a convex programming problem including a parameter.

1 Introduction There are two different kinds of decision-making models through math-
ematical programming in uncertain circumstances. One is stochastic programming and the
other is fuzzy programming. The former is a useful tool in stochastic systems and the latter
in fuzzy systems. A comparative study between two programs have also been investigated
[1], [2]. In real systems, however, fuzzy information and random factor may arise at the
same time. Then we are often faced with the case where fuzziness and randomness cannot
be separable as information. A fuzzy random variable [3, 4, 5, 6] was defined in order to
represent the element containing fuzzy and random information simultaneously. In recent
years, some researchers have applied fuzzy random variables to various decision-making
problems such as linear programming problem [7, 8] and minimum spanning tree problems
[9, 10].

In this article we focus on a single index model of a portfolio selection problem. Previ-
ous studies [11, 12] express the rate of return on each investment with a random variable.
However, in a case where an expert estimates the value of the rate of return, it includes
not only randomness but also fuzziness. Since stochastic programming models cannot take
into account of fuzzy information by the expert, it is necessary to introduce a framework
of new mathematical programming models to portfolio selection problems. In order to pro-
vide such a model, we try to incorporate stochastic programming models with possibilistic
programming models. Later, it will be shown that the model has an advantage that an
optimal solution of the deterministic equivalent problem is relatively easy to solve in spite
that the problem is a nonconvex programming problem.

The rest of this paper is organized as follows: Section 2 roughly explains a single index
model of a portfolio selection problem. Section 3 formulates a fuzzy random portfolio se-
lection problem. Section 4 proposes a fuzzy random programming model using the concept
of possibility measure and shows the process of transforming the problem including both
fuzziness and randomness into the deterministic equivalent problem. Regarding the deter-
ministic problem as a convex programming problem including a parameter, we provide a
solution method to obtain an optimal solution. In Section 5, we consider a model using a
necessity measure. Finally section 6 summaries this paper.
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2 Single index model A capital asset pricing model (CAPM) introduced by Sharpe [12]
explains the relation between risk and return on investment in a stock market. The risk
investment is assumed to be linearly decomposed into the risk common to all investments
caused by a market and the risk individual to each investment caused by other factors. This
model is called as a single index model, because it is expressed through the market only.

ci − rf = αi + βi(rm − rf ) + ε, i = 1, 2, . . . , n,

where

ci : the rate of return on investment i.
rm : the rate of return on market portfolio, which is the portfolio of all invest-

ments in the market. In the efficient market, rm is assumed to have a normal
distribution N(rm, σ2

m).
rf : the rate of return on reckless asset.
βi : beta - value of investment i, which is a measure of the responsiveness of

investment i to changes in the market index.
αi : alpha - value of investment i, which is the return on investment i that is

independent of changes in the market index.
ε : a random noise on investment i with a normal distribution N(0, σ2

ei
), which

is independent of the market index.

Replacing αi + rf (1− βi) by αi, the above equation is simply rewritten by

ci = αi + βirm + ε, i = 1, 2, . . . , n.

3 Formulation In this section we consider the case where ci is represented in the follow-
ing form.

C̃i(ω) = Ãi(ω) + βirm(ω), i = 1, 2, . . . , n,

where Ãi(ω) is the fuzzy random variable characterized by following membership function.

µÃi(ω)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L

(
αi(ω)− t

ξi

)
(αi(ω) ≥ t)

R

(
t− αi(ω)

ηi

)
(αi(ω) < t)

(1)

In (2), αi(ω) is a random variable distributed according to normal distribution N(ᾱi, σ2
i ),

and L(·) is a reference function from R to R satisfying the following conditions.

1. L(−t) = L(t) for any t ∈ R.

2. L(t) = 1 iff t = 0.

3. L(·) is non-increasing and nonnegative on [0, +∞).

The function R(·) also satisfies the same condition as L(·).
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By using arithmetic operation on L - R fuzzy numbers [13], the membership function of
C̃(ω)x is expressed as

µ ˜C(ω)x
(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

⎛
⎜⎜⎜⎜⎝

n∑
i=1

(αi(ω) + βirm(ω))xi − y

n∑
i=1

ξixi

⎞
⎟⎟⎟⎟⎠

(
n∑

i=1

(αi(ω) + βirm(ω))xi ≥ y

)

R

⎛
⎜⎜⎜⎜⎝

y −
n∑

i=1

(αi(ω) + βirm(ω))xi

n∑
i=1

ηixi

⎞
⎟⎟⎟⎟⎠

(
n∑

i=1

(αi(ω) + βirm(ω))xi < y

)
.

(2)

In order to consider the imprecise nature of decision-maker’s judgment, we set a fuzzy goal
G̃ with the membership function µG̃(y), which is a non-increasing function of y. Let L(t)
and µG̃(y) define as follows:

L(t) =

⎧⎨
⎩

1 (t = 0)
l(t) (0 < t ≤ tL)
0 (t > tL),

R(t) =

⎧⎨
⎩

1 (t = 0)
r(t) (0 < t ≤ tR)
0 (t > tR),

and

µG̃(y) =

⎧⎨
⎩

0 (y ≤ y0)
g(y) (y0 < y < y1)
1 (y ≥ y1),

where l(t) and r(t) are continuous decreasing functions and g(y) is a continuous increasing
function.

4 Fuzzy random programming model using a possibility measure The degree of
possibility that the objective function value satisfies the fuzzy goal G̃ is defined by

Π ˜C(ω)x
(G̃)

�
= sup

y
min

{
µ ˜C(ω)x

(y), µG̃(y)
}

.

Let xi be a rate of allocation to investment i. Then we propose the following problem as a
decision-making method under the condition that there are both fuzziness and randomness.

maximize h

subject to Pr
(
Π ˜C(ω)x

(G̃) ≥ h
)
≥ θ,

n∑
i=1

xi = 1

0 ≤ xi ≤ γi, i = 1, . . . , n

(3)

where γi satisfies 0 < γi < 1 and Pr denotes a probability measure. Π ˜C(ω)x
(G̃) ≥ h implies
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sup
y

min
{
µ ˜C(ω)x

(y), µG̃(y)
}
≥ h

⇐⇒ ∃ y : µ ˜C(ω)x
(y) ≥ h, µG̃(y) ≥ h

⇐⇒ ∃ y : L

⎛
⎜⎜⎜⎜⎝

n∑
i=1

{αi(ω) + βiγm(ω)}xj − y

n∑
i=1

ξixi

⎞
⎟⎟⎟⎟⎠ ≥ h, R

⎛
⎜⎜⎜⎜⎝

y −
n∑

i=1

{αi(ω) + βiγm(ω)}xi

n∑
i=1

ηixi

⎞
⎟⎟⎟⎟⎠ ≥ h,

µG̃(y) ≥ h

⇐⇒ ∃ y :
n∑

i=1

{αi(ω) + βiγm(ω)− L∗(h)ξi}xi ≤ y ≤
n∑

i=1

{αi(ω) + βiγm(ω) + R∗(h)ηi}xj ,

y ≥ µ∗
G̃
(h)

⇐⇒
n∑

i=1

{αi(ω) + βiγm(ω) + R∗(h)ξi}xi ≥ µ∗
G̃

(h)

where µ∗
G̃

(h) and L∗(h) are pseudo inverse functions defined as follows.

L∗(h) =

⎧⎨
⎩

tL (h = 0)
l−1(h) (0 < h < 1)
0 (h = 1)

µ∗
G̃

(h) =

⎧⎨
⎩

y0 (h = 0)
g−1(h) (0 < h < 1)
y1 (h = 1)

It should be noted that µ∗
G̃

(h) is a monotone non-decreasing continuous function and
that L∗(h) is a monotone non-increasing continuous function. Then problem (3) can be
transformed into the following form:

maximize h

subject to Pr
(
µ∗

G̃
(h) ≤

n∑
i=1

{αi(ω) + βirm(ω) + R∗(h)ηi} xi

)
≥ θ,

n∑
i=1

xi = 1

0 ≤ xi ≤ γi, i = 1, . . . , n.

(4)

Since rm(ω) and αi(ω) are random variables having the normal distributions N(r̄m, σ2
m)

and N(ᾱi, σ2
i ), respectively, it is obtained from the nature of normal distribution that

n∑
i=1

{βi(rm(ω)− r̄m) + αi(ω)− ᾱi} xi√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m
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is a random variable having the standard normal distribution N(0, 1). Therefore, problem
(4) is equivalent to the following deterministic problem:

maximize h

subject to
n∑

i=1

{ᾱi + βir̄m + R∗(h)ηi} xi −Kθ

√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m ≥ µ∗

G̃
(h)

n∑
i=1

xi = 1, 0 ≤ xi ≤ γi, i = 1, . . . , n,

(5)

where Kθ is a quantile of order θ of the standard normal distribution function F , i.e.,
Kθ = −K1−θ = F−1(θ) > 0 when θ > 1/2.

We denote an optimal solution of problem (5) by (x∗, h∗). For simplicity, we rewrite
the problem by replacing R∗(h) with q and obtain

minimize q

subject to
n∑

i=1

{ᾱi + βir̄m + qηi}xi −Kθ

√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m ≥ µ∗

G̃
(R(q))

n∑
i=1

xi = 1, 0 ≤ xi ≤ γi, i = 1, . . . , n.

(6)

It is apparent that an optimal solution of the above problem is (x∗, q∗) where q∗ equals to
R∗(h∗). In order to solve (6), we introduce the following problem with a parameter q.

maximize
n∑

i=1

{ᾱi + βir̄m + qηi}xi −Kθ

√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m

subject to
n∑

i=1

xi = 1, 0 ≤ xi ≤ γi, i = 1, . . . , n.

(7)

Let x(q) and Z(q) denote an optimal solution and the optimal value of problem (7) for a
fixed q, respectively. Since the objective function in the above problem is a strictly convex
function, the optimal solution is uniquely determined. Then, we shall prove the following
theorem:

Theorem 1 Let (x(q∗), q∗) be an optimal solution (x(q), q) of problem (7) satisfying Z(q) =
µG̃(q). Suppose that an optimal value q∗ of problem (6) satisfies R∗(1) < q∗ < R∗(0).
Then, (x(q), q) is equivalent to an optimal solution (x∗, q∗) of problem (6) iff and only if
Z(q) = µG̃(R(q)) holds.

Proof: If (x(q), q) satisfies Z(q) = µG̃(R(q)), then it holds from the definition that
(x(q), q) = (x(q∗), q∗) and Z(q∗) = µG̃(R(q∗)). Suppose that (x(q∗), q∗) is not optimal
to problem (6). This means that there exists some x̂ and q̂ satisfying

q̂ < q∗

and

n∑
i=1

{ᾱi + βir̄m + q̂ηi} x̂i −Kθ

√√√√ n∑
i=1

σ2
i x̂2

i +

(
n∑

i=1

βix̂i

)2

σ2
m ≥ µ∗

G̃
(R(q̂)).
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Then, the following inequality holds:

Z(q∗) =
n∑

i=1

{ᾱi + βir̄m + q∗ηi}xi(q∗)−Kθ

√√√√ n∑
i=1

σ2
i xi(q∗)2 +

(
n∑

i=1

βixi(q∗)

)2

σ2
m

≥
n∑

i=1

{ᾱi + βir̄m + q∗ηi}xi(q̂)−Kθ

√√√√ n∑
i=1

σ2
i xi(q̂)2 +

(
n∑

i=1

βixi(q̂)

)2

σ2
m

>
n∑

i=1

{ᾱi + βir̄m + q̂ηi} xi(q̂)−Kθ

√√√√ n∑
i=1

σ2
i xi(q̂)2 +

(
n∑

i=1

βixi(q̂)

)2

σ2
m

≥
n∑

i=1

{ᾱi + βir̄m + q̂ηi} x̂i(q)−Kθ

√√√√ n∑
i=1

σ2
i x̂i(q)2 +

(
n∑

i=1

βix̂i(q)

)2

σ2
m

= µG̃(R(q̂)) > µG̃(R(q∗)).

This contradicts the assumption Z(q∗) = µG̃(R(q∗)).

Assume that Z(q) = µG̃(R(q)) does not hold when (x(q), q) is equivalent to an optimal
solution (x∗, q∗) of problem (6). Then since (x(q), q) is an admissible solution of (7), it
holds

n∑
i=1

{ᾱi + βir̄m + qηi} xi(q)−Kθ

√√√√ n∑
i=1

σ2
i xi(q)2 +

(
n∑

i=1

βixi(q)

)2

σ2
m ≥ µG̃(R(q)).

Considering the assumption that Z(q) �= µG̃(R(q)),

Z(q) =
n∑

i=1

{ᾱi + βir̄m + qηi} xi(q)−Kθ

√√√√ n∑
i=1

σ2
i xi(q)2 +

(
n∑

i=1

βixi(q)

)2

σ2
m > µG̃(R(q)).

Then there exists an q̌ smaller than the q satisfying

n∑
i=1

{ᾱi + βir̄m + q̌ηi} xi(q)−Kθ

√√√√ n∑
i=1

σ2
i xi(q)2 +

(
n∑

i=1

βixi(q)

)2

σ2
m = µG̃(R(q̌)).

This means that (x(q), q̌) is also an admissible solution of problem (6), and it contradicts
the assumption that (x(q), q̌) is optimal to problem (6). The proof is complete. �

Theorem 2 Z(q) is a monotone decreasing function of q.
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Proof: Suppose that 0 < q1 < q2 < 1. Then it holds that

Z(q2) =
n∑

i=1

{ᾱi + βir̄m + q2ηi}xi(q2) + Kθ

√√√√ n∑
i=1

σ2
i xi(q2)2 +

(
n∑

i=1

βixi(q2)

)2

σ2
m

≥
n∑

i=1

{ᾱi + βir̄m + q2ηi}xi(q1) + Kθ

√√√√ n∑
i=1

σ2
i xi(q1)2 +

(
n∑

i=1

βixi(q1)

)2

σ2
m

>

n∑
i=1

{ᾱi + βir̄m + q1ηi}xi(q1) + Kθ

√√√√ n∑
i=1

σ2
i xi(q1)2 +

(
n∑

i=1

βixi(q1)

)2

σ2
m

= Z(q1).

The proof is complete. �

Using the above theorems, we construct an algorithm for solving problem (6).

Algorithm for solving fuzzy random portfolio selection problems

Step 1 Set q := R∗(1)(= 0) and solve problem (7). If Z(q) ≥ µ∗
G̃

(R(q)), then set x∗ := x(q)
and terminate. Otherwise, set q ← 0 and go to step 2.

Step 2 Set q := R∗(0)(= tR) and solve problem (7). If Z(q) ≥ µ∗
G̃
(R(q)), then terminate

(the given fuzzy goal is too tight and it is necessary to loose the fuzzy goal). Otherwise,
set q ← tR and go to step 3.

Step 3 If q − q < ε (a sufficiently small positive constant), then terminate. Otherwise, go
to step 4.

Step 4 Set qc := (q + q)/2 and solve problem (7). If Z(qc) = µ∗
G̃

(R(qc)), then set x∗ =:
x(qc) and terminate. Otherwise, go to step 5.

Step 5 If Z(qc) > µ∗
G̃

(R(qc)), then set qc := (qc + q)/2 and solve (7). Return to step 3.

Step 6 If Z(qc) < µ∗
G̃

(R(qc)), then set qc := (qc + q)/2 and solve (7). Return to step 3.

5 Model using a necessity measure In the previous section, we have considered a
model using a possibility measure, which is useful in making a decision with an optimistic
notion. This section devotes to investigating a model using a necessity measure and deals
with the following problem:

maximize h

subject to Pr
(
N ˜C(ω)x

(G̃) ≥ h
)
≥ θ,

n∑
i=1

xi = 1

0 ≤ xi ≤ γi, i = 1, . . . , n

(8)

where N ˜C(ω)x
denotes a necessity measure and

N ˜C(ω)x
(G̃) = inf

y
max

{
1− µ ˜C(ω)x

(y), µG̃(y)
}

.(9)
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Then, N ˜C(ω)x
(G̃) ≥ h implies

inf
y

max{1− µ ˜C(ω)x
(y), µG̃(y)}

⇐⇒ ∀y : 1− µ ˜C(ω)x
(y) < h⇒ µG̃(y) ≥ h

⇐⇒ ∀y :
n∑

i=1

{αi(ω) + βiγm(ω)− L∗(1− h)ξi} xi < y <

n∑
i=1

{αi(ω) + βiγi(ω) + R∗(1− h)ηi}xi

⇒ y ≥ µ∗
G̃

(h)

⇐⇒
n∑

i=1

{αi(ω) + βiγi(ω) + R∗(1− h)ηi}xi ≥ µ∗
G̃

(h).

Consequently, problem (8) is rewritten as

maximize h

subject to Pr
(
µ∗

G̃
(h) ≤

n∑
i=1

{αi(ω) + βirm(ω)− L∗(1− h)ξi} xi

)
≥ θ,

n∑
i=1

xi = 1

0 ≤ xi ≤ γi, i = 1, . . . , n.

(10)

Since

n∑
i=1

{βi(rm(ω)− r̄m) + αi(ω)− ᾱi} xi√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m

is a random variable having the standard normal distribution N(0, 1), problem (8) is
equivalent to the following deterministic problem:

maximize h

subject to
n∑

i=1

{ᾱi + βir̄m − L∗(1− h)ξi}xi −Kθ

√√√√ n∑
i=1

σ2
i x2

i +

(
n∑

i=1

βixi

)2

σ2
m ≥ µ∗

G̃
(h)

n∑
i=1

xi = 1, 0 ≤ xi ≤ γi, i = 1, . . . , n.

(11)

Apparently, problem (11) is solved by the solution algorithm described in the previous
section by simply replacing R∗(h) with −L∗(1− h).

6 Conclusion This paper has addressed a portfolio selection problem where the rate of
return on investment in single index model is represented with a fuzzy random variable. An
decision making model has been constructed on the basis of stochastic programming and
possibilistic programming. It has been shown that the problem based on the constructed
model, which includes both randomness and fuzziness, is transformed into the deterministic
equivalent problem. By using the fact that the deterministic problem can be regarded as
a convex programming problem including a parameter, a solution method for obtaining an



FUZZY RANDOM PORTFOLIO PROBLEMS 9

optimal solution of the problem has been proposed. In addition, a model using a necessity
measure has been considered, and it has been shown that the problem based on the model
using a necessity measure can be also solved by the similar method for the model using a
possibility measure.
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