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Abstract. Usually the celebrated Kantorovich inequality is regarded as a complemen-
tary inequality of the Jensen inequality. In this note, we point out that “monotonicity
and linearity” of integral imply the Kantorovich inequality. As a consequence, the Jensen
inequality is complementary to the Kantorovich inequality in this sense.

1. We first cite the following inequalities: Let 0 < m < M . Then∫
I

tdµ(t) ·
∫

I

1
t
dµ(t) ≤ (M +m)2

4Mm
(1)

for all probability measures µ on I = [m,M ], and

(Ax,x)(A−1x, x) ≤ (M +m)2

4Mm
(2)

for all positive invertible operators A on a Hilbert space H with 0 < m ≤ A ≤M and unit
vectors x ∈ H . Many authors gave proofs of the inequality, among them we here cite early
papers [8] and [14], for example. Note that (1) and (2) are equivalent and (2) is called the
Kantorovich inequality. Usually they are regarded as complementary inequalities of

1 ≤
∫

I

tdµ(t) ·
∫

I

1
t
dµ(t) and 1 ≤ (Ax,x)(A−1x, x)(3)

respectively, where µ (resp. A and x) is as in (1) (resp. (2)).
By the way, (3) is a special case of the Jensen inequality, i.e., if f is a real-valued

continuous convex function on I, then

f((Ax,x)) ≤ (f(A)x, x)(4)

for all selfadjoint operators A on a Hilbert space H whose spectra are included in I and
unit vectors x ∈ H . From the veiwpoint of (4), Mond-Pečarić and Ando considered, as
generalizations of the Kantorovich inequality, complementary inequalities of the Jensen
inequality, see [11] and also [13]. We here cite Furuta’s textbook [5] as a pertinent reference
to Kantorovich inequalities.

Reviewing the Kantorovich inequality, we shall point out in this note that the Jensen
inequality is complementary to the Kantorovich inequality. To do this, we shall set up two
elementary and simple axioms “monotonicity and linearity”, by which we approach to the
Kantorovich inequality and its generalizations. Incidentally such an idea can be seen in the
discussion of [17] by Takahasi, Tsukada, Tanahashi and Ogiwara.
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2. At the beginning of this section, we cite two simple properties on integral used below.
Let C(I) be the algebra of all real-valued continuous functions on I = [m,M ] and µ a
probability measure on I. Then

(E1) If f ≤ g for f, g ∈ C(I), then
∫

I
f(t)dµ(t) ≤ ∫

I
g(t)dµ(t).

(E2) If g is linear, i.e., g(t) = at + b for some a, b ∈ R and
∫

I tdµ(t) = s, then∫
I
g(t)dµ(t) = g(s).
It is clear that (E1) and (E2) are satisfied. In addition, they are true for a unital positive

linear functional on C(I), E[f ] = EA,x[f ] = (f(A)x, x) for f ∈ C(I), where A and x are as
in (2). That is, E[f ] satisfies

(E1) If f ≤ g for f, g ∈ C(I), then E[f ] ≤ E[g], and
(E2) If g is linear, i.e., g(t) = at+ b for some a, b ∈ R and E[t] = s, then E[g] = g(s).

They also hold for EA,φ(f) = φ(f(A)) where φ is an arbitrary state on the C∗-algebra
genetated by A and the identity. Anyway, (E1) and (E2) are quite trivial, but essential.

We here apply them to the Kantorovich inequality (1): Let L = L 1
t

be the function
corresponding to the segment connecting the points (m, 1

m ) and (M, 1
M ), and put s0 =∫

I tdµ(t). Then we have 1
t ≤ L(t) for t ∈ [m,M ] and s0 ∈ I. Hence (E1) and (E2) imply∫

I

tdµ(t) ·
∫

I

1
t
dµ(t) ≤

∫
I

tdµ(t) ·
∫

I

L(t)dµ(t) = L(s0)s0.

Since L(m)m = L(M)M = 1, the quadratic polynomial L(s)s attains its maximum at the
midpoint s = M+m

2 of m and M . Hence we have

max
s∈[m,M ]

L(s)s = L

(
M +m

2

)
M +m

2
=

1
m + 1

M

2
· M +m

2
=

(M +m)2

4Mm
,

so that we obtain (1).

In the above proof of (1), (E1) and (E2) worked under the following facts actually: The
function f(t) = 1

t satisfies
(i) f(t) ≤ Lf(t) for all t ∈ I, where Lf is the function corresponding to the segment

connecting the points (m, f(m)) and (M, f(M)), and
(ii) f(m)m = f(M)M .

The latter (ii) says that the function Lf (s)s has the same value at s = m,M . As a
consequence, we have the following estimation which is a generalization of (2).

Theorem 1. If f ∈ C(I) satisfies (i) and (ii) cited above and f(m) > f(M), then

(f(A)x, x)(Ax,x) ≤ (f(M) + f(m))(M +m)
4

for all selfadjoint operators A on a Hilbert space H with m ≤ A ≤ M and unit vectors
x ∈ H.

Proof. Since s0 = (Ax,x) ∈ [m,M ] and E[f ] = (f(A)x, x) ≤ E[Lf ] = Lf(s0) by (E2) ,
it follows from the assumption (ii) that

(f(A)x, x)(Ax,x) ≤ Lf (s0)s0 ≤ max
s∈[m,M ]

Lf(s)s

= Lf

(
M +m

2

)
M +m

2
=

(f(M) + f(m))(M +m)
4

.
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3. Next we apply them to generalized Kantorovich inequalities due to Furuta [4] and [7],
cf. also [2] and [1]. Following him [6], we denote by K(m,M, p) the generalized Kantorovich
constant for m < M and p ∈ R:

K(m,M, p) =
mMp −Mmp

(p− 1)(M −m)

{
(p− 1)(Mp −mp)
p(mMp −Mmp)

}p

.

We note that K(m,M,−1) = K(m,M, 2) = (M+m)2

4Mm is the original Kantorovich constant.

Theorem 2. Let A be a positive operator on a Hilbert space H with 0 < m ≤ A ≤M , and
let x a unit vector in H. If p �∈ [0, 1), then

(Apx, x) ≤ K(m,M, p)(Ax,x)p.

On the other hand, if p ∈ (0, 1), then

(Apx, x) ≥ K(m,M, p)(Ax,x)p.

Proof. It is similar to that of the Kantorovich inequality. We put E[f ] = (f(A)x, x) for
f ∈ C(I). Then it satisfies (E1) and (E2) and in particular s0 = E[t] = (Ax,x) ∈ [m,M ].
Put Lp = Ltp , i.e., the linear function connecting the points (m,mp) and (M,Mp), or
Lp(t) = µpt+ νp where µp = Mp−mp

M−m and νp = Mpm−mpM
M−m .

If p �∈ [0, 1), then tp ≤ Lp(t) for t ∈ [m,M ] and so

E[tp]E[t]−p ≤ E[Lp]E[t]−p = Lp(s0)s
−p
0

by (E1) and (E2). Since pνp

(1−p)µp
is a unique solution of d

dsLp(s)s−p = 0 and contained in
[m,M ], we have

max
s∈[m,M ]

Lp(s)s−p = Lp

(
pνp

(1 − p)µp

) (
(1 − p)µp

pνp

)p

= K(m,M, p),

that is, we obtain the former.
Next, if p ∈ (0, 1), then

E[tp]E[t]−p ≥ E[Lp]E[t]−p = Lp(s0)s
−p
0

for s0 = E[t] ∈ [m,M ] by (E1) and (E2). Since

min
s∈[m,M ]

Lp(s)s−p = K(m,M, p),

we obtain the latter.

4. The following theorem is proposed in [10] as a generalization of the Mond-Pečarić
inequality [11] which is a typical application of the Mond-Pečarić method [15].

Theorem 3. Let Aj be positive operators on a Hilbert space H with 0 < m ≤ Aj ≤M (j =
1, 2, · · · , k) and x1, · · · , xk vectors in H with

∑ ‖xj‖2 = 1. Let f and g be in C(I) where
I = [m,M ], and U and V intervals such that U ⊇ f(I) and V ⊇ g(I). If f is convex and a
real-valued function F (u, v) on U × V is non-decreasing in u, then

F (
∑

(f(Aj)xj , xj), g(
∑

(Ajxj , xj))) ≤ max
t∈I

F (µf (t−m) + f(m), g(t)),

where µf = f(M)−f(m)
M−m .
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Proof. Put L = Lf , that is, L(t) = µf t + νf where νf = Mf(m)−mf(M)
M−m . Since E[f ] =∑

(f(Aj)xj , xj) satisfies (E1) and (E2), we have E[f ] ≤ E[L] = L(s0) = µfs0 + νf where
s0 = E[t] =

∑
(Ajxj , xj) ∈ I. Therefore it follows that

F (
∑

(f(Aj)xj , xj), g(
∑

(Ajxj , xj))) = F (E[f ], g(E[t])

≤ F (µfs0 + νf , g(s0)) ≤ max
t∈I

F (µf (t−m) + f(m), g(t)),

because µfs0 + νf = µf (s0 −m) + f(m).

Remark 4. In Theorem 2, If F (u, v) is non-increasing, then we have the following inequal-
ity with reverse order to the above, [10]:

F (
∑

(f(Aj)xj , xj), g(
∑

(Ajxj , xj))) ≥ min
t∈I

F (µf (t−m) + f(m), g(t)).

5. It is known that the Kantorovich inequality (2) is generalized as follows: If Φ is a
unital positive linear map between C∗-algebras, then

Φ(A−1) ≤ (M +m)2

4Mm
Φ(A)−1(5)

for all positive invertible elements A with 0 < m ≤ A ≤M , see [12] and also [13]. Inciden-
tally we note that it follows from (2) and (3) for states, i.e.,

1 ≤ φ(A)φ(A−1) ≤ (M +m)2

4Mm
(6)

for all positive invertible operators A with 0 < m ≤ A ≤M and states φ on the C∗-algebra
generated by A, see [13]. Defining φ(X) = ψ(Φ(X)) for an arbitrary state ψ, it follows from
(6) that

ψ(Φ(A−1)) = φ(A−1) ≤ (M +m)2

4Mm
φ(A)−1 =

(M +m)2

4Mm
ψ(Φ(A))−1

≤ (M +m)2

4Mm
ψ(Φ(A)−1)

by the Jensen inequality ψ(X)−1 ≤ ψ(X−1) for X > 0. Hence (5) is proved.

As in the proof of (5), Theorem 2 can be generalized to positive linear maps between
C∗-algebras, in which we need the Hölder-McCarthy inequality: If A is a positive operator
and ψ is a state on a C∗-algebra containing A, then

ψ(A)p ≤ ψ(Ap) (p �∈ [0, 1]) and ψ(A)p ≥ ψ(Ap) (p ∈ [0, 1])

Corollary 5. Let A be a positive operator in a C∗-algebra with 0 < m ≤ A ≤ M and Φ a
unital positive linear map. If p �∈ [0, 1), then

Φ(Ap) ≤ K(m,M, p)Φ(A)p.

On the other hand, if p ∈ (0, 1), then

Φ(Ap) ≥ K(m,M, p)Φ(A)p.

In addition, we point out that (5) implies the result [12; Theorem 1] which is a variant
of (5): If Φ is a unital positive linear map betwee C∗-algebras, then

Φ(A) � Φ(A−1) ≤ M +m

2
√
Mm



JENSEN INEQUALITY IS A COMPLEMENT TO KANTOROVICH INEQUALITY 95

for all positive invertible elements A with 0 < m ≤ A ≤M , where � is the geometric mean
in the sense of Kubo-Ando [9], i.e., for positive invertible operators A and B,

A � B = A
1
2 (A

−1
2 BA

−1
2 )

1
2A

1
2 .

As a matter of fact, the monotonicity of the geometric mean implies that

Φ(A) � Φ(A−1) ≤ Φ(A) �
(M +m)2

4Mm
Φ(A)−1 =

M +m

2
√
Mm

because Φ(A) and Φ(A)−1 commute.
As well-known, the geometric mean � is generalized to the α-geometric mean �α; for

positive invertible operators A and B

A �α B = A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 .

We now point out that our previous result [2;Theorem 4] is a corollary of Theorem 2. As a
matter of fact, it can be expressed by the following simpler form, by which it could be un-
derstood as a noncommutative version of the Pólya-Szegö inequality, see Greub-Rheinboldt
[8, Theorem 2] and also [3, Theorem 3]:

Theorem 6. Let A and B be positive operators on a Hilbert space H with 0 < m1 ≤ A ≤
M1 and 0 < m2 ≤ B ≤M2. Then for α ∈ [0, 1] and x ∈ H

((B �α A)x, x) ≤ (Ax,x)α(Bx, x)1−α ≤ Kα((B �α A)x, x),

where K = K((m1
M2

)α, (M1
m2

)α, 1
α ).

To prove this, we have to modify Theorem 2: If 0 < m ≤ X ≤M and p > 1, then

(Xy, y) ≤ (Xpy, y)
1
p ‖y‖2(1− 1

p ) ≤ K(m,M, p)
1
p (Xy, y)

for all y ∈ H . We apply it by taking X = (B
−1
2 AB

−1
2 )α, y = B

1
2x and α = 1

p . Then

(Xpy, y) = (Ax,x), ‖y‖2 = (Bx, x) and (Xy, y) = ((B �α A)x, x)

Finally the constant K = K((m1
M2

)α, (M1
m2

)α, 1
α ) follows from

m1

M2
≤ m1B

−1 ≤ B
−1
2 AB

−1
2 ≤M1B

−1 ≤ M1

m2
.

6. Related to (5), we recall a conditional expectation introduced by Umegaki [18] and
[19], which is an important tool to study von Neumann algebras. One of its simple examples
is the diagonalization due to von Neumann. Let D be the diagonalization of the matrix
algebra M2(C) of all 2 × 2 matrices onto the diagonal subalgebra. Then D[A]D[A−1] is
a scalar multiple of the identity matrix, say a scalar simply. Thus we may consider the
extremal case D[A]D[A−1] = (M+m)2

4Mm , where {m, M} are propervalues of A. Namely we
have the following.

Remark 7. Let A ∈M2(C) be a positive invertible matrix with the propervalues {m, M}.
Then D[A] is a scalar if and only if

D[A]D[A−1] =
(M +m)2

4Mm
.(7)

In fact, let A =
(
a b
b∗ c

)
where a, c > 0 and |A| = ac− |b|2 > 0. Then

D[A]D[A−1] =
ac

|A| and
(M +m)2

4Mm
=

(a+ c)2

4|A| .
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Therefore (7) holds if and only if

ac

|A| =
(a+ c)2

4|A| ,

i.e., a = c by |A| > 0, or equivalently, D[A] =
(
a 0
0 a

)
.

More precisely, such a matrix A can be expressed as

A =
(

M+m
2

M−m
2 eiθ

M−m
2 e−iθ M+m

2

)

for some θ ∈ R. As a matter of fact, since |A| = Mm and (2a)2 = (M + m)2, we have
a = c = M+m

2 . Moreover |b| = M−m
2 follows from (M+m

2 )2 − |b|2 = a2 − |b|2 = |A| = Mm.

7. Finally we pose a proof along with Rennie [16] to the fact: If 0 < m ≤ A ≤M , then

φ(A2) ≤ (M +m)2

4Mm
φ(A)2

for any states φ of a C∗-algebra containing A. Actually, since 0 ≥ (A − m)(A −M), we
have (M +m)A ≥ A2 +Mm, so that

M +m

2
φ(A) ≥ φ(A2) +Mm

2
≥ [φ(A2)Mm]

1
2 .

Hence we have the conclusion.
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preperation.
[16] B.Rennie, An inequality which includes that of Kantorovich, Amer. Math. Monthly, 70(1963), 982.



JENSEN INEQUALITY IS A COMPLEMENT TO KANTOROVICH INEQUALITY 97

[17] S.-E.Takahasi, M.Tsukada, K.Tanahashi and T.Ogiwara, An inverse type of Jensen’s inequality,
Math. Japon., 50(1999), 85-91.

[18] H.Umegaki, Conditional expectation in an operator algebra, II, Tohoku Math. J., 8(1956), 86-100.
[19] H.Umegaki, Conditional expectation in an operator algebra, III, Kodai Math. Sem. Rep., 11(1959),

51-64.

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-

8582, Japan.

E-mail address: mfujii@@cc.osaka-kyoiku.ac.jp


