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Abstract. A pattern is a finite string consisting of constant symbols and variables. A
pattern is regular if each variable appears in the pattern at most once. The language
generated by a pattern is the set of constant strings obtained from the pattern by
substituting nonempty strings for variables in the pattern. This paper deals with
inclusion problems of unions or intersections of languages defined by regular patterns
and co-regular patterns. The semantics of a co-pattern is defined by a particular subset
of the complement of the original pattern language. We show the equivalence between
the semantic inclusion and the syntactic inclusion.

1 Introduction. A pattern is a nonempty finite string consisting of constant symbols
and variables. A pattern is regular if each variable appears in the pattern at most once.
The language L(p) generated by a pattern p is the set of constant strings obtained from
p by substituting nonempty constant strings for variables in p. The inclusion problem
for pattern languages is shown to be undecidable (Jiang et al.[6]) and the membership
problem is NP complete (Angluin [2]), while both problems for regular pattern languages
are polynomial time computable (Shinohara [13]). The class PL of pattern languages has
been introduced by Angluin [2] as a learnable class from positive examples in the Gold’s
framework [5]. Pattern languages merely are not used for applications because of their
simplicity. From a practical point of view, various kinds of languages generated by patterns
have been investigated in Gold’s framework, PAC learning and so on. Languages generated
by decision trees over regular patterns are paid much attention in some practical applications
such as genome informatics (Arikawa et al.[3]).

The previous paper [17] due to the present author dealt with learning problem of decision
trees over regular patterns with bounded depth from positive example. For each regular
pattern p, we introduced a particular type of string pc called co-pattern of p, and defined
its semantics as the subset of the complement L(p)c consisting of strings with lengths more
than or equal to that of p. In terms of languages L(p)s and L(pc)s, we gave expressions
for languages generated by decision trees, and showed the learnability of such decision
trees from positive examples. In designing an efficient learning algorithm for decision trees
over regular patterns, it is an important key to solve the inclusion problem for unions or
intersections of regular pattern languages and co-regular pattern languages.

In the present paper, we investigate such inclusion problems. We introduce two kinds
of partially ordered syntactic relations on generalizations and instances of finite sets of
patterns, and show the equivalence between the semantic inclusion and the syntactic inclu-
sion, under some assumption of the cardinality of the alphabet. We obtain some results
about relations between the semantic inclusion L(π1)∩L(π2) ⊆ L(τ1)∪L(τ2) and the syn-
tactic inclusion for the pairs (π1, π2) and (τ1, τ2), where π1, π2, τ1 and τ2 are patterns or
co-patterns.
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2 Regular Pattern and Co-Regular Pattern Languages. Let Σ be a fixed alphabet
of constant symbols and let X = {x, y, z, x1, x2, · · ·} be a countable set of variables. Assume
that Σ∩X = φ. For a positive integer l, Σl denotes the set of strings over Σ with length l.
We define Σ≤l =

⋃l
i=1Σ

i and Σ[l1,l2] =
⋃l2

i=l1
Σi for positive integers l, l1 and l2 with l1 ≤ l2.

Similarly, we also define Σ<l and Σ≥l for a positive integer l. By X+, we denote the set of
strings consisting of variables only. We put χl = x1x2 · · ·xl for distinct variables xis and
for a positive integer l.

For a finite set S, �S denotes the number of elements in S.
A pattern over Σ is a nonempty finite string over Σ ∪ X . A pattern p is regular if each

variable occurs at most once in p. For instance, p = axbyz and q = axbyy are patterns over
{a, b, c}, and p is regular but not q. And the string χl is also a regular pattern with length
l. By RP, we denote the class of regular patterns. In what follows, we confine ourselves to
regular patterns, and call a regular pattern a pattern simply. The length, denoted by lp, of
a pattern p is the number of symbols in p.

A substitution is a homomorphism from patterns to patterns that maps each constant
symbol in Σ to itself. For a substitution θ, we denote the image of p by pθ. We assume
that xθ is not empty for any variable x.

A pattern p is an instance of a pattern q (or q is a generalization of p), denoted by p � q,
if qθ = p for some substitution θ. For a pattern p, we define the language L(p) = {w ∈
Σ+ | w � p}. Clearly p � q implies L(p) ⊆ L(q) and lq ≤ lp. A pattern p is equivalent to
a pattern q, denoted by p ≡ q, if p � q and q � p. If p ≡ q, these patterns are identical
except naming variables, and thus we identify these patterns in this paper.

Let P be a set of patterns. A pattern q is an instance of P , if q � p for any p ∈ P .
Similarly, q is a generalization of P , if p � q for any p ∈ P . A pattern p is a maximal
instance (mi for short) of P , if p is an instance of P and there is no instance q(�= p) of
P such that q � p. Similarly, we define the notions of a minimal generalization (mg for
short). By mi P (resp., mg P ), we denote the sets of maximal instances (resp., minimal
generalizations) of P .

Lemma 2.1 (Mukouchi [10]) The following two statements are valid:
(1) If p is an instance of a set P of patterns, then there is a maximal instance q ∈mi P

such that p � q.
(2) mi {p1, p2, · · · , pn} ⊆ ⋃

p∈mi{p1,p2,···,pn−1} mi {p, pn}.

Lemma 2.2 Let P be a nonempty finite set of patterns. Then
⋂
p∈P

L(p) =
⋃

r∈miP

L(r).

For a pattern p and a positive integer n, we consider the set mi {p, χn}. If lp ≤ n then
mi {p, χn} = {p}. Otherwise it is given by the set of patterns with just length n obtained
from p by substituting strings consisting of distinct variables for variables in p. For example,
let p = x1ax2b. Then we have mi {p, χn} = {x1ax2b} for n = 1, 2, 3, 4. On the other hand,
mi {p, χ5} = {x1x2ax3b, x1ax2x3b} holds.

For a pattern p and a positive integer i, we introduce a particular finite subset of L(p)
as follows:

Si(p) = L(p) ∩ Σ≤i×lp .

Clearly the set S1(p) is the set of shortest strings of L(p).
For a set P of patterns, we put L(P ) =

⋃
p∈P L(p) and Si(P ) =

⋃
p∈P Si(p) for each

positive integer i.
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For nonempty finite sets P and Q of patterns, we introduce a relation 	 defined as
follows:

P 	 Q ⇐⇒ for any pattern p ∈ P , there is a pattern q ∈ Q such that p � q.

Theorem 2.3 (Sato et al.[11]) Let k be a positive integer and suppose �Σ ≥ 2k + 1. Let
P be a nonempty finite set of patterns and let Q be a set of k patterns. Then the following
equivalences are valid:

S1(P ) ⊆ L(Q) ⇐⇒ L(P ) ⊆ L(Q) ⇐⇒ P 	 Q.

Theorem 2.4 (Sato et al.[11]) Suppose �Σ ≥ 4. Let p, q1, q2 be patterns. Then the fol-
lowing equivalence is valid:

L(p) ⊆ L(q1) ∪ L(q2) ⇐⇒ p � q1 or p � q2.

Theorem 2.5 (Sato and Mukouchi [12]) Let p, q ∈ RP. Then for any pattern r ∈mi
{p, q},

max{lp, lq} ≤ lr ≤ lp + lq.

By the above, for any pattern r ∈mi P , the following inequality is valid:

lr ≤
∑
p∈P

lp.

By Lemma 2.2 and Theorem 2.3, it follows that:

Theorem 2.6 Let k be a positive integer and suppose �Σ ≥ 2k + 1. Let P be a nonempty
finite set of patterns and let Q be a set of k patterns. Then the following equivalences are
valid:

Si(mi P ) ⊆ L(Q) ⇐⇒
⋂
p∈P

L(p) ⊆ L(Q) ⇐⇒ mi P 	 Q,

where i is the least integer such that i × l ≥ ∑
p∈P lp with l = max{lp | p ∈ P}.

Lemma 2.7 Suppose �Σ ≥ k + 1. Let l be a positive integer and let pi ∈ RP with lpi ≤ l
for i = 1, 2, · · · , k. If Σl ⊆ L(p1) ∪ · · · ∪ L(pk), then pi ∈ X+ holds for some i.

Proof. We assume that Σl ⊆ L(p1) ∪ · · · ∪ L(pk), but pi �∈ X+ for any i. Then for each
i, pi contains at least one constant symbol, say ai ∈ Σ. Since �Σ ≥ k + 1, there exists a
symbol b ∈ Σ different from ai (i = 1, · · · , k). Consider the string w = b · · · b with length l.
As easily seen, w ∈ Σl but w �∈ L(p1) ∪ · · · ∪ L(pk). It is a contradiction.

Hereafter, we assume that �Σ ≥ 4. Thus by Theorem 2.3 and Theorem 2.4, S1(p) ⊆ L(q)
iff p � q, and L(p) ⊆ L(q1) ∪ L(q2) iff p � q1 or p � q2.

For each pattern p �∈ X+, we introduce a particular type of string called a co-pattern of
p, denoted by pc. We define the semantics (language) of a co-pattern pc as follows:

L(pc) = L(p)c ∩ Σ≥lp ,

where L(p)c is the complement of the language L(p), i.e., L(p)c = Σ+ − L(p). By co-RP,
we denote the set of co-patterns, and put JRP = RP ∪ co-RP. For a co-pattern pc of a
pattern p, let us define its length lpc as the length lp of p, that is, we put lpc = lp.
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Lemma 2.8 Let L1 and L2 be languages, and let p, q ∈ RP. Then the following equiva-
lences are valid:

(1) L1 ∩ L(pc) ⊆ L2 ⇐⇒ L1 ∩ Σ≥lp ⊆ L2 ∪ L(p),
(2) L1 ⊆ L2 ∪ L(qc) ⇐⇒ L1 ∩ (L(q) ∪ Σ<lq) ⊆ L2.

Proof. By the definition of L(pc), the assertion (1) can be easily proved. We only prove that
the assertion (2) is valid. The implication ⇒ is clear from the definition of L(pc). Assume
L1 ∩ (L(q) ∪Σ<lq) ⊆ L2. Let w ∈ L1. By our assumption, clearly if w ∈ L(q) then w ∈ L2.
Otherwise w ∈ L(qc) or w ∈ Σ<lq . By our assumption, the latter yields w ∈ L2. In any
case, w ∈ L2 ∪ L(qc) holds. Hence the assertion (2) is valid.

For a co-pattern p and for a positive integer i, we define

Si(pc) = L(pc) ∩ Σ≤i×lp .

Clearly Si(p) ∪ Si(pc) = Σ[lp,i×lp] and Si(p) ∩ Si(pc) = φ.

Lemma 2.9 Let p, q ∈ RP. Then the following equivalences are valid:
(1) S2(p) ⊆ L(qc) ⇐⇒ L(p) ⊆ L(qc) ⇐⇒ mi {p, q} = φ, lq ≤ lp,
(2) S1(pc) ⊆ L(q) ⇐⇒ L(pc) ⊆ L(q) ⇐⇒ q ∈ X+, lq ≤ lp,
(3) S1(pc) ⊆ L(qc) ⇐⇒ L(pc) ⊆ L(qc) ⇐⇒ mi {q, χlp} 	 {p}, lq ≤ lp.

Proof. We only prove that the assertion (1) is valid. The other assertions can be proved
similarly.

Assume that mi {p, q} = φ and lq ≤ lp. Then by Lemma 2.2, the former implies
L(p) ∩ L(q) = φ. By lq ≤ lp, it means that L(p) ⊆ L(qc).

Clearly L(p) ⊆ L(qc) implies S2(p) ⊆ L(qc).
Now we prove S2(p) ⊆ L(qc) implies mi {p, q} = φ and lq ≤ lp. Clearly lq ≤ lp holds. If

there is a pattern r ∈mi {p, q}, then by Theorem 2.5, lr ≤ 2× lp holds. By the definition of
S2, it implies S1(r) ⊆ S2(p), and so S1(r) ⊆ L(qc). It contradicts that r � q.

3 Inclusion Problem (1). This section considers the inclusion problem of the form

L(π) ⊆ L(τ1) ∪ L(τ2),

where π, τ1, τ2 ∈ JRP.

Theorem 3.1 Let π, τ1, τ2 ∈ JRP with lτ1 ≤ lτ2 . If 2×lπ < lτ2 holds for a case of π ∈ RP
and τ1 ∈ co-RP, and lπ < lτ2 for the other cases, then the following equivalence is valid:

L(π) ⊆ L(τ1) ∪ L(τ2) ⇐⇒ L(π) ⊆ L(τ1).

Proof. We prove only for the following two cases. The other cases can be proved similarly.
A case of (π, τ1, τ2) = (p, q1, τ2). Assume that lp < lτ2 and lq1 ≤ lτ2 . If L(p) ⊆

L(q1) ∪ L(τ2), then S1(p) ⊆ L(q1) ∪ L(τ2). By lp < lτ2 , it follows that S1(p) ⊆ L(q1). By
Theorem 2.3, it leads to L(p) ⊆ L(q1).

A case of (π, τ1, τ2) = (p, qc
1, τ2). Assume that 2 × lp < lτ2 and lq1 ≤ lτ2 . If L(p) ⊆

L(qc
1) ∪ L(τ2), then S2(p) ⊆ L(qc

1) ∪ L(τ2). By 2 × lp < lτ2 and the definition of S2(p),
S2(p)∩L(τ2) = φ, and thus S2(p) ⊆ L(qc

1). By Lemma 2.9(1), it leads to L(p) ⊆ L(qc
1).

On the other hand, the conditions for the equivalence in the theorem above is not valid,
then the following theorem holds:
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Theorem 3.2 Let π, τ1, τ2 ∈ JRP with lτ1 ≤ lτ2 . If 2 × lπ ≥ lτ2 holds for a case of
π ∈ RP and τ1 ∈ co-RP, and lπ ≥ lτ2 for the other cases, then the following statements
are equivalent:

(1) S4(π) ⊆ L(τ1) ∪ L(τ2), (2) L(π) ⊆ L(τ1) ∪ L(τ2),
(3) These patterns satisfy the syntactic inclusions shown in Table 1.

π τ1 τ2 Syntactic Inclusions
q1 q2 p � q1 or p � q2

p q1 qc
2 mi {p, q2} 	 {q1}

qc
1 q2 mi {p, q1} 	 {q2}, lq1 ≤ lp

qc
1 qc

2 mi {p, q1, q2} = φ, lq1 ≤ lp
q1 q2 q1 ∈ X+ or q2 ∈ X+

pc q1 qc
2 mi {q2, χlp} 	 {q1, p}

qc
1 q2 mi {q1, χlp} 	 {q2, p}

qc
1 qc

2 mi {q1, q2, χlp} 	 {p}

Table 1: Syntactic Inclusions

The proof will be shown by Theorem 2.3 for a case of π, τ1, τ2 ∈ RP and six lemmas for
the other cases given below.

Lemma 3.3 Let lq2 ≤ lp. Then the following statements are equivalent:
(1) S2(p) ⊆ L(q1) ∪ L(qc

2), (2) L(p) ⊆ L(q1) ∪ L(qc
2), (3) mi {p, q2} 	 {q1}.

Proof. By the definition of S2(p), clearly the assertion (2) implies the assertion (1). Since
the assertion (3) implies L(p) ∩ L(q2) ⊆ L(q1), by the assumption of lq2 ≤ lp, it gives the
assertion (2).

Now we prove that (1) implies (3). We assume that the assertion (1) is valid. Then by
lq2 ≤ lp, the assertion (1) implies that S2(p)∩L(q2) ⊆ L(q1). Let r be an arbitrary pattern
in mi {p, q2}. Then by lq2 ≤ lp and Theorem 2.5, lr ≤ lp + lq2 ≤ 2× lp holds. Hence we have
S1(r) ⊆ S2(p). It implies together with r � q2 that S1(r) ⊆ S2(p)∩L(q2). By the assertion
(1), it means that S1(r) ⊆ L(q1), i.e., r � q1. Therefore the assertion (3) is valid.

Lemma 3.4 Let lq1 ≤ lq2 . Then the following statements are equivalent:
(1) S2(p) ⊆ L(qc

1) ∪ L(q2), (2) L(p) ⊆ L(qc
1) ∪ L(q2), (3) mi {p, q1} 	 {q2}, lq1 ≤ lp.

Proof. By Lemma 3.4, (3) implies (1) and (2).
Now we prove that (1) implies (3). We assume that the assertion (1) is valid. Then,

as easily seen, min{lq1 , lq2} ≤ lp holds. This implies lq1 ≤ lp, because lq1 ≤ lq2 by the
assumption. Thus, by Lemma 3.4, the assertion (3) is valid.

Similarly, we can show that (2) implies (3).

Lemma 3.5 Let lq1 ≤ lq2 ≤ 2 × lp. Then the following statements are equivalent:
(1) S4(p) ⊆ L(qc

1) ∪ L(qc
2), (2) L(p) ⊆ L(qc

1) ∪ L(qc
2), (3) mi {p, q1, q2} = φ, lq1 ≤ lp.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then clearly lq1 ≤ lp holds. Suppose there is a

pattern r ∈mi {p, q1, q2}. By lq1 ≤ lq2 ≤ 2× lp and Theorem 2.5, lr ≤ lp + lq1 + lq2 ≤ 4× lp
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holds. Hence by the definition of S4(p), we have S1(r) ⊆ S4(p). By the assertion (1), it
implies S1(r) ⊆ L(qc

1) ∪ L(qc
2). It is a contradiction because of r � q1 and r � q2.

Lemma 3.6 Let lq1 ≤ lp and lq2 ≤ lp. Then the following statements are equivalent:
(1) S1(pc) ⊆ L(q1) ∪ L(q2), (2) L(pc) ⊆ L(q1) ∪ L(q2), (3) q1 ∈ X+ or q2 ∈ X+.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then we have Σlp ⊆ L(p) ∪ L(q1) ∪ L(q2). By

Lemma 2.7 and p �∈ X+, the assertion (3) is valid.

Lemma 3.7 Let lq2 ≤ lp. Then the following statements are equivalent:
(1) S1(pc) ⊆ L(q1) ∪ L(qc

2), (2) L(pc) ⊆ L(q1) ∪ L(qc
2), (3) mi {q2, χlp} 	 {p, q1}.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by lq2 ≤ lp, the assertion (1) implies that

Σlp ∩L(q2) ⊆ L(p)∪L(q1). Suppose that there is a pattern r ∈mi {q2, χlp} such that r �� p
and r �� q1. Then by lq2 ≤ lp, lr = lp holds. It means that S1(r) ⊆ L(p) ∪ L(q1). By
Theorem 2.3, it follows that r � p or r � q1, and a contradiction.

Lemma 3.8 Let lq1 ≤ lp and lq2 ≤ lp. Then the following statements are equivalent:
(1) S2(pc) ⊆ L(qc

1) ∪ L(qc
2), (2) L(pc) ⊆ L(qc

1) ∪ L(qc
2), (3) mi {q1, q2, χlp} 	 {p}.

Proof. We only show that (1)implies (3).
Assume that the assertion (1) is valid. Then by lq1 ≤ lp and lq2 ≤ lp, the assertion

(1) implies that Σ[lp,2×lp] ∩ L(q1) ∩ L(q2) ⊆ L(p). Suppose that there is a pattern r ∈mi
{q1, q2, χlp} such that r �� p. By lq1 ≤ lp and lq2 ≤ lp, r ∈mi {q1, q2} or r ∈mi {r′, χlp} holds
for some r′ ∈mi {q1, q2}. Hence by Theorem 2.5, we have lr ≤ lq1 + lq2 ≤ 2 × lp. It means
that S1(r) ⊆ Σ[lp,2×lp] ∩ L(q1) ∩ L(q2). By the assertion (1), it implies that S1(r) ⊆ L(p),
and thus r � p. It is a contradiction.

Let π1 and π2 be regular patterns or co-regular patterns. We put

Si(π1, π2) = Si(π1) ∪ Si(π2) (i ≥ 1).

Then by Theorem 3.2, the next results immediately follow:

Corollary 3.9 Let π1, π2, τ1, τ2 ∈ JRP. Then the following two statements are equivalent:
(1) S4(π1, π2) ⊆ L(τ1) ∪ L(τ2), (2) L(π1) ∪ L(π2) ⊆ L(τ1) ∪ L(τ2).

4 Inclusion Problem (2). This section considers the inclusion problem of the form

L(π1) ∩ L(π2) ⊆ L(τ),

where π1, π2, τ ∈ JRP.
We first consider the length of shortest strings in L(π1) ∩ L(π2). For π1, π2 ∈ RP, say

π1 = p1 and π2 = p2, the length of shortest strings in the language L(p1) ∩ L(p2) is given
by lp1,p2 , where lp1,p2 denotes the length of shortest patterns in mi {p1, p2}. On the other
hand, if π1 ∈ co-RP or π2 ∈ co-RP, then the length of shortest strings in L(π1) ∩ L(π2) is
given by max{lπ1 , lπ2}.
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Then we introduce particular finite sets of strings as follows:

Ti(π1, π2) =
{

Si(mi {π1, π2}), if π1, π2 ∈ RP,
L(π1) ∩ L(π2) ∩ Σ≤i×l, otherwise,

where i ≥ 1, and l = max{lπ1 , lπ2}.
By the above definition, for any language L, we have the followings:

Ti(p1, p
c
2) ⊆ L ⇐⇒ Si(mi {p1, χlp2

}) ⊆ L(p2) ∪ L,

Ti(pc
1, p

c
2) ⊆ L ⇐⇒ Σ[l,i×l] ⊆ L(p1) ∪ L(p2) ∪ L.

For patterns p1, · · · , pk and a positive integer l, mi<l {p1, · · · , pk} denotes the set of
patterns in mi {p1, · · · , pk} with length less than l. Clearly if l < max{lp1 , · · · , lpk

}, then
mi<l {p1, · · · , pk} = φ. By definition, r ∈mi<l {p1, · · · , pk} is equivalent to the relation
L(r) ∩ Σ<l ⊆ L(p1) ∩ · · · ∩ L(pk) ∩ Σ<l.

Theorem 4.1 Let π1, π2, τ ∈ JRP. Then the following statements are equivalent:
(1) T2(π1, π2) ⊆ L(τ), (2) L(π1) ∩ L(π2) ⊆ L(τ),
(3) These patterns satisfy syntactic conditions in Table 2, where l = max{lp1 , lp2}.

π1 π2 τ Syntactic Inclusions
p1 p2 mi {p1, p2} 	 {q}
p1 pc

2 q mi {p1, χlp2
} 	 {p2, q}

pc
1 pc

2 q ∈ X+, lq ≤ l
p1 p2 mi {p1, p2, q} = φ, lq ≤ lp1,p2

p1 pc
2 qc mi {p1, q, χlp2

} 	 {p2}
pc
1 pc

2 mi {q, χl} 	 {p1, p2}

Table 2: Syntactic Inclusions

The proof will be shown by Theorem 2.6 and lemmas given below.

Lemma 4.2 The following statements are equivalent:
(1) T1(p1, p

c
2) ⊆ L(q), (2) L(p1) ∩ L(pc

2) ⊆ L(q), (3) mi {p1, χlp2
} 	 {p2, q}.

Proof. If p1 � p2, then clearly T1(p1, p
c
2) = L(p1)∩L(pc

2)∩Σlp1 = φ and mi {p1, χlp2
} = {p1}

hold. Thus our lemma is valid. We only show that (1) implies (3) under the assumption
p1 �� p2. We assume that T1(p1, p

c
2) ⊆ L(q), i.e., S1(mi {p1, χlp2

}) ⊆ L(p2) ∪ L(q). Then
for every r ∈mi {p1, χlp2

}, we have S1(r) ⊆ L(p2) ∪ L(q), and so r � p2 or r � q. Thus the
assertion (3) is valid.

Lemma 4.3 Let lp1 ≤ lp2 . Then the following statements are equivalent:
(1) T1(pc

1, p
c
2) ⊆ L(q), (2) L(pc

1) ∩ L(pc
2) ⊆ L(q), (3) q ∈ X+, lq ≤ lp2 .

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by lp1 ≤ lp2 , we have lq ≤ lp2 and Σlp2 ⊆

L(p1) ∪ L(p2) ∪ L(q). Therefore by Lemma 2.7 and Σ ≥ 4, we get q ∈ X+.
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Lemma 4.4 Let lp1 ≤ lp2 . Then the following statements are equivalent:
(1) T2(p1, p2) ⊆ L(qc), (2) L(p1) ∩ L(p2) ⊆ L(qc), (3) mi {p1, p2, q} = φ, lq ≤ lp1,p2 .

Proof. We only show that (1) implies (3).
We assume that T2(p1, p2) = S2(mi {p1, p2}) ⊆ L(qc). Then clearly lq ≤ lp1,p2 holds.

Suppose that mi {p1, p2, q} �= φ, i.e., there is a pattern r ∈mi {p1, p2, q}. Then by Lemma
2.1, there is a pattern r′ ∈mi {p1, p2} such that r ∈mi {r′, q}. Since lq ≤ lp1,p2 and lp1,p2 ≤
lr′ , we have lq ≤ lr′ . By r ∈mi {r′, q}, lq ≤ lr′ and Theorem 2.5, we have lr ≤ lr′+lq ≤ 2×lr′ .
On the other hand, by the assertion (1), we have S2(r′) ⊆ T2(p1, p2) ⊆ L(qc). It means
that S1(r) ⊆ S2(r′). Hence we have S1(r) ⊆ L(qc). It contradicts that r � q.

Lemma 4.5 The following statements are equivalent:
(1) T2(p1, p

c
2) ⊆ L(qc), (2) L(p1) ∩ L(pc

2) ⊆ L(qc), (3) mi {p1, q, χlp2
} 	 {p2}.

Proof. We only show that (1) implies (3).
We assume that the assertion (1) is valid, but there is a pattern r ∈mi {p1, q, χlp2

} such
that r �� p2. Then there is a pattern r′ ∈mi {p1, χlp2

} such that r ∈mi {r′, q}. Clearly
if lp1 ≤ lp2 then lr′ = lp2 . Otherwise r′ = p1. In any case, since lr ≤ lr′ + lq ≤ 2 × lr′

by Theorem 2.5, we have S1(r) ⊆ S2(r′). On the other hand, since the assertion (1) is
equivalent to S2(mi {p1, χlp2

}) ⊆ L(p2) ∪ L(qc), we have S1(r) ⊆ S2(r′) ⊆ L(p2) ∪ L(qc).
Since r � q, it means that S1(r) ⊆ L(p2), and so r � p2. It is a contradiction.

Lemma 4.6 Let lp1 ≤ lp2 . Then the following statements are equivalent:
(1) T1(pc

1, p
c
2) ⊆ L(qc), (2) L(pc

1) ∩ L(pc
2) ⊆ L(qc), (3) mi {q, χlp2

} 	 {p1, p2}.
Proof. We only show that (1) implies (3).

Assume that the assertion (1) is valid. Then by lp1 ≤ lp2 , clearly lq ≤ lp2 must hold.
It implies that L(q) ∩ Σlp2 ⊆ L(p1) ∪ L(p2), and so S1(mi {q, χlp2

}) ⊆ L(p1) ∪ L(p2). By
Theorem 2.3, it means that (3) is valid.

Corollary 4.7 Let π1, π2, τ1, τ2 ∈ JRP. Then the following statements are equivalent:
(1) T2(π1, π2) ⊆ L(τ1) ∩ L(τ2), (2) L(π1) ∩ L(π2) ⊆ L(τ1) ∩ L(τ2).

5 Inclusion Problem (3). Finally, this section considers the inclusion problem of the
form

L(π1) ∩ L(π2) ⊆ L(τ1) ∪ L(τ2),

where π1, π2, τ1, τ2 ∈ JRP.

Theorem 5.1 Let π1, π2, τ1, τ2 ∈ JRP with lτ1 ≤ lτ2 . If max{lπ1 , lπ2} < lτ2 holds for a
case of π1 ∈ co-RP or π2 ∈ co-RP, and 2 × max{lπ1 , lπ2} < lτ2 for the other cases, then
the following statements are equivalent:

L(π1) ∩ L(π2) ⊆ L(τ1) ∪ L(τ2) ⇐⇒ L(π1) ∩ L(π2) ⊆ L(τ1).

Proof. We prove only for the following two cases. The other cases can be proved similarly.
A case of (π1, π2, τ1, τ2) = (p1, p2, q1, q

c
2) with lp1 ≤ lp2 , lq1 ≤ lq2 , 2 × lp2 < lq2 . If

L(p1) ∩ L(p2) ⊆ L(q1) ∪ L(qc
2), then S1(mi {p1, p2}) ⊆ L(q1) ∪ L(qc

2). There is a pattern
r ∈mi {p1, p2}. By Theorem 2.5, lr ≤ 2 × lp2 . Therefore S1(r) ∩ L(qc

2) = φ, it leads to
L(p1) ∩ L(p2) ⊆ L(q1).
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A case of (π1, π2, τ1, τ2) = (p1, p
c
2, q1, q

c
2) with lp1 ≤ lp2 , lq1 ≤ lq2 , lp2 < lq2 . If L(p1) ∩

L(pc
2) ⊆ L(q1) ∪ L(qc

2), then S1(mi {p1, χlp2
}) ⊆ L(p2) ∪ L(q1) ∪ L(qc

2). By lp2 < lq2 , it
follows that S1(mi {p1, χlp2

}) ⊆ L(p2)∪L(q1), and thus T1(p1, p
c
2) ⊆ L(q1). By Lemma 4.2,

it leads to L(p1) ∩ L(pc
2) ⊆ L(q1).

Theorem 5.2 Let π1, π2, τ1, τ2 ∈ JRP and �Σ ≥ 5. Then the following statements are
equivalent provided that lτ1 , lτ2 ≤ max{lπ1 , lπ2} if π1 ∈ co-RP or π2 ∈ co-RP.

(1) T4(π1, π2) ⊆ L(τ1) ∪ L(τ2), (2) L(π1) ∩ L(π2) ⊆ L(τ1) ∪ L(τ2),
(3) These patterns satisfy the syntactic conditions in Table 3.

Note that if πi ∈ co-RP and lτj > max{lπ1 , lπ2} for some i, j, by Theorem 4.1 and
Theorem 5.1, the assertion (2) in the above is equivalent to the assertions (1) and (3) in
Theorem 4.1 for τ = τj′ with j′ �= j.

π1 π2 τ1 τ2 Syntactic Conditions
q1 q2 mi {p1, p2} 	 {q1, q2}

p1 p2 q1 qc
2 mi {p1, p2, q2} 	 {q1}, mi<lq2

{p1, p2} 	 {q1}, min{lq1 , lq2} ≤ lp1,p2

qc
1 qc

2 mi {p1, p2, q1, q2} = φ, mi<lq2
{p1, p2, q1} = φ, lq1 ≤ lp1,p2 ,

where lq1 ≤ lq2

q1 q2 mi {p1, χlp2
} 	 {p2, q1, q2}

p1 pc
2 q1 qc

2 mi {p1, q2, χlp2
} 	 {p2, q1}

qc
1 qc

2 mi {p1, q1, q2, χp2} 	 {p2}
q1 q2 q1 ∈ X+ or q2 ∈ X+

pc
1 pc

2 q1 qc
2 mi {q2, χlp2

} 	 {p1, p2, q1}, where lp1 ≤ lp2

qc
1 qc

2 mi {q1, q2, χlp2
} 	 {p1, p2}, where lp1 ≤ lp2

Table 3: Syntactic Inclusions

The proof will be shown by lemmas given below.

Lemma 5.3 The following statements are equivalent:
(1) T2(p1, p2) ⊆ L(q1) ∪ L(qc

2), (2) L(p1) ∩ L(p2) ⊆ L(q1) ∪ L(qc
2),

(3) mi {p1, p2, q2} 	 {q1}, mi<lq2
{p1, p2} 	 {q1}, min{lq1 , lq2} ≤ lp1,p2 .

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then clearly l = min{lq1 , lq2} ≤ lp1,p2 holds. Since

S1(mi<lq2
{p1, p2}) ⊆ S2(mi {p1, p2}) = T2(p1, p2), we have S1(mi<lq2

{p1, p2}) ⊆ L(q1),
and so mi<lq2

{p1, p2} 	 {q1}.
Assume that mi {p1, p2, q2} �	 {q1}, and there is a pattern r ∈mi {p1, p2, q2} satisfying

r �� q1. By the choice of r, there is a pattern r′ ∈mi {p1, p2} such that r ∈mi {r′, q2}. By
the assertion (1), it implies that

S2(r′) ⊆ S2(mi {p1, p2}) ⊆ L(q1) ∪ L(qc
2), L(r) ∩ L(qc

2) = φ.

A case of lq2 ≤ lr′ . In this case, by r ∈mi {r′, q2} and Theorem 2.5, we obtain lr ≤ 2× lr′

and so, S1(r) ⊆ S2(r′) ⊆ L(q1) ∪ L(qc
2). By the above, it means that S1(r) ⊆ L(q1), i.e.,

r � q1 and a contradiction.
A case of lq2 > lr′ . In this case, by S1(r′) ⊆ S2(r′) and S1(r′) ∩ L(qc

2) = φ, it implies
together with the above that S1(r′) ⊆ L(q1), and so r′ � q1. It means that r � q1, and a
contradiction.
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Lemma 5.4 Let lq1 ≤ lq2 . Then the following statements are equivalent:
(1) T4(p1, p2) ⊆ L(qc

1) ∪ L(qc
2), (2) L(p1) ∩ L(p2) ⊆ L(qc

1) ∪ L(qc
2),

(3) mi {p1, p2, q1, q2} = φ, mi<lq2
{p1, p2, q1} = φ, lq1 ≤ lp1,p2 .

Proof. We only show that (1) implies (3).
We assume that the assertion (1) holds but not the assertion (3). Since lq1 ≤ lq2 , clearly

lq1 ≤ lp1,p2 holds.
Suppose that there is a pattern r ∈mi {p1, p2, q1, q2}. Then there is a pattern r′ ∈mi

{p1, p2} satisfying r ∈mi {r′, q1, q2}. By lq1 ≤ lp1,p2 and lp1,p2 ≤ lr′ , we have lq1 ≤ lr′ .
Moreover, by Theorem 2.5, lr ≤ lr′ + lq1 + lq2 ≤ 2 × lr′ + lq2 .

A case of lq2 ≤ 2 × lr′ . In this case, we have lr ≤ 4 × lr′ and so S1(r) ⊆ S4(r′). By
the assertion (1), it means that S1(r) ⊆ L(qc

1) ∪ L(qc
2). Since r � q1 and r � q2, it is a

contradiction.
A case of 2 × lr′ < lq2 . In this case, since S2(r′) ∩ L(qc

2) = φ, we have S2(r′) ⊆ L(qc
1).

By Lemma 2.1, it implies that mi {r′, q1} = φ. It contradicts that mi {r′, q1, q2} �= φ.
Therefore mi {p1, p2, q1, q2} = φ is valid.

Similarly, we can prove mi<lq2
{p1, p2, q1} = φ.

Lemma 5.5 Let lq1 ≤ lq2 . Then the following statements are equivalent:
(1) T1(p1, p

c
2) ⊆ L(q1) ∪ L(q2), (2) L(p1) ∩ L(pc

2) ⊆ L(q1) ∪ L(q2),
(3) mi {p1, χlp2

} 	 {p2, q1, q2}.

Proof. We only show that (1) implies (3).
By the assertion (1), we have S1(mi {p1, χlp2

}) ⊆ L(p2) ∪ L(q1) ∪ L(q2). It implies that
mi {p1, χlp2

} 	 {p2, q1, q2}.

Lemma 5.6 Let lq1 ≤ l, lq2 ≤ l, where l = max{lp1 , lp2}. Then the following statements
are equivalent:

(1) T2(p1, p
c
2) ⊆ L(q1) ∪ L(qc

2), (2) L(p1) ∩ L(pc
2) ⊆ L(q1) ∪ L(qc

2),
(3) mi {p1, q2, χlp2

} 	 {p2, q1}.

Proof. We only show that (1) implies (3) under the assumption of p1 �� p2.
By assumptions on lengths of lq1 , lq2 and l, the assertion (1) is equivalent to

S2(mi {p1, χp2}) ∩ L(q2) ⊆ L(p2) ∪ L(q1).

Suppose that there is a pattern r ∈mi {p1, q2, χlp2
} such that r �� p2 and r �� q1. Then

there is a pattern r′ ∈mi {p1, χlp2
} satisfying r ∈mi {r′, q2}. Clearly lr′ = l and lr ≤ l + lq2

hold. By lq2 ≤ l, it follows that lr ≤ 2 × l = 2 × lr′ , and so S1(r) ⊆ S2(r′). Hence by the
assertion (1) we get S1(r) ⊆ L(p2) ∪ L(q1) ∪ L(qc

2). Since r � q2 holds, and so we have
S1(r) ∩ L(qc

2) = φ. It means that r � p2 or r � q1. It is a contradiction.

Lemma 5.7 Let lq1 ≤ lq2 ≤ l, where l = max{lp1 , lp2}. Then the following statements are
equivalent:

(1) T3(p1, p
c
2) ⊆ L(qc

1) ∪ L(qc
2), (2) L(p1) ∩ L(pc

2) ⊆ L(qc
1) ∪ L(qc

2),
(3) mi {p1, q1, q2, χl} 	 {p2}.
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Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by the assumption on lengths of lq1 , lq2

and l, the assertion (1) is equivalent to

S3(mi {p1, χlp2
}) ⊆ L(p2) ∪ L(qc

1) ∪ L(qc
2).

Suppose that there is a pattern r ∈mi {p1, q1, q2, χl} such that r �� p2. Then there is
a pattern r′ ∈mi {p1, χlp2

} satisfying r ∈ {r′, q1, q2}. As easily seen, lr′ = l holds. By
Theorem 2.5 and the assumptions on lengths, it means that lr ≤ lr′ + lq1 + lq2 ≤ 3× l, and
thus S1(r) ⊆ S3(mi {p1, χlp2

}). Since r � q1 and r � q2, the assertion (1) gives S1(r) ⊆
S3(mi {p1, χlp2

}) ∩ L(q1) ∩ L(q2) ⊆ L(p2). It implies that r � p2, and a contradiction.

Lemma 5.8 Let lp1 ≤ lp2 , lq1 ≤ lq2 and lq1 ≤ lp2 . If �Σ ≥ 5, then the following statements
are equivalent:

(1) T1(pc
1, p

c
2) ⊆ L(q1) ∪ L(q2), (2) L(pc

1) ∩ L(pc
2) ⊆ L(q1) ∪ L(q2),

(3) q1 ∈ X+ or q2 ∈ X+.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by lp1 ≤ lp2 , the assertion (1) is equivalent

to Σlp2 ⊆ L(p1) ∪ L(p2) ∪ L(q1) ∪ L(q2). By the assumption on �Σ ≥ 5 and Lemma 2.7,
since p1, p2 �∈ X+ holds, it follows that q1 ∈ X+ or q2 ∈ X+.

Lemma 5.9 Let lp1 ≤ lp2 and max{lq1 , lq2} ≤ lp2 . Then the following statements are
equivalent:

(1) T1(pc
1, p

c
2) ⊆ L(q1) ∪ L(qc

2), (2) L(pc
1) ∩ L(pc

2) ⊆ L(q1) ∪ L(qc
2),

(3) mi {q2, χlp2
} 	 {p1, p2, q1}.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by lp1 ≤ lp2 and lq2 ≤ lp2 , the assertion (1) is

equivalent to Σlp2 ∩L(q2) ⊆ L(p1)∪L(p2)∪L(q1). It follows that mi {q2, χlp2
} 	 {p1, p2, q1}.

Lemma 5.10 Let lp1 ≤ lp2 and lq1 ≤ lq2 ≤ lp2 . Then the following statements are equiva-
lent:

(1) T2(pc
1, p

c
2) ⊆ L(qc

1) ∪ L(qc
2), (2) L(pc

1) ∩ L(pc
2) ⊆ L(qc

1) ∪ L(qc
2),

(3) mi {q1, q2, χlp2
} 	 {p1, p2}.

Proof. We only show that (1) implies (3).
Assume that the assertion (1) is valid. Then by lp1 ≤ lp2 and lq1 ≤ lq2 ≤ lp2 , the

assertion (1) implies that

Σ[lp2 ,2×lp2 ] ∩ L(q1) ∩ L(q2) ⊆ L(p1) ∪ L(p2).

Suppose that there is a pattern r ∈mi {q1, q2, χlp2
} such that r �� p1 and r �� p2. Then

there is a pattern r′ ∈mi {q1, q2} satisfying r ∈mi {r′, χlp2
}. Hence by Theorem 2.5, we

have lr′ ≤ lq1 + lq2 ≤ 2 × lp2 . We show that lr ≤ 2 × lp2 .
A case of lr′ ≤ lp2 . In this case, by r ∈mi {r′, χlp2

}, clearly lr = lp2 holds.
A case of lr′ > lp2 . In the case, clearly r′ = r must hold. Hence lr = lr′ ≤ 2 × lp2 .
By the above, it implies together with r � q1 and r � q2 that S1(r) ⊆ Σ[lp2 ,2×lp2 ] ∩

L(q1) ∩ L(q2) ⊆ L(p1) ∪ L(p2). It contradicts that r �� p2 and r �� p2.
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