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Abstract. A property p of identities of a fixed type τ is said to be hereditary if for
every set I of identities having the property p, every consequence of I (under the usual
derivation rules for identities) also has the property. A characteristic algebra for such
a hereditary property is an algebra A such that for any variety V of type τ , we have
A ∈ V iff every identity satisfied by V has the property p. P�lonka has produced mini-
mal characteristic algebras for a number of hereditary properties, including regularity,
normality,uniformity, biregularity, outermost, and external-compatibility. We study
characteristic algebras for the hereditary property of k-normality, for k ≥ 1, which
extends the usual normality property. For type (2) and the usual depth valuation of
terms, we produce minimal characteristic algebras for k = 1, 2, 3 and 4.

1 Introduction and Definitions Throughout this paper we consider a type τ = (ni)i∈I

of algebras and identities, with fi an ni-ary operation symbol of the type for each i ∈ I.
We denote by Id τ the set of all identities of type τ . For any set Σ of identities of type τ
and any class K of algebras of type τ , we will denote by Mod Σ and IdK respectively the
class of all algebras satisfying the identities in Σ and the set of identities satisfied by all
algebras in K.

Let p be a structural property of identities. We will say that a variety V of type τ has
property p when the set Id V of its identities has property p. A property p is said to be
hereditary (for type τ) if for every set I of identities of type τ all having the property p,
any consequence of I, derived according to the usual five derivation rules for identities,
also has property p. Equivalently, p is hereditary when the set p(τ) of all type τ identities
having property p is an equational theory. Let Vp = Mod p(τ). When p(τ) is an equational
theory we have Id Vp = p(τ), which means that Vp is the smallest non-trivial variety to
have property p.

Let p be a hereditary property. A characteristic algebra for p is an algebra A such that for
any variety V of type τ , every identity of V has property p iff A is in V . This is equivalent
to the property that the set Id A of identities satisfied by A is exactly the set p(τ) of type τ
identities having property p. Another way to express this is that A is a generating algebra
for the variety Vp, since we have Id A = p(τ) = Id Vp.

It is well known that the properties of regularity and normality of identities are hereditary,
and these properties have been much studied (see for instance [C], [G1], [G2], [M], [P1]).
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In [P2] and [P3] P�lonka produced characteristic algebras for some properties of identities,
including normality, regularity, biregularity, external-compatibility, uniformity and rectan-
gularity, and for some combinations of these. In [P3] the focus was on finding minimal
characteristic algebras for these properties, that is, characteristic algebras of the smallest
cardinality possible.

In this paper we study characteristic algebras for the property of k-normality, for k ≥ 1.
This property is a generalization of the well-studied property of normality of identities. To
describe the concepts of normality and k-normality, we need some notation. We let X =
{x1, x2, x3, . . . } be a countably infinite alphabet of variables, and we denote by Wτ (X) the
set of all terms of type τ over X . There is an obvious distinction between variable terms xj

for j ≥ 1, and compound or composite terms having the form fi(t1, . . . , tni) for some i ∈ I.
An identity s ≈ t of terms from Wτ (X) is said to be non-normal if s and t are different
variables or if only one of s and t is a variable and the other is a compound term, and is
called a normal identity otherwise. A variety V of type τ is called a normal variety if the
set IdV of all its identities contains only normal identities. For any variety V there is a
least normal variety N(V ) containing V , called the normalization of V .

Since the definition of a normal identity distinguishes the simplest kind of terms, the vari-
ables, from all others, it is in fact based on a very simple measurement of the complexity of
terms. Another common measurement of complexity of a term is the depth of a term. Re-
garding a term as a tree diagram, the depth is the length of the longest path from the root of
the term to a variable; inductively, variable terms and 0-ary operation symbols have depth 0,
and a compound term of the form fi(t1, . . . , tni) has depth 1+max{depth(tj) | 1 ≤ j ≤ ni}.
Several other complexity measurements, including the minimum depth, the number of occur-
rences of operation symbols, and the number of occurrences of variables, have been studied
in [DW1] and [DW2], along with a general theory of such complexity measurements.

Let v be a valuation, or complexity measurement, which assigns to each term t ∈ Wτ (X)
a non-negative integer value v(t). Let k ≥ 0 be a natural number. An identity s ≈ t is
called k-normal, with respect to the valuation v, if either s = t or both v(s) and v(t) are
≥ k. A non-trivial variety V will be called k-normal if all its identities are k-normal, and
non-k-normal otherwise. The theory of k-normal varieties, with respect to any valuation
v, was developed by Denecke and Wismath in [DW2]. They showed that for any variety V
and k ≥ 0, the variety Nk(V ) determined by all the k-normal identities of V is the least
k-normal variety to contain V . Moreover, for k = 1 and v the depth valuation, the concepts
of k-normal and the k-normalization coincide with the usual concepts of normality and
normalization described above.

Denecke and Wismath also identified in [DW2] two conditions on the valuation v which
ensure that the k-normality property of identities is hereditary. In particular, they showed
that the usual depth valuation of terms ensures that the set of all k-normal identities is an
equational theory, for all k ≥ 1, and thus k-normality is a hereditary property. In [DW3]
a characterization was given of the non-trivial minimal variety Vp when p is the property
of k-normality. This characterization uses the concept of a k-constant algebra. An algebra
A of type τ will be called a k-constant algebra (with respect to a valuation v) if there is
an element ak ∈ A such that for every n and for all n-ary terms t with v(t) ≥ k and for
all inputs a1, . . . , an, we have tA(a1, . . . , an) = ak. Then the collection of all k-constant
algebras of type τ is precisely the smallest non-trivial k-normal variety of type τ . The
special element ak will be called a k-absorbing element, or simply an absorbing element, for
the algebra A.
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Example 1.1 Let k ≥ 1, and let Idk(τ) be the set of all k-normal identities of type τ . Let
X be a countably infinite alphabet of variables. Let Fτ (X) be the absolutely free algebra
of type τ over the alphabet X , and let A be the algebra A = Fτ (X)/Idk(τ). Since Idk(τ)
is a fully invariant congruence, A is a relatively free algebra of type τ . Its universe can be
regarded as the set

Wk = {t ∈ Wτ (X) | v(t) < k} ∪ {wk},

where wk is any one term representing the equivalence class of all terms with value ≥ k. It
is clear that this algebra is k-constant; when v is the depth valuation and there are terms
with value of k − 1, this algebra is k-constant but not (k − 1)-constant.

2 Characteristic Algebras for k-normality In this section we begin our study of
characteristic algebras for the property of k-normality. Here k is a natural number, and
k-normality is measured with respect to the usual depth measurement for terms. We will
denote by Vk the smallest k-normal variety (of fixed type τ). This variety has a countably
infinite generator, namely the relatively free algebra FVk

(X) constructed in Example 1.1.
This algebra is then a characteristic algebra for the property of k-normality. A basic question
is whether is it possible to find a smaller, finite, characteristic algebra. For the case k = 1,
when k-normality is the usual normality property, an affirmative answer to this question
is known. In fact there is a two-element characteristic algebra for normality, as shown by
P�lonka in [P3].

Example 2.1 Let A1 = ({a, 0}, (fA1
i )i∈I) be the two-element zero algebra, defined by

setting fA1
i (a1, . . . , ani) = 0 for any index i ∈ I and any inputs a1, . . . , ani ∈ {a, 0}. This

algebra satisfies all normal identities, but every non-normal identity is not satisfied in it.
It is thus defined by the set of all normal identities of type τ , making it a characteristic
algebra for the normality property. It is obviously also a minimal characteristic algebra,
since any one-element algebra satisfies all identities of type τ , both normal and non-normal.

In Section 3 we shall show that for type (2) there is a finite minimal characteristic algebra
for k-normality for k ≥ 2, and produce minimal characteristic algebras for k = 2, 3, 4. To
do this, we first give some Lemmas describing properties that any characteristic algebra Ak

for k-normality must have, for any type τ . However, we assume that our type τ has at least
one operation symbol whose arity is at least one. Most of the properties to be shown stem
from the basic fact that Ak must satisfy all k-normal identities of type τ , but must break
all non-k-normal identities.

Lemma 2.2 If Ak is a characteristic algebra for k-normality, for k ≥ 2, then it contains
a k-absorbing element ak.

Proof: As noted above, a characteristic algebra for k-normality is a generator for the
minimal variety Vk, which consists of all k-constant algebras of type τ . This means that
the characteristic algebra must contain a k-absorbing element.

Next we introduce some notation for special kinds of terms to be considered.
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Definition 2.3 The minimum depth of a term t is defined inductively by letting variable
terms and nullary operation symbols have minimum depth 0, and compound terms of the
form fi(t1, . . . , tni) have minimum depth 1+min{depth(tj) | 1 ≤ j ≤ ni}. Just as the usual
(maximum) depth measures the length of the longest path in the tree diagram representing
a term, the minimum depth measures the length of the shortest path. A term t will be
called a full term if the minimum and maximum depth of t are equal.

Definition 2.4 The shape of a term t of type τ is the term resulting from t by replacing
every variable in t by the variable x.

The property of “having the same shape” is an equivalence relation on the set of all terms
of type τ .

Definition 2.5 Let i ∈ I, and let ni ≥ 1. The full-shape term FSj
i at depth j in the

symbol fi and the single variable x is defined inductively by

FS0
i (x) = x,

FSj+1
i (x) = fi(FSj

i (x), . . . , FSj
i (x)).

We shall denoted the term operation induced on Ak by such a term by (FSj
i )Ak .

Lemma 2.6 Let Ak be a characteristic algebra for k-normality, for k ≥ 2. Then Ak

contains k + 1 distinct elements a0, . . . , ak, with the property that for some i ∈ I, aj+1 =
(FS1

i )Ak (aj) = (FSj+1
i )Ak (a0), for 0 ≤ j ≤ k − 1.

Proof: Let i ∈ I. Since the identity FSk−1
i (x) ≈ FSk

i (x) is not k-normal, there is an
element a0 in Ak which breaks this identity. That is, (FSk−1

i )Ak(a0) �= (FSk
i )Ak (a0) = ak.

For 1 ≤ j ≤ k − 1, let aj = (FSj
i )Ak(a0). Then the elements a0, a1, . . . , ak−1 must all be

distinct from each other and from ak, since otherwise we would not have (FSk−1
i )Ak(a0) �=

ak.

Lemma 2.7 Let Ak be a characteristic algebra for k-normality, for k ≥ 2. Then the
element ak−1 has the property that for any arity n ≥ 2, any n-ary term t and any inputs
b1, . . . , bn, we have tAk(b1, . . . , bn) = ak if any one of the inputs bj is equal to ak−1.

Proof: Suppose without loss of generality that b1 = ak−1. Then for any inputs b2, . . . ,
bn we have tAk(b1, . . . , bn) = tAk(ak−1, b2, . . . , bn) = tAk((FSk−1

i )Ak (a0), b2, . . . , bn). Since
the latter is the output of a term of depth k, and the algebra Ak is k-constant, this output
must equal ak.

We shall refer to an element such as ak−1 with the property from Lemma 2.7 as a pre-
absorbing element of the algebra.

Next we will show that we can assign to each element b ∈ Ak a non-negative integer called
its level. This level for specific elements of the algebra is analogous to the valuation, that is
the depth, of the terms. We will denote by Lj the set of elements of the algebra Ak which
have level j, for 0 ≤ j ≤ k. We start by setting Lk = {ak}, making the absorbing element
ak the only element to have level k. Now for any element b �= ak, we consider the set
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Tb = {t ∈ Wτ (X) | tAk(b1, . . . , bn) = b for some inputs b1, . . . , bn}.

Since any term at depth ≥ k always gives output ak and b �= ak, the set Tb is a subset of the
set of terms of type τ of depth less than k. If Tb is empty, we say that b has level 0, and put
b ∈ L0. Otherwise, we define the level of b to be the maximum of the depths of the terms
in Tb. In this way we assign a level to each element of Ak, and we define Lj = {b ∈ Ak | b
has level j}, for 0 ≤ j ≤ k.

Lemma 2.8 Let Ak be a characteristic algebra for k-normality, for k ≥ 2. For 0 ≤ j ≤
k − 1, the special element aj has level j.

Proof: By definition aj is an output of the depth j term FSj
i (x), so that the level of aj

is at least j. Now suppose that aj had level greater than j. Then aj+1 = fAk

i (aj , . . . , aj)
would be the output of a term at depth at least j + 2, so aj+1 would have level at least
j + 2. Similarly, aj+2 would have level at least j + 3, and so on. But then ak−1 would have
level greater than k − 1, which is impossible since ak−1 �= ak. Therefore aj must have level
j.

The next Lemma shows that performing any operation of the algebra on elements at given
levels increases the level by at least one.

Lemma 2.9 Let i ∈ I, and let b1, . . . , bni be elements of Ak, with bp at level jp respectively.
Then fAk

i (b1, . . . , bni) has level at least one greater than the maximum of the levels of
b1, . . . , bni .

Proof: Since each element bp is at level jp, there is a term tp at depth jp and some inputs for
which tp gives output bp. Then fAk

i (b1, . . . , bni) is the output of the term fi(t1, . . . , tni),
which in turn has depth equal to 1 + max{depth tp | 1 ≤ p ≤ ni}. Thus the element
fAk

i (b1, . . . , bni) has level at least this number. (Note that the level could be higher, since
there could be other ways to produce the output fAk

i (b1, . . . , bni).)

Lemma 2.10 Let s and t be two full terms of type τ , both at depth k − 1 and both using
the same set of variables x1, . . . , xm for some m. Then any elements c1, . . . , cm from Ak

which break the identity s(x1, . . . , xm) ≈ t(x1, . . . , xm) must be at level 0 in Ak.

Proof: Since s ≈ t is a non-k-normal identity of type τ , it cannot hold in Ak, and there must
be some elements c1, . . . , cm in Ak such that sAk(c1, . . . , cm) �= tAk (c1, . . . , cm). Suppose
that for some 1 ≤ p ≤ m we have cp at level j > 0. Then there is an n-ary term u, for some
n ≥ 1, of depth at least one and some inputs b1, . . . , bn such that uAk(b1, . . . , bn) = cp. Now
we can replace xp by the term u in the identity s ≈ t, to create a new identity s′ ≈ t′, with
both sides at depth k or higher. Now using the inputs c1, . . . , cm, b1, . . . , bn in this identity
makes both sides come out to ak, contradicting the fact that the inputs c1, . . . , cm break
the identity s ≈ t.
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Next we introduce some constructions which will tell us more about what elements are
required in Ak. In each case we consider an identity which must be broken by Ak.

Construction 1:
Let τ be a type containing at least one operation symbol fi of arity at least 2. We construct
a series of terms of this type, using the two variables x and y. First, let t0,1(x, y) = x and
t0,2(x, y) = y. Inductively, let

tj+1,1(x, y) = fi(tj,2(x, y), tj,1(x, y), . . . , tj,1(x, y))
and tj+1,2(x, y) = fi(tj,1(x, y), tj,2(x, y), tj,1(x, y), . . . , tj,1(x, y)).

Now consider the identity tk−1,1(x, y) ≈ tk−1,2(x, y). Both of these terms are full terms at
depth k− 1, so by Lemma 2.10, there must exist two elements c0 and d0 at level 0 in Ak to
break this identity. The construction shows that we must have c0 �= d0 and tAk

p,1(c0, d0) �=
tAk
p,2(c0, d0) for all levels 1 ≤ p ≤ k − 1. Moreover, for 0 ≤ p ≤ k − 2 each pair of elements

tAk
p,1(c0, d0) and tAk

p,2(c0, d0) must be at level p: they are outputs of terms at depth p, and
hence at level at least p, but they cannot have higher level or we would get tAk

k−1,1(c0, d0)
= ak = tAk

k−1,2(c0, d0). Notice however that at level k − 1, all we need is that tAk

k−1,1(c0, d0)
and tAk

k−1,2(c0, d0) are both at level at least k − 1, but not both at level k. This proves the
following result.

Lemma 2.11 Let τ be a type with at least one operation symbol of arity at least two. Let
Ak be a characteristic algebra for k-normality, for k ≥ 2. Then for each 0 ≤ j ≤ k − 2,
there must be at least two elements in Ak at level j.

Corollary 2.12 Let τ be a type with at least one operation symbol of arity at least two,
and let k ≥ 2. If Ak is a characteristic algebra for k-normality, then Ak has cardinality at
least 2k.

Construction 2:
Let τ be a type containing at least one operation symbol fi of arity at least two. We
consider the identity

fi(FSk−2
i (x), FSk−2

i (y), . . . , FSk−2
i (y)) ≈ fi(FSk−2

i (y), FSk−2
i (x), . . . , FSk−2

i (x)).

This identity consists of two full terms at depth k − 1, and by Lemma 2.10 must be broken
by two elements d0 and e0 at level 0. Note that we must have d0 �= e0, and also that
(FSp

i )Ak (d0) and (FSp
i )Ak (e0) must be distinct elements at level p, for each 1 ≤ p ≤ k − 2.

This gives another proof of Lemma 2.11.

3 Examples for Type (2) Now we turn to type (2), where we have one binary operation
symbol in our type. Throughout this section, we shall follow the usual convention of indi-
cating this binary operation by juxtaposition. We shall also refer to breaking an identity
between two terms as ‘separating’ the two terms, in this and subsequent sections. More
generally, separating a set of terms will mean finding inputs which break the identity s ≈ t
for any two distinct terms s and t in the set.

Theorem 3.1 For type (2), there is a minimal characteristic algebra of size 4 for the
property of 2-normality.
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Proof: Let A2 be the type two algebra with universe set A2 = {a0, b0, a1, a2}, with one
binary operation, to be denoted by juxtaposition, given by the table below.

A2 a0 b0 a1 a2

a0 a1 a1 a2 a2

b0 a2 a1 a2 a2

a1 a2 a2 a2 a2

a2 a2 a2 a2 a2

We will show that this algebra is characteristic for 2-normality, for type (2). Then by
Corollary 2.12, it must be a minimal characteristic algebra. The algebra has an absorbing
element a2, a pre-absorbing element a1 at level 1, and two elements a0 and b0 at level 0. It
is clear from the table that for any term t of depth 2 or more, the term function induced by
t on A2 has constant value a2, so that the algebra satisfies all 2-normal identities. To show
that this algebra does not satisfy any non-2-normal identity, it suffices to show that we can
separate each of the depth 0 or 1 terms x, y, xx, yy, xy and yx from each other, and from
any term of depth 2 or more, using elements of A2. We can certainly separate any of these
terms from a term of depth 2 or more, by using x = y = a0. We can separate x from any
of the other five terms by using x = a0, and similarly for y. We can separate xx from each
of xy, yx and yy using x = a0 and y = a1. Similarly we can separate yy from xy and yx.
Finally, we can separate xy and yx by using x = a0 and y = b0.

Lemma 3.2 Let type τ = (2), and let k = 3. Then any characteristic algebra A3 for
3-normality must contain at least seven elements.

Proof: We know from Corollary 2.12 that any characteristic algebra A3 must contain at
least six elements, with two elements at level 0, two at level 1, and one each at levels 2 and 3.
Suppose that B3 is a six element characteristic algebra, with L0 = {a0, b0}, L1 = {a1, b1},
L2 = {a2} and L3 = {a3}. From Construction 2, we need a0 and b0 to break the identity
(xx)(yy) ≈ (yy)(xx), and hence we need a0a0 �= b0b0 at level 1. Since by Lemma 2.6 we
have a0a0 = a1, we therefore must have b0b0 = b1. From Construction 1, we also need to
break (xy)(yx) ≈ (yx)(xy) using a0 and b0, and hence we must have a0b0 �= b0a0 as two
distinct elements at L1. This gives two possible cases to consider.

Case 1: a0b0 = a1 and b0a0 = b1:
Then there are no level 0 elements in A3 which break the identity (xy)(yx) ≈ (xx)(yy).

Case 2: a0b0 = b1 and b0a0 = a1:
Dually, there are no level 0 elements in A3 which break the identity (xy)(yx) ≈ (yy)(xx).

This shows that having only two elements at level 0 is not enough to break all the necessary
identities.

Now we produce an example of a seven-element minimal characteristic algebra for 3-
normality, for type (2). Our proof that this algebra is characteristic uses the concept
of the shape of a term, from Definition 2.4. Note that for type (2), we have the three shapes
x(xx), (xx)x and (xx)(xx) for terms of depth 2.



72 A. CHRISTIE, Q. WANG AND S. L. WISMATH

Theorem 3.3 The seven-element type (2) algebra A3 with operation table shown below is
a minimal characteristic algebra for 3-normality.

A3 a0 b0 c0 a1 b1 a2 a3

a0 a1 a1 a1 a2 a2 a3 a3

b0 a2 a1 b1 a2 a3 a3 a3

c0 b1 a1 b1 a2 a3 a3 a3

a1 a2 a3 a3 a2 a2 a3 a3

b1 a2 a2 a2 a3 a2 a3 a3

a2 a3 a3 a3 a3 a3 a3 a3

a3 a3 a3 a3 a3 a3 a3 a3

Proof: For convenience, the operation table shown for our algebra has the elements sepa-
rated by levels. It follows from the construction that for any binary term t of depth three
or more, and any inputs a and b from the algebra, we have tA3(a, b) = a3. This shows that
this algebra satisfies any 3-normal identity of type (2). We must show now that the algebra
does not satisfy any non-3-normal identity s ≈ t, where at least one of the terms s and t
has depth less than three. Without loss of generality, we take the depth of s to be less than
or equal to the depth of t, and hence less than three.

We first consider the case that s and t have different depths. If s has depth 0 and t has
depth one or more, then we can separate s and t by using a0 for all the variables in the
identity. The same substitution works if s has depth one and t has depth more than one.
This leaves only the case that s has depth 2 and t has depth three or more. Then s must
have one of the shapes x(xx), (xx)x or (xx)(xx), and we can check directly from the table
that there is a value to use for x in each of these which gives a result of a2, while the depth
three or more term t must result in a3.

This leaves only the case that terms s and t have the same depth, where this depth is less
than three. Clearly a depth zero identity x ≈ y can be broken using any two elements of
A3, so we may take the depth to be one or two. For the depth one case, we note that the
subset {a1, b1, a2, a3} is a subalgebra of our algebra which is isomorphic to the algebra A2

from Theorem 3.1, under an isomorphism which decreases the subscript of each element by
one. This means that the depth one identity s ≈ t can be broken using the same elements
as used in the proof for k = 2, again with the subscripts adjusted.

So we suppose that both s and t have depth two. There are three shapes of terms to be
considered, namely x(xx), (xx)x and (xx)(xx). By inspection from the table, we see that
using x = b0 separates the second of these from the other two, while x = c0 separates the
first from the other two. Thus the three shapes are separated from each other. This means
that if the two terms s and t have different shapes, then we can break the identity s ≈ t.

Finally, we must consider the terms within each shape. It will suffice to consider only
identities which use at most two variables x and y, since we can break an identity with
more than two variables by using some duplicate inputs. Moreover, we can separate any
term which contains only one of the two variables from any term containing both; as noted
above, there is a choice of inputs which will make a one-variable term come out to a2, while
using a3 for the other variable guarantees a result of a3 on the other side. Thus we need
consider only terms s and t which have the same shape and each contain both variables x
and y. There are six such terms for each of the shapes x(xx) and (xx)x, and fourteen such
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terms for the shape (xx)(xx). A case-by-case examination of all possible pairs of level zero
elements to use for x and y verifies that all pairs are separated.

4 Embedding One Characteristic Algebra in the Next We saw in Example 2.1 that
the two-element zero algebra is a minimal characteristic algebra for 1-normality (ordinary
normality). This algebra appears in the lower right corner of the table from Theorem 3.1 for
the minimal characteristic algebra A2 for 2-normality, and as noted in the proof of Theorem
3.3 we have an isomorphic copy of A2 appearing in the lower right corner of A3. In this
section we show how each characteristic algebra Ak can be embedded in the next one, Ak+1.
These next few results hold for any type τ .

Definition 4.1 Let k ≥ 2, and let Ak be a characteristic algebra for k-normality. For each
0 ≤ p ≤ k, we set

Sp =
k⋃

j=p

Lj .

Lemma 4.2 Let k ≥ 2 and 0 ≤ p ≤ k. The subset Sp is a subalgebra of Ak.

Proof: This follows immediately from Lemma 2.9.

Lemma 4.3 Let k ≥ 2 and let 0 ≤ p ≤ k. Then the algebra Sp is characteristic for
(k − p)-normality.

Proof: Let t be an n-ary term of depth at least k − p. Then for any inputs x1, . . . , xn

from the set Sp, the output tAk(x1, . . . , xn) will have level k (in Ak), so it must be ak. This
means that Sp satisfies any (k − p)-normal identity of type τ .

Now let s ≈ t be a non-(k − p)-normal identity, with s a term whose depth is less than
k − p and less than or equal to the depth of t. Let s′ be the term constructed from s
by replacing each occurrence of each variable x by the full-shape term FSp

i (x) using any
operation symbol fi, depth p and variable x. Note that the depth of the term s′ is p plus
the depth of s. Let t′ be similarly defined from t. Then the identity s′ ≈ t′ has the property
that the depth of s′ is less than k and less than or equal to the depth of t′. This identity
must then be broken in Ak, so there exists some choice of inputs bx to use for the variables
x in s′ and t′ so that the outputs are different. But then the elements (FSp

i )Ak (bx) are at
level p, so are elements of Sp, and they serve to break the identity s ≈ t in Sb.

This Lemma gives us a way to build a (minimal) characteristic algebra for (k+1)-normality,
once we have one for k-normality. We begin with the universe set Ak, but relabelled so that
elements at level j in Ak are now at level j + 1. Then we add a set L0 of new level 0
elements, which must all multiply to give products at level one or higher. This includes the
level 0 element a0, as described in Lemma 2.6, so that a0a0 = a1. We take Ak+1 = Ak ∪L0.

It follows from this construction that for any term t of depth k + 1 or more, the output
from t for any inputs from the universe set is ak+1. This shows that this set satisfies every
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(k + 1)-normal identity. We must now consider how to ensure that the algebra does not
satisfy any non-(k + 1)-normal identity s ≈ t, where at least one of the terms s and t has
depth less than k + 1. Without loss of generality, we take the depth of s to be less than or
equal to the depth of t, and hence less than k + 1.

We first consider the case that s and t have different depths. In this case it will suffice to
consider only the “shapes”, that is, to assume that s and t each contain only one variable
x. We need to ensure that for any depths 0 ≤ m �= n ≤ k, we separate any shape at depth
m from any shape at depth n, and that we separate any shape at depth m from a term of
depth k + 1. In particular, this means that for any shape of depth k or less, there must
be a choice of input to use for the single variable that makes the output different from the
absorbing element ak+1.

Next we consider the case that s and t have the same depth, less than or equal to k. If this
depth is less than k, then we use the fact that we have embedded a characteristic algebra
for k-normality to conclude that there are elements (of depth one or more) which break the
identity. This leaves only the case that s and t both have depth k. Here we have to separate
all the distinct shapes at depth k from each other.

Then finally we must consider the terms within each shape, at depth k. It will suffice to
consider only identities which use at most two variables x and y, since we can break an
identity with more than two variables by using some duplicate inputs. Moreover, we can
separate any term which contains only one of the two variables from any term containing
both; as noted above, there is a choice of inputs which will make a one-variable term come
out to a value other than ak+1, while using ak for the other variable guarantees a result
of ak+1 on the other side. Thus we need consider only terms s and t which have the same
shape and each contain both variables x and y.

Overall, we must ensure that three conditions are met:

1. We must separate any two shapes at different depths less than k + 1 from each other,
and from any term at depth k + 1.

2. We must separate all the shapes at depth k from each other.

3. For each shape at depth k, we must separate all two-variable terms of that shape from
each other.

These three things can always be done with a finite number of terms at level zero. This
proves that

Theorem 4.4 For any k ≥ 1, there is a finite characteristic algebra for k-normality.

Now we return to our study of type (2) algebras. Using the embedding technique, we can
put tighter restrictions on the size of a minimal characteristic algebra A4 for k = 4. Since
any such algebra must contain a characteristic algebra for k = 3, for which the minimum
cardinality is 7, and there must be at least two elements in L0, |A4| ≥ 9. But more level 0
elements are needed to break all non-4-normal identities. There are twenty-one one-variable
terms of depth 3, which by Lemma 2.10 can only be separated by inputs from L0. Assuming
there are only two elements at level 3 and above to differentiate these terms (an absorbing
element and a pre-absorbing), at least five different inputs are required to separate all these
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terms. This can be seen by associating with each term a string consisting of its outputs on
all level 0 inputs. Saying two terms are separated by the algebra is equivalent to saying they
have different strings. With only two letters available, five characters is the shortest length
possible to produce twenty-one distinct strings. Thus, L0 of A4 must contain at least five
elements. This suggests that |A4| ≥ 12.

However, if the embedded k = 3 algebra is altered so that it contains two pre-absorbing
elements instead of only one, then we would have three elements to differentiate depth 3
terms, and similar reasoning requires that level 0 contain just three elements. This changes
the lower bound on the size of a generator: now we have |A4| ≥ (7+1)+3 = 11. Adding three
pre-absorbing elements yields a minimum size of twelve, adding four pre-absorbing elements
also gives size twelve, and with five the minimum size is thirteen; and the size continues to
grow as more pre-absorbing elements are added. Therefore, the smallest possible size for A4

is eleven, if we have two pre-absorbing elements, or twelve if we have three pre-absorbing
elements.

In the next section we shall show that an eleven-element characteristic algebra, using two
pre-absorbing elements, is not possible. This will leave our minimum size at twelve or more.

Theorem 4.5 The twelve-element type (2) algebra A4 with operation table shown below is
a minimal characteristic algebra for 4-normality.

Proof: That this algebra meets the three requirements described above was verified by
a computer program which calculates the output of each of the terms of the twenty-one
different possible shapes.

Minimality of this generator follows from the argument above, and the proof in the next
section that there is no generator of size eleven.

A4 a0 b0 c0 d0 e0 a1 b1 c1 a2 b2 a3 a4

a0 a1 b1 a1 a1 a1 a3 a2 a3 a4 a3 a4 a4

b0 b1 a1 a1 c1 c1 a2 a2 b2 a3 a4 a4 a4

c0 b1 a1 b1 b2 b1 a3 b2 b2 a3 a4 a4 a4

d0 a1 c1 c1 b1 c1 a2 a2 b2 a4 a3 a4 a4

e0 c1 a1 c1 b1 c1 b2 a2 a2 a4 a3 a4 a4

a1 a2 a3 b2 a3 a2 a2 a2 a2 a3 a3 a4 a4

b1 a2 a2 a2 b2 a3 a3 a2 b2 a4 a3 a4 a4

c1 b2 b2 b2 b2 a2 b2 a2 b2 a4 a3 a4 a4

a2 a3 a4 a4 a3 a3 a3 a3 a4 a3 a3 a4 a4

b2 a4 a3 a3 a4 a3 a3 a4 a4 a4 a3 a4 a4

a3 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4

a4 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4 a4

We have now constructed minimal characteristic algebras, for type (2), for k-normality for
k = 1, 2, 3, 4. The construction for k = 4 was quite lengthy (including the proofs in Section
5) and it appears that it will be quite difficult to find a characteristic algebra for k = 5, and
to prove that such an algebra is minimal. By Lemma 4.3, such an algebra would contain a
subalgebra isomorphic to A4, of size at least 12. In addition, we would need enough new
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level 0 elements to separate all the depth 4 shapes. There are 651 such shapes, so if our
algebra has exactly one absorbing and one pre-absorbing element, we need at least 10 level
0 elements to give 210 > 651. This gives a bound of size 22. However a smaller algebra
might be possible if the A4 subalgebra was modified to give more separating elements.

5 Ruling Out Size 11 In this section we show that there cannot be a characteristic
algebra for 4-normality which contains eleven elements, two of which are at level 3. We
proceed by contradiction, by assuming that such an algebra exists and deducing a series of
(eventually contradictory) constraints on its elements. We let A4 be such an algebra. Note
that for this algebra the set L0 of level 0 elements has size three, while L3 has size two and
L4 has size one. This leaves five elements left to use for levels 1 and 2.

We begin with some basic properties that any 4-normal algebra containing eleven elements
would have to have. First we recall that by Lemma 2.10, any regular identity of depth 3
(that is, any identity between terms that use the same set of variables and are both depth
3) must be broken via a substitution by level 0 elements. As previously noted, we need
only worry about breaking all identities between one- and two-variable terms. For any
identity where at least one term uses two variables, substituting the same element for both
variables will not break the identity. Thus any regular identity between depth 3 terms on
two variables must be broken by a pair (x0, y0) of two distinct level 0 inputs. Since there
are exactly three level 0 elements, there exist six such pairs, which we shall refer to as the
six level 0 input pairs.

Lemma 5.1 In any 11-element characteristic 4-normal algebra, the squares of level 0 ele-
ments are all distinct.

Proof: For the full-shape term of depth 3, there are fourteen terms that use two variables
and are composed entirely of the squares xx and yy (for example, [(xx)(yy)][(yy)(xx)] and
[(yy)(yy)][(yy)(xx)]). If all level 0 squares were equal, then none of the identities between
terms of this type could be broken, so the algebra would not be 4-normal. If the squares
of any two level 0 elements a0 and b0 are equal, then the two level 0 input pairs (a0, b0)
and (b0, a0) do not break any identities between terms of this type. Moreover, if c0 is the
third element of level 0, we have tA4(a0, c0) = tA4(b0, c0) and tA4(c0, a0) = tA4(c0, b0) for
all terms t in this set. This effectively leaves only two of the six level 0 input pairs to break
all identities of this type; but this is insufficient, since at least three pairs are required to
separate fourteen terms.

Lemma 5.2 For any 11-element characteristic 4-normal algebra, a0b0 ∈ L1 for all a0,b0 ∈
L0.

Proof: We show first that all squares a0a0 of level 0 elements must be level 1 elements.
There are twenty-one one-variable depth 3 terms, all of which contain (xx) as a subterm.
If the square of any level 0 element was at level 2 or higher, then by Lemma 2.9 using this
element for x would output the absorbing element a4 for all twenty-one terms. This would
leave only two level 0 elements left to substitute for x to separate these terms, which is
insufficient.
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For the non-square products of level 0 elements, we note that there are one hundred and
ten terms of depth 3 that contain both (xy) and (yx) as subterms. Any identity between
terms of this sort must be broken with a substitution by level 0 elements. If there were
two level 0 elements whose product was at level 2 or higher, using this pair as input would
force all one hundred and ten terms to output the absorbing element. Thus this input pair
would not separate any of these terms. This leaves five level 0 input pairs to separate all of
these terms; but with three elements at levels 3 or 4, five pairs can separate at most 35 =
81 terms.

These two Lemmas shows that there are at least three elements at level 1, each of which
is a square of a distinct element from level 0. Combining this with the fact from Lemma
2.11 that every level must contain at least two elements, we can now completely describe
the level assignments of our algebra. We have three elements at each of levels 0 and 1, two
elements at each of levels 2 and 3, and one absorbing element at level 4.

Lemma 5.3 In any 11-element characteristic 4-normal algebra, the square of any level 1
element must be at level 2, and there are two level 1 elements whose squares are distinct.

Proof: Consider the identity [(xx)(xx)][(yy)(yy)] ≈ [(yy)(yy)][(xx)(xx)]. Because it is
regular, this identity must be broken via substitution by level 0 elements, and since by
the previous Lemma squares of level 0 elements must be level 1 elements, this implies that
there must be at least two different squares of level 1 elements at level 2, to use to separate
(xx)(xx) and (yy)(yy).

For the other claim, we show by contradiction that none of the three level 1 elements can
have a square which is at level 3 or higher. Let us denote the three level 0 elements by
a0, b0 and c0 and their squares by a1, b1 and c1 respectively, and suppose without loss of
generality that a1a1 is at level 3 or higher. We note that of the twenty-one one-variable
depth 3 terms there are nine that contain (xx)(xx) as a subterm: one term with each of x,
xx, x(xx), and (xx)x on the left and right, and [(xx)(xx)][(xx)(xx)]. By Lemma 2.9, any
of these nine terms will have tA4(a0) = a4, so a0 will not help to separate these terms. For
each of the nine terms, we consider the output pair (tA4(b0), tA4(c0)). Separating the nine
terms is equivalent to producing (at least) nine distinct such output pairs. Since for any t
the two outputs from level 0 inputs must be at level 3 or 4, we have three possible values to
use and hence exactly nine pairs, and every one of the nine output pairs must occur. But
one of these output pairs is the pair (a4, a4), and hence there must be a term t for which
tA4(x0) is a4 for all x0 in level 0. But now the algebra satisfies the identity t ≈ s, where s
is any term of depth 4, which violates 4-normality.

Lemma 5.4 In any 11-element characteristic 4-normal algebra, (aa)a ∈ L2 and a(aa) ∈ L2

for any a ∈ L0.

Proof: Of the twenty-one one-variable depth 3 terms, there are nine that contain x(xx)
as a subterm and nine with (xx)x as a subterm. The result follows by an argument similar
to the one for the second part of Lemma 5.3.
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Lemma 5.5 In any 11-element characteristic 4-normal algebra, the two level 2 elements
have different squares and do not commute with each other.

Proof: To see the first part, consider the identity [x(xx)][x(xx)] ≈ [(xx)x][(xx)x]. By
the previous Lemma, both the left and right sides are squares of level 2 elements; if both
squares were equal this identity could not be broken.

To see that the non-square products are distinct, consider again the identity from the first
part of the proof of Lemma 5.3.

Lemma 5.6 In any 11-element characteristic 4-normal algebra, there exists an element
m ∈ L2 such that either wm = mm for any w ∈ L2 or mw = mm for any w ∈ L2.

Proof: Let p and q be the elements of level 2, and suppose that pq �∈ {pp, qq} and
qp �∈ {pp, qq}. From the previous Lemma pp �= qq and pq �= qp. Thus, since all products of
level 2 elements are at level 3 or higher, we have at least four elements at level 3 or higher.
But as noted above |L3| + |L4| = 3, so it must be the case that either pq = pp or qq, or
qp = pp or qq, proving the result.

Lemma 5.7 For any 11-element characteristic 4-normal algebra, any level 2 element with
the property of the special element m from Lemma 5.6 is the square of exactly one level 1
element.

Proof: Suppose there are two level 1 elements p and q with pp = qq = m, where m has
the property that wm = mm for all w ∈ L2. Consider the three terms [x(xx)][(xx)(xx)],
[(xx)x][(xx)(xx)], and [(xx)(xx)][(xx)(xx)]. From Lemma 5.1, we know p = p0p0 and q =
q0q0, for two distinct level 0 elements p0 and q0. Substituting either of p0 or q0 for x then
makes our three terms equal. Substituting the remaining level 0 element for x causes all of
(xx)(xx), x(xx), and (xx)x to output a level 2 element. Since |L2| = 2, two of these terms
must give the same output. If s and t are those two terms, then s[(xx)(xx)] and t[(xx)(xx)]
agree on that input, and the identity s[(xx)(xx)] ≈ t[(xx)(xx)] is satisfied by the algebra,
violating 4-normality.

If mw = mm for all w ∈ L2 instead, the result follows from a similar argument using the
terms [(xx)(xx)][x(xx)], [(xx)(xx)][(xx)x], and [(xx)(xx)][(xx)(xx)].

A consequence of Lemmas 5.7 and 5.3 is that the special element m is unique in level 2.
We shall henceforth assume that this element m has the property that wm = mm for all
w ∈ L2; the arguments for the other case are analogous.

We showed in Lemma 5.2 that any product of two level 0 elements must be in level 1. Now
we consider whether the product of two level 1 elements is always at level 2, or whether
some products can “jump” a level, to level 3 or 4. With the results we have so far, we
can now rule out the existence of a characteristic 4-normal algebra in which all products
between level 1 elements are at level 2. To do this, we need to consider the full terms on
two variables. Such terms can be expressed as st, where s and t are terms of depth 2 that
use variables x and/or y, taken from the following list of terms:
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(xx)(xx), (yx)(xx), (xy)(xx), (xx)(yx),
(xx)(xy), (yy)(xx), (yx)(yx), (yx)(xy),
(xy)(xy), (xy)(yx), (xx)(yy), (yy)(yx),
(yy)(xy), (yx)(yy), (xy)(yy), (yy)(yy).

Let s �= t be two of these full depth 2 terms. The regular depth 3 identity st ≈ ts must be
broken by level 0 elements. This means that for any two such terms s �= t, there must be a
level 0 input pair (p0, q0) making sA4(p0, q0) �= tA4(p0, q0). Let td denote the dual of t, that
is, the term obtained from t by interchanging the variables x and y. If t evaluates to the
same output on dual substitutions (that is, if tA4(a0, b0) = tA4(b0, a0) for all a0,b0 ∈ L0),
then t and td are equal on all level 0 substitutions and ttd ≈ tdt is satisfied. This violates
4-normality, so cannot happen.

Lemma 5.8 There does not exist an 11-element characteristic algebra for 4-normality in
which every product of two level 1 elements is at level 2.

Proof: Suppose that such an algebra exists. To deduce a contradiction, we consider
a sixteen-by-six table of outputs for the algebra, constructed as follows. Each row of the
table corresponds to one of the sixteen depth 2 terms listed above; each column of the table
corresponds to one level 0 input pair (p0, q0). The entry in the row for t and the column for
(p0, q0) gives the output tA4(p0, q0). By our assumption, each entry in the table is at level
2, so is either the special element m or the remaining level 2 element n. As noted above,
for any two terms s and t from the list, there must be a column in which the two terms
have a different output.

We first claim that in our algebra no depth 2 term t can evaluate to the element m more
than twice; that is, no row of the table can contain more than two m entries. To show this,
we define for any term t from the list above of depth 2 terms, the set St of terms of the form
rt, where r is a depth 2 full-shape term using both variables x and y. This set of terms
has fourteen elements, which must be separated from each other using the six level 0 input
pairs. By assumption, the output of any such term r on a level 0 input pair has level 2, so
is one of the two level 2 elements m and n. With two outputs available, it takes at least
four input pairs to ensure 24 > 14 distinct outcomes to separate the fourteen terms. Now
suppose that for some level 0 input pair (p0, q0) we have tA4(p0, q0) = m. Then no matter
whether rA4(p0, q0) takes the value n or m, all terms in the set St have value nm = mm =
m on this input pair. Thus any level 0 input pair which gives t a value of m is essentially
useless in separating the fourteen terms from St. To ensure at least four useful input pairs,
we can have at most two input pairs which give t a value of m.

Using this claim, we consider how many rows are available for use in our table. Based on
six level 0 input pairs, there are six different ways that a term can evaluate to m exactly
once, and

(
6
2

)
= 15 ways to evaluate to m exactly twice. This gives twenty-one possible

rows available for our output table. But three of the fifteen ways to have two m entries are
instances where a term is equal on dual substitutions, which we noted above cannot occur.
Excluding these rows leaves us with eighteen possible rows.

Now, by Lemmas 5.1, 5.2, and 5.3, m occurs as the square of exactly one level 1 element,
say m1, and m1 in turn is the square of exactly one level 0 element, m0. Of the six different
level 0 input pairs, the term (xx)(xx) evaluates to m exactly twice – on inputs where m0

is substituted for x – and (yy)(yy) outputs m on the two dual pairs.
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We shall say that a term u overlaps a term t if t outputs m exactly once, on a level 0
input pair where u outputs m. If there exist terms s and t such that (xx)(xx) overlaps
both s and t, then s[(xx)(xx)] ≈ t[(xx)(xx)] will hold in the algebra: both s[(xx)(xx)] and
t[(xx)(xx)] will output mm on the inputs where x is replaced by m0, and output the other
square nn for all other inputs. Note that this situation occurs iff (yy)(yy) overlaps sd and
td. This means that to preserve 4-normality, (xx)(xx) and (yy)(yy) can each overlap at
most one term. Therefore, there can only be four terms that evaluate to m once, two that
are not overlapped by either of (xx)(xx) and (yy)(yy), one overlapped by (xx)(xx), and
one overlapped by (yy)(yy) (the latter two will be dual terms).

We are now left with exactly 12+4 = 16 possible arrangements for rows in our output table,
to separate our sixteen terms. There must be two terms that are not overlapped by either of
(xx)(xx) and (yy)(yy), one term overlapped by (xx)(xx), one overlapped by (yy)(yy), and
twelve terms exhausting all ways to output m exactly twice on non-dual substitutions. In
particular, there must be a term r that overlaps terms u and v, one of which is overlapped by
(xx)(xx), and the other overlapped by neither (xx)(xx) nor (yy)(yy) (note that this means
that u and v output m on non-dual substitutions). But then the non-4-normal identity
ur ≈ vr is satisfied in the algebra, which is a contradiction.

Having eliminated algebras in which all products of level 1 elements remain at level 2, we
are left with the case of a possible characteristic algebra in which some product of level 1
elements is at level 3 or 4. To rule out this case we show again that such an algebra cannot
break all identities between full-shape depth 3 terms, but we use a different approach.

Let us call the four depth 1 terms (xx), (xy), (yx), and (yy) atoms. In this case we consider
sets of full-shape depth 3 terms that are composed of two atoms. For instance, the term
[(xx)(xy)][(xy)(xy)] uses the two atoms (xx) and (xy). For each choice of two atoms there
are sixteen terms, which relate quite naturally to the sixteen full-shape depth 2 terms on
two variables displayed above, by associating each atom with one of the variables. In each
group, all but one or two terms contain both variables (the only exceptions are those terms
only composed of the (xx) atom or the (yy) atom), so most identities between them are
regular, and must be broken using level 0 elements. Since every product of two level 0
elements is a level 1 element, and each term in a group relates to one of the full-shape
depth 2 terms, breaking any regular identity between two terms in one of these sets of
depth 3 terms is equivalent to breaking the underlying identity between depth 2 terms
using only substitutions at level 1. To place some additional constraints upon a candidate
characteristic algebra, we consider what breaking depth 2 identities in this way requires,
always restricting our attention to terms u and v that contain both variables to ensure
regularity.

To break the identity (uu)(uv) ≈ (uv)(uv) using level 1 elements, it cannot happen that
uv outputs either m or an element in Li for i ≥ 3. In the first case both terms will output
mm because the output of uu must be a level 2 element, and in the second case both terms
will output the absorbing element. Thus, uv must output the other level 2 element, n, and
uu must output m. Therefore, there must exist a pair of level 1 elements, p1, q1, such that
p1p1 = m and p1q1 = n.

A similar argument regarding (uu)(vu) ≈ (vu)(vu) shows that there must exist level 1
elements r1, s1 such that r1r1 = m and s1r1 = n. Since by Lemma 5.7 m is the square of
only one level 1 element, we must have r1 = p1. Note that once these requirements are met,
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the dual inputs (q1, p1) and (s1, r1) will break the dual identities (vv)(vu) ≈ (vu)(vu) and
(vv)(uv) ≈ (uv)(uv), respectively. It is also important to realize that unless there is more
than one pair of elements satisfying these properties, the pairs (p1, q1), (q1, p1), (p1, s1), and
(s1, p1) are the only inputs that will break these four identities. Thus, to ensure that all of
the related identities between full-shape depth 3 terms in each set are broken, there must be
a substitution by level 0 elements so that each pair of atoms induces each of these required
level 1 inputs. This means, for example, that to break the related identities between depth
3 terms composed of the (xx) and (xy) atoms, there must be a substitution by level 0
elements for which xx gives p1 and xy gives q1, one where xx gives q1 and xy gives p1, one
where xx gives p1 and xy gives s1, and one where xx gives s1 and xy gives p1. The same
must also be true for every other pair of atoms. From this, we can now prove that there
must be a commuting pair of elements which satisfies both of the above requirements.

Lemma 5.9 Let m and n be the two elements at level 2 in an 11-element characteristic
4-normal algebra. Then there exist elements p1, q1 ∈ L1 such that p1p1 = m and p1q1 =
q1p1 = n.

Proof: We know from the discussion above that there is an element p1 such that p1p1

= m, and elements q1 and s1 such that p1q1 = s1p1 = n. Only the four inputs from the
pairs p1, q1 and p1, s1 can break the four identities given above. If neither of these pairs
commute, then q1p1 and p1s1 equal either m or an element from level 3 or higher, neither
of which possibilities will break the identities in question; so each of the four substitutions
from both pairs is the only one to break some identity. Therefore, there must be inputs
of level 0 elements such that (xx) and (xy) induce all of these inputs. We know that p1

is the square of exactly one level 0 element, call it p0, and we let the other two level 0
elements be q0 and s0. Then, one of p0q0 and p0s0 must equal q1 and the other must equal
s1. To have (yy) and (xy) induce these substitutions, one of q0p0 and s0p0 must equal q1

and the other s1. This makes it impossible for (xy) and (yx) to induce all the necessary
inputs, since for all four level 0 inputs where p0 is substituted for x or y, (xy) and (yx)
will only induce inputs involving q1 and s1, none of the required ones. The remaining two
level 0 substitutions (using q0 and s0) can only be used to induce two of the four inputs
needed. Thus some identities between depth 3 terms using atoms (xy) and (yx) will remain
unbroken in the algebra. Hence, there must be a commuting pair of level 1 elements.

Let a1, b1, and c1 be the three level 1 elements in our potential 4-normal algebra. Suppose,
without loss of generality, that a1a1 = m and a1b1 = b1a1 = n, as required by Lemma 5.9.
By assumption, one of the pairs a1, c1 or b1, c1 has a product (in one order or the other)
equal to a level 3 or higher element. Suppose, for instance, that c1a1 is at level 3 or 4; the
remaining three cases are handled analogously. Then the terms (uv)(vu) and (vu)(uv) both
output the absorbing element on the level 1 input pairs (a1, c1) and (c1, a1). This means
that these two input pairs do not break the depth 2 identity (uv)(vu) ≈ (vu)(uv). The
pairs (a1, b1) and (b1, a1) also do not break this identity: both terms output nn on these
inputs. To break this identity, then, the remaining pair of elements, b1 and c1, must have
b1c1 �= c1b1 and both products b1c1 and c1b1 must be at level 2. That is, there must be a
pair of level 1 elements which do not commute and whose products are both at level 2. Now
breaking the related depth 3 identities depends on each pair of atoms inducing, in addition
to (a1, b1) and (b1, a1), either one of the two inputs obtained from this non-commuting pair,
which is impossible.
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Now we are ready to eliminate the final possible case.

Lemma 5.10 There does not exist an 11-element characteristic 4-normal algebra that con-
tains any pair of level 1 elements with products at level 3 or higher.

Proof: We retain the assumptions detailed in the previous paragraph, that a1a1 = m
and a1b1 = b1a1 = n. As discussed above, in any such algebra every pair of atoms must
induce the level 1 inputs (a1, b1), (b1, a1), and either (w1, z1) or (z1, w1), where w1, z1 is the
pair of level 1 elements that do not commute and whose products are both level 2 elements.
Thus, w1, z1 is either a1, c1 or b1, c1.

Because there are sixteen terms consisting of the atoms (xy) and (yx), breaking all of the
identities between those terms requires at least three different level 0 input pairs in which
(xy) and (yx) do not have the same output. Therefore, at level 0 there can be at most one
commutative pair of elements, since having two commuting pairs would force us to use two
different level 0 input pairs in which xy and yx do not have the same output, which is not
possible.

Let a0, b0, and c0 be the three level 0 elements, and let a0a0 = a1, b0b0 = b1, and c0c0

= c1. Note that to ensure that (xx) and (xy) induce (a1, b1) and (b1, a1), one of a0b0 and
a0c0 must equal b1 and one of b0a0 and b0c0 must equal a1. To ensure that (yy) and (xy)
induce the same inputs, one of b0a0 and c0a0 must equal b1, and one of a0b0 and c0b0 must
equal a1. This is equivalent to saying that, in the 3× 3 block of the operation table for the
algebra dealing with products among level 0 elements, there must be a b1 in both the row
and column where a1 is a square, and there must be an a1 in the row and column where b1

is a square. But it is impossible to have a0b0 = b0a0 = a1, since then it must also be the
case that a0c0 = c0a0 = b1, so that both a0, b0 and a0, c0 are commuting pairs of elements,
which cannot happen. Likewise, it is impossible that a0b0 = b0a0 = b1 since that would
force b0c0 = c0b0 = a1.

This leaves three main possibilities: 1) a0 commutes with c0 to give b1, 2) b0 commutes with
c0 to give a1, or 3) neither a0 nor b0 commutes with c0. Each of these cases has subcases
depending upon whether the pair w1, z1 is a1, c1 or b1, c1. A case by case analysis then
shows that in each possible case, there is no way to define multiplication in a candidate
algebra so that each pair of atoms induces the inputs necessary to break all the identities
among its related set of depth 3 terms. Every algebra with a pair of level 1 elements whose
product is an element of level 3 or higher will necessarily satisfy some identity that is not
4-normal.

This together with Lemma 5.8 proves the following.

Theorem 5.11 There does not exist an 11-element algebra which is characteristic for 4-
normality.
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