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Abstract. Through the application a suitable version of Noether’s theorem to the
composite variational principle, a new method was investigated for the derivation of
conserved quantities for second order differential system. In this article, the variables
provided for higher order differential system are arranged to convert the system into the
second order one. And then the method is applied effectively to construct conserved
quantities of the higher order differential system.

Introduction. Noether’s theorem (Noether [7]) has been extensively initiated for the
derivation of conserved quantities based on the symmetries in the Lagrangian or the Hamil-
tonian structures. However, without using the structures (which may fail to exist), Caviglia
([2], [3]) determined the new operative procedure for the quantities via the application of a
suitable version of Noether’s theorem to the composite variational principle. The procedure
was analyzed by Mimura and Nôno [6] with various viewpoints for the derivation of the
quantities of a given second order differential system. Following Sarlet and Cantrijn [8],
Mimura, Ikeda and Fujiwara [5] introduced some geometric notions associating with the
equation field of the differential system to construct the quantities. The local version of the
result in [6] was reformulated in [5] with the geometric notions.

In this paper, we give a further derivation of conserved quantities of higher order dif-
ferential system by virtue of the method in [6], while some results in [6] were translated
by Crâşmăreanu [4] for higher order one with the extended notion of adjoint for a linear
operator. Arranging the original variables in higher order differential system, the system
is converted into a second order one to apply the method (Remark 2 of Theorem 1 in [6]).
The result in the consideration is carried into the case of higher order differential system,
and one arrives at the theorem 1. Some postulations are imposed on unknown functions
which give rise to the conserved quantities. Then the theorem 1 deduces to the theorem 2.
In the context of the deduction, it can be observed that the theorem 2 is equivalent to the
result of Crâşmăreanu [4]. Moreover the theorem 2 yields the theorem 3 by imposing an
arbitrary degree of homogeneity on the higher order differential system. As illustrations for
two types of third order differential equations, conserved quantities are constructed through
which the solutions of the equations are determined completely.

1 Conserved quantity for higher order differential system. We set our starting
point for a given k-th order differential system

FA(t, x, ẋ, · · · , x(k)) = 0 (A = 1, · · · , n; k ≥ 2),(1)

where x = (xσ(t)), ẋ = (ẋσ(t)) = (dxσ/dt), x(k) = (dkxσ/dtk), (σ = 1, · · · , m; m ≥ n). A
conserved quantity of the system (1) is a quantity Ω(t, x, ẋ, · · · , x(k−1)) satisfying dΩ/dt = 0
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on solutions to (1), where d/dt denotes the total differentiation with respect to t:

d

dt
=

∂

∂t
+ ẋ

∂

∂x
+ ẍ

∂

∂ẋ
+ · · · + x(k+1) ∂

∂x(k)
,

where ẋ∂/∂x =
∑m

σ=1 ẋσ∂/∂xσ, ẍ∂/∂ẋ =
∑m

σ=1 ẍσ∂/∂ẋσ and so on. Particularly for a
second order differential system, new derivation of conserved quantity has been given in
([6], Theorem 1 and its Remark 2). So by putting (in what follows the bracket [ ] denotes
Gauss’s symbol)

d2pxσ

dt2p
= yσ

p (σ = 1, · · · , m; p = 1, · · · , [k
2 ]),(2)

the k-th order system (1) is converted into a second order one:{
FA(t, y0, y1, · · · , y[ k

2 ], ẏ0, ẏ1, · · · , ẏ[ k−1
2 ]) = 0

ÿσ
p−1 − yσ

p = 0
(3)

(A = 1, · · ·n; σ = 1, · · · , m, m ≥ n; p = 1, · · · , [k
2 ]),

where y0 = (yσ
0 (t)) = (xσ(t)), yp = (yσ

p (t)) (p = 1, · · · , [k
2 ]), ẏ0 = (ẏσ

0 (t)) = (ẋσ(t)),
ẏr = (ẏσ

r (t)) (r = 1, · · · , [k−1
2 ]). Then by regarding the variables y = (y0, y1, · · · , y[ k

2 ]) as
q = (qκ), (κ = 1, · · · , ([k

2 ] + 1)n), the method in ([6], Remark 2 of Theorem 1) is applied to
(3) to obtain the following theorem.

Theorem 1 Let µ = (µ0
A, µ1

σ, · · · , µ
[ k
2 ]

σ ) and ξ = (ξσ
0 , ξσ

1 , · · · , ξσ
[ k
2 ]

) be functions of
t, y0, y1, · · · , y[ k−1

2 ], ẏ0, ẏ1, · · · , ẏ[ k
2 ]−1 satisfying the following system of equations on so-

lutions to (3) :

µ̈1
σ +

n∑
A=1

µ0
A

∂FA

∂yσ
0

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
0

)
= 0 (σ = 1, · · · , m),(4)

µ
[ k
2 ]

σ =
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]

)
(σ = 1, · · · , m),(5)

n∑
A=1

m∑
σ=1

µ0
A

⎛
⎝ [ k

2 ]∑
�=0

∂FA

∂yσ
�

ξσ
� +

[ k−1
2 ]∑

�=0

∂FA

∂ẏσ
�

ξ̇σ
�

⎞
⎠+

m∑
σ=1

[ k
2 ]∑

�=1

µ�
σ(ξ̈σ

�−1 − ξσ
� ) =

dK

dt
,(6)

where K is a function of t, y0, y1, · · · , y[ k−1
2 ], ẏ0, ẏ1, · · · , ẏ[ k

2 ]−1; and if k ≥ 4, moreover

µ�
σ = µ̈�+1

σ +
n∑

A=1

µ0
A

∂FA

∂yσ
�

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
�

)
(7)

(σ = 1, · · · , m; � = 1, · · · , [k
2 ] − 1).
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Then, by using of the above µ and ξ, the following quantity Ω satisfing Ω̇ = 0 on solutions
to (3) is constructed :

Ω =
m∑

σ=1

[ k
2 ]∑

�=1

(µ�
σ ξ̇σ

�−1 − µ̇�
σξσ

�−1) +
n∑

A=1

m∑
σ=1

[ k−1
2 ]∑

�=0

µ0
A

∂FA

∂ẏσ
�

ξσ
� − K,(8)

which gives rise to a conserved quantity of (1) by denoting µ�
σ, ξσ

� , FA and K as functions
of the original variables t, x, ẋ, · · · , x(k−1).

Remark 1 Here note that [k−1
2 ] is equal to [k

2 ] − 1 (k: even), or to [k
2 ] (k: odd). Ac-

cordingly, if k is even, FA in (3) does not have the variables ẏσ
[ k
2 ]

, i.e., ∂FA/∂ẏσ
[k
2 ]

= 0. So

that the term
∑n

A=1 µ0
A∂FA/∂ẏσ

[k
2 ] may be deleted in the appearance of (5).

When k ≥ 4, at first, (5) is substituted for µ̈
[ k
2 ]

σ in (7) with � = [k
2 ] − 1 to see

µ
[ k
2 ]−1

σ = µ̈
[ k
2 ]

σ +
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]−1

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]−1

)

=
d2

dt2

(
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]

))

+
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]−1

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]−1

)

=
n∑

A=1

1∑
i=0

d2(1−i)

dt2(1−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

− d

dt

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
,

where d0F/dt0 denotes that d0F/dt0 = F for an arbitrary function F . And then the

appearance of µ
[ k
2 ]−1

σ is substituted for µ̈
[ k
2 ]−1

σ in (7) with � = [k
2 ] − 2 to see

µ
[ k
2 ]−2

σ = µ̈
[ k
2 ]−1

σ +
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]−2

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]−2

)

=
n∑

A=1

1∑
i=0

d2(1−i)+2

dt2(1−i)+2

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

− d

dt

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))

+
n∑

A=1

µ0
A

∂FA

∂yσ
[ k
2 ]−2

− d

dt

(
n∑

A=1

µ0
A

∂FA

∂ẏσ
[ k
2 ]−2

)

=
n∑

A=1

2∑
i=0

d2(2−i)

dt2(2−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

− d

dt

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
,
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and so on. Finally, it follows that

µ�
σ =

n∑
A=1

[ k
2 ]−�∑
i=0

(
d2([ k

2 ]−�−i)

dt2([
k
2 ]−�−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−�−i)+1

dt2([
k
2 ]−�−i)+1

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
(9)

(σ = 1, · · · , m; � = 1, · · · , [k
2 ]; k ≥ 4).

For k ≥ 4 and � = 1, (9) is written as

µ1
σ =

n∑
A=1

[ k
2 ]−1∑
i=0

(
d2([ k

2 ]−i−1)

dt2([
k
2 ]−i−1)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−i)−1

dt2([
k
2 ]−i)−1

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
.(10)

When k = 2 or k = 3, (10) is coincide with (5). Therefore, (10) is valid for k ≥ 2 (while it
is derived from (5) and (7) for k ≥ 4). The total differentiation of (10) with respect to t is
substituted for (4) to have

n∑
A=1

[ k
2 ]∑

i=0

(
d2([ k

2 ]−i)

dt2([
k
2 ]−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−i)+1

dt2([
k
2 ]−i)+1

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
= 0(11)

(σ = 1, · · · , m; k ≥ 2).

Remark 2 By putting yσ
0 ≡ xσ and yσ

1 = ẍσ, a second order differential system (1)
with k = 2:

FA(t, x, ẋ, ẍ) = 0

is converted into

(3)′
{

FA(t, y0, y1, ẏ0) = 0

ÿσ
0 − yσ

1 = 0
(A = 1, · · · , n; σ = 1, · · · , m).

In this case, (11) reduces to

(11)′
n∑

A=1

(
µ0

A

∂FA

∂yσ
0

− d

dt

(
µ0

A

∂FA

∂ẏσ
0

)
+

d2

dt2

(
µ0

A

∂FA

∂yσ
1

))
= 0.

And (10) (or (5) with k = 2) is substituted for (6) with k = 2 to see
n∑

A=1

m∑
σ=1

µ0
A

(
∂FA

∂yσ
0

ξσ
0 +

∂FA

∂ẏσ
0

ξ̇σ
0 +

∂FA

∂yσ
1

ξ̈σ
0

)
=

dK

dt
.(12)

Therefore, the functions µ0
A(t, y0, ẏ0) and ξσ

0 (t, y0, ẏ0) satisfying (11)′ and (12) on solutions
to (3)′ yields the following quantity Ω satisfing Ω̇ = 0 on solutions to (3)′:

(8)′ Ω =
n∑

A=1

m∑
σ=1

(
µ0

A

∂FA

∂yσ
1

ξ̇σ
0 +

(
µ0

A

∂FA

∂ẏσ
0

− d

dt

(
µ0

A

∂FA

∂yσ
1

))
ξσ
0

)
− K(t, y0, ẏ0).

By denoting yσ
0 , ẏσ

0 and yσ
1 as the original variables xσ, ẋσ and ẍσ respectively, (8)′ turns

into the conserved quantities obtained in ([6], Remark 2 of Theorem 1):

Ω =
n∑

A=1

m∑
σ=1

(
µ0

A

∂FA

∂ẍσ
ξ̇σ
0 +

(
µ0

A

∂FA

∂ẋσ
− d

dt

(
µ0

A

∂FA

∂ẍσ

))
ξσ
0

)
− K(t, x, ẋ).
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For an arbitrary given ξσ
0 in (6), particularly put ξσ

� = d2�ξσ
0 /dt2� i.e., ξσ

� = ξ̈σ
�−1 (σ =

1, · · · , m; � = 1, · · · , [k
2 ]). Then (6) reduces to

n∑
A=1

m∑
σ=1

µ0
A

⎛
⎝ [ k

2 ]∑
�=0

∂FA

∂yσ
�

d2�ξσ
0

dt2�
+

[ k−1
2 ]∑

�=0

∂FA

∂ẏσ
�

d2�+1ξσ
0

dt2�+1

⎞
⎠ =

dK

dt
,(13)

which is just the equation (1.10b) in (Crâşmăreanu [4], Theorem). Therefore the result of
Crâşmăreanu is concluded completely in the theorem 1:

Theorem 2 Let µ0
A and ξσ

0 be functions of t, y0, y1, · · · , y[ k−1
2 ], ẏ0, ẏ1, · · · , ẏ[ k

2 ]−1 satis-
fying the equations (11) and (13) on solutions to (3). Then the following quantity Ω satisfing
Ω̇ = 0 on solutions to (3) is constructed :

Ω =
n∑

A=1

m∑
σ=1

[ k
2 ]∑

�=1

[ k
2 ]−�∑
i=0

(
d2([ k

2 ]−�−i)

dt2([
k
2 ]−�−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−�−i)+1

dt2([
k
2 ]−�−i)+1

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
d2�−1ξσ

0

dt2�−1

−
n∑

A=1

m∑
σ=1

[ k
2 ]∑

�=1

[ k
2 ]−�∑
i=0

(
d2([ k

2 ]−�−i)+1

dt2([
k
2 ]−�−i)+1

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−�−i+1)

dt2([
k
2 ]−�−i+1)

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
d2(�−1)ξσ

0

dt2(�−1)

+
n∑

A=1

m∑
σ=1

[ k−1
2 ]∑

�=0

µ0
A

∂FA

∂ẏσ
�

d2�ξσ
0

dt2�
− K (k ≥ 2),

(14)

which gives rise to a conserved quantity of (1) by denoting µ0
A, ξσ

0 , FA and K as functions
of the original variables t, x, ẋ, · · · , x(k−1).

Remark 3 If k is even, the term ∂FA/∂ẏσ

[
k
2 ]

in (11), (13) and (14) may be deleted (see

Remark 1).

Remark 4 Here note that (13) is derived by putting ξσ
� = d2�ξσ

0 /dt2� (σ = 1, · · · , n;
� = 1, · · · , [k

2 ]). But whenever k = 2, it can be directely obtained by substituting (10) for
(6) without the postulation ξσ

1 = ξ̈σ
0 .

Here we impose on FA an arbitrary degree s of homogeneity with respect to yσ
� (σ =

1, · · · , n; � = 0, · · · , [k
2 ]) and ẏσ

� (σ = 1, · · · , n; � = 0, · · · , [k−1
2 ]) to have the identity:

m∑
σ=1

⎛
⎝ [ k

2 ]∑
�=0

∂FA

∂yσ
�

yσ
� +

[ k−1
2 ]∑

�=0

∂FA

∂ẏσ
�

ẏσ
�

⎞
⎠ = sFA,(15)

which vanishes on solutions to (3). In viewing of yσ
p = ÿσ

p−1 in (3), since

yσ
p =

d4ÿσ
p−2

dt4
= · · · =

d2pÿσ
0

dt2p
,

(15) guarantees that ξσ
0 = yσ

0 satisfies (13) with K = 0 on solutions to (3). Therefore the
theorem 2 reduces to
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Theorem 3 Let FA in (3) be homogeneous function of degree s with respect to y0, y1,
· · · , y[ k−1

2 ], ẏ0, ẏ1, · · · , ẏ[ k
2 ]−1. Then the function µ0

A of t, y0, y1 · · · , y[ k−1
2 ], ẏ0, ẏ1, · · · , ẏ[ k

2 ]−1

satisfying the equation (11) on solutions to (3) yields the following quantity Ω satisfing Ω̇ = 0
on solutions to (3) :

Ω =
n∑

A=1

m∑
σ=1

[ k
2 ]∑

�=1

[ k
2 ]−�∑
i=0

(
d2([ k

2 ]−�−i)

dt2([
k
2 ]−�−i)

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−�−i)+1

dt2([
k
2 ]−�−i)+1

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
d2�−1yσ

0

dt2�−1

−
n∑

A=1

m∑
σ=1

[ k
2 ]∑

�=1

[ k
2 ]−�∑
i=0

(
d2([ k

2 ]−�−i)+1

dt2([
k
2 ]−�−i)+1

(
µ0

A

∂FA

∂yσ
[ k
2 ]−i

)
− d2([ k

2 ]−�−i+1)

dt2([
k
2 ]−�−i+1)

(
µ0

A

∂FA

∂ẏσ
[ k
2 ]−i

))
d2(�−1)yσ

0

dt2(�−1)

+
n∑

A=1

m∑
σ=1

[ k−1
2 ]∑

�=0

µ0
A

∂FA

∂ẏσ
�

d2�yσ
0

dt2�
(k ≥ 2),

(16)

which gives rise to a conserved quantity of (1) by denoting µ0
A and FA as functions of the

original variables t, x, ẋ, · · · , x(k−1).

2 A reduction to a third order differential system. Particularly consider third
order differential system

(1)′′ FA(t, x, ẋ, ẍ,
...
x ) = 0 (A = 1, · · · , n).

By putting xσ = yσ
0 and ẍσ = yσ

1 (σ = 1, · · · , m), the system (1)′′ can be converted into a
second order one:

(3)′′
{

FA(t, y0, y1, ẏ0, ẏ1) = 0

ÿσ
0 − yσ

1 = 0
(A = 1, · · · , n; σ = 1, · · · , m).

Then the theorem 3 reduces to

Corollary. Let FA in (3)′′ be homogeneous function of degree s with respect to
y0, y1, ẏ0, ẏ1. Then the function µ0

A of t, y0, y1, ẏ0 satisfying the equation

(11)′′
n∑

A=1

(
d3

dt3

(
µ0

A

∂FA

∂ẏσ
1

)
− d2

dt2

(
µ0

A

∂FA

∂yσ
1

)
+

d

dt

(
µ0

A

∂FA

∂ẏσ
0

)
− µ0

A

∂FA

∂yσ
0

)
= 0

on solutions to (3)′′ yields the following quantity Ω satisfying Ω̇ = 0 on solutions to (3)′′ is
constructed:
(16)′

Ω =
n∑

A=1

m∑
σ=1

(
µ0

A

∂FA

∂yσ
1

− d

dt

(
µ0

A

∂FA

∂ẏσ
1

))
ẏσ
0 −

n∑
A=1

m∑
σ=1

(
d

dt

(
µ0

A

∂FA

∂yσ
1

)
− d2

dt2

(
µ0

A

∂FA

∂ẏσ
1

))
yσ
0

+
n∑

A=1

m∑
σ=1

µ0
A

(
∂FA

∂ẏσ
0

+
∂FA

∂ẏσ
1

ÿσ
0

)
,

which gives rise to a conserved quantity of (1)′′ by denoting µ0
A and FA as functions of the

original variables t, x, ẋ, ẍ.
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Example 1. First consider the following linear differential equation

...
x − a

t2
ẋ = 0 (a: const., a > − 1

4 ).(17)

By putting x = y0 and ẍ = y1, (17) is converted into a second order system⎧⎨
⎩

ẏ1 − a

t2
ẏ0 = 0

ÿ0 − y1 = 0,
(18)

in which ẏ1 − (a/t2)ẏ0 is homogeneous function of degree one with respect to ẏ0 and ẏ1.
The equation (11)′′ reduces to

...
µ 0 − d

dt

( a

t2
µ0
)

= 0,(19)

which is integrated as

µ̈0 − a

t2
µ0 = C (C: const.).(20)

Here put µ0 = tm (m: const.). Then the homogeneous equation of (20) is written as

µ̈0 − a

t2
µ0 = (m2 − m − a)tm−2 = 0,(21)

whose solution is
µ0 = C1t

m1 + C2t
m2 (C1, C2: const.),

where m1 and m2 are the constants:

m1 =
1 +

√
1 + 4a

2
, m2 =

1 −√
1 + 4a

2
.

Accordingly, since µ0 = t2 is a solution of (19) (also (20)), the solution of (19) is determined
as

µ0 = C1t
m1 + C2t

m2 + C3t
2 (C1, C2, C3: const.),

which is substituted for (16)′ to obtain the conserved quantity:

Ω = C1(tm1y1 − m1t
m1−1ẏ0) + C2(tm2y1 − m2t

m2−1ẏ0) + C3(t2y1 − 2tẏ0 + (2 − a)y0).
(22)

Since C1, C2 and C3 are arbitrary constants, (22) includes the following three conserved
quantities:

Ω1 = tm1 ẍ − m1t
m1−1ẋ,

Ω2 = tm2 ẍ − m2t
m2−1ẋ,

Ω3 = t2ẍ − 2tẋ + (2 − a)x,

which are independent if∣∣∣∣∣∣∣∣
tm1 −m1 0

tm2 −m2 0

t2 −2t 2 − a

∣∣∣∣∣∣∣∣
= (2 − a)(m1t

m2 − m2t
m1) �= 0.
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When a �= 2, by eliminating ẍ and ẋ in Ω1, Ω2 and Ω3, the solution of (17) is determined
immediately as

x = A1t
2−m1 + A2t

2−m2 + A3,

where A1, A2 and A3 are the constants:

A1 =
2 − m2

(2 − a)(m2 − m1)
Ω1, A2 =

2 − m1

(2 − a)(m2 − m1)
Ω2, A3 =

1
2 − a

Ω3.

When a = 2, it follows that Ω1 = Ω3, which and Ω2 lead respectively to

Ω1 = Ω3 = t2ẍ − 2tẋ,

Ω2 =
ẍ

t
+

ẋ

t2
.

In Ω1 and Ω2, ẍ is eliminated to have

ẋ =
a2

3
t2 − a1

3
1
t
,

which is integrated as
x = B1 log |t| + B2t

3 + B3,

where B1 = −Ω1/3, B2 = Ω2/9 and B3 are arbitrary constants.

Example 2. Next consider the following linear differential equation

...
x + f(t)ẍ = 0.(23)

By putting x = y0 and ẍ = y1, (23) is converted into a second order system

{
ẏ1 + f(t)y1 = 0

ÿ0 − y1 = 0.
(24)

Then (11)′′ reduces to

d3µ0

dt3
− d2

dt2
f(t)µ0 = 0, i.e., µ̇0 − f(t)µ0 = C1t + C2 (C1, C2: const.),

whose solution

µ0 = e
�

f(t)dt

(
C1

∫
te−

�
f(t)dtdt + C2

∫
e
�

f(t)dtdt + C3

)
(C1, C2, C3: const.)

is substituted for (16)′ to construct the conserved quantity

Ω = C1

(
−ty0 + y0 + y1e

�
f(t)dt

∫
te−

�
f(t)dtdt

)

+C2

(
−ẏ0 + y1e

�
f(t)dt

∫
e−

�
f(t)dtdt

)
+ C3y1e

�
f(t)dt.

(25)
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Since C1, C2 and C3 are arbitrary constants, (25) includes the following conserved quanti-
ties:

Ω1 = −tẋ + x + ẍe
�

f(t)dt

∫
te−

�
f(t)dtdt,

Ω2 = −ẋ + ẍe
�

f(t)dt

∫
e−

�
f(t)dtdt,

Ω3 = ẍe
�

f(t)dt,

in which ẍ and ẋ is eliminated to determine the solution of (23):

x = Ω1 − Ω2t + Ω3

(
t

∫
e−

�
f(t)dtdt −

∫
te−

�
f(t)dtdt

)
,

where Ω1, Ω2 and Ω3 are arbitrary constants.
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