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SIMPLE INDUCTIVE LIMIT C∗-ALGEBRAS WITH STABLE RANK
FINITE

Takahiro SUDO

Received December 17, 2004

Abstract. We construct simple inductive limits of homogeneous C∗-algebras without
slow dimension growth and with stable rank finite. We also consider similarly such
inductive limits with real rank finite.

Introduction The theory of (topological) stable rank for C∗-algebras was initiated by
Rieffel [Rf1]. Successively, some results on the stable rank were obtained by Nistor [Ns] and
Rieffel [Rf2] (among other related papers). One of the most interesting problems about the
stable rank was whether there exists a (stably finite) simple C∗-algebra with stable rank
more than one (Blackadar [Bl2, Questions 4.2.4 to 4.2.6]). For this problem, Villadsen [Vl]
is the first to construct simple inductive limits of homogeneous C∗-algebras without slow
dimension growth and with stable rank more than one. Our first attempt is to understand
his construction and proofs since the proofs are much complicated and technical. With
some effort since some time before, we have obtained a simple, comprehensive proof for the
problem without using the argument of Villadsen from differential geometry involving the
Euler class of vector bundles. Namely, we construct simple inductive limits of homogeneous
C∗-algebras without slow dimension growth and bounded dimension and with stable rank
finite and real rank finite. Although our construction is standard (in a sense) and similar
with that of Villadsen, this paper could be a remedy for [Vl]. See also [RS, Example 3.1.7]
for the Goodearl’s construction of inductive limits, and [Ln, Definition 2.7]. For the proof,
we use a formula of the stable rank (and connected stable rank) for matrix algebras over
C∗-algebras ([Rf1], [Rf2]) and that of the real rank (Beggs-Evans [BE]).

For the convenience to the readers, we recall that a unital C∗-algebra A has stable rank
n = sr(A) if n is the smallest such that Ln(A) is dense in An, where Ln(A) is the set of
all elements (aj)nj=1 of An such that

∑n
j=1 a

∗
jaj are invertible in A. Also, A has connected

stable rank n = csr(A) if n is the smallest such that Lm(A) is connected for any m ≥ n
(see [Rf1]). Furthermore, A has real rank n = RR(A) if n is the smallest such that any
self-adjoint element of An+1 is approximated by self-adjoint elements (bj)nj=0 of An+1 such
that

∑n
j=0 b

2
j are invertible in A (see Brown-Pedersen [BP]). See also [Bl1] and [RLL].

1 The main results Let C(T2n) be the C∗-algebra of continuous functions on the 2n-
torus T2n. Let M2n(C(T2n2

)) be the 2n× 2n matrix algebra over C(T(2n)2 ). Let {x1
j} be a

dense sequence of T2n. Then we define a homomorphism ϕ1 from C(T2n) to M2n(C(T2n2
))

by
ϕ1(f) = (f ◦ π1)p1 ⊕ f(x1

1)p2 ⊕ · · · ⊕ f(x1
2n−1)p2n

for f ∈ C(T2n), where π1 is the canonical projection from T(2n)2 to T2n, and pj (1 ≤ j ≤ 2n)
are mutually orthogonal rank 1 projections inM2n(C), and ⊕ means the diagonal sum. Note
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that by [Rf1, Proposition 1.7 and Theorem 6.1],

sr(C(T2n)) = [dim T
2n/2] + 1 = n+ 1,

sr(M2n(C(T(2n)2 ))) = {(sr(C(T(2n)2)) − 1)/2n} + 1

= {[(2n)2/2]/2n} + 1 = n+ 1,

where [x] means the least integer ≤ x, and {y} means the least integer ≥ y (we use this
notation in what follows). We continue the process above inductively as follows. Define a
homomorphism ϕ2 from M2n(C(T(2n)2)) to M(2n)2(C(T(2n)3 )) by

ϕ2(g) = (g ◦ π2) ⊕ g(x2
2n) ⊕ · · · ⊕ g(x2

(2n)2−1)

for g ∈ M2n(C(T(2n)2 )), and π1(x2
j ) = x1

j for 1 ≤ j ≤ 2n − 1, where π2 is the canonical
projection from T(2n)3 to T(2n)2 , and {x2

j} is a dense sequence of T(2n)2 chosen as desired.
Note that by [Rf1, Theorem 6.1],

sr(M(2n)2(C(T(2n)3))) = {[(2n)3/2]/(2n)2} + 1 = n+ 1.

In the general step, a homomorphism ϕk from M(2n)k−1(C(T(2n)k

)) to M(2n)k(C(T(2n)k+1
))

is defined by
ϕk(h) = (h ◦ πk) ⊕ h(xk(2n)k−1) ⊕ · · · ⊕ h(xk(2n)k−1)

for h ∈M(2n)k−1(C(T(2n)k

)), and πk−1(xkj ) = xk−1
j for 1 ≤ j ≤ (2n)k−1 − 1, where πk is the

canonical projection from T(2n)k+1
to T(2n)k

, and {xkj } is a dense sequence of T(2n)k

chosen
as desired. Note that by [Rf1, Theorem 6.1],

sr(M(2n)k(C(T(2n)k+1
))) = {[(2n)k+1/2]/(2n)k} + 1 = n+ 1.

For n ∈ N we define the C∗-algebra An = lim−→(M(2n)k−1(C(T(2n)k

)), ϕk) to be the inductive
limit of the homogeneous C∗-algebras M(2n)k−1(C(T(2n)k

)) for k ≥ 1 with ϕk the connecting
homomorphisms.

Theorem 1.1 Let An be the inductive limit C∗-algebra defined above. Then An is a simple
inductive limit without slow dimension growth and bounded dimension, and

sr(An) = n+ 1, and csr(An) ≤ n+ 1.

Proof. We use a criterion for inductive limits of homogeneous C∗-algebras Hj on spaces Xj

with ϕj connecting homomorphisms to be simple, that is, for any nonzero f ∈ Hj in lim−→Hj ,
there exists k ≥ j such that ϕk ◦ ϕk−1 ◦ · · · ◦ ϕj(f)(x) �= 0 for any x ∈ Xk+1. See [RS,
Proposition 3.1.2] for this. Note the following identification:

M(2n)k(C(T(2n)k+1
)) ∼= C(T(2n)k+1

,M(2n)k(C)),

where the right hand side means the C∗-algebra of continuous M(2n)k(C)-valued functions
on T(2n)k+1

(cf. [Mp, Theorem 6.4.17]). By the construction of An using the density of
the points {xkj } in T(2n)k

, it is easy to see that An is simple. For the building blocks
M(2n)k(C(T(2n)k+1

)) of An, the ratios of dimensions of the base spaces and matrix sizes are
(2n)k+1/(2n)k = 2n nonzero constant. Thus, An is an inductive limit without slow dimen-
sion growth and bounded dimension (see [RS, Definition 3.1.1] for their definitions). Since
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sr(M(2n)k(C(T(2n)k+1
))) = n+1 for k ≥ 1, we have sr(An) ≤ n+1 by [Rf1, Theorem 5.1]. It

follows from sr(M(2n)k(C(T(2n)k+1
))) = n+ 1 that there exists (fj) ∈M(2n)k(C(T(2n)k+1

))n

such that the distance between (fj) and Ln(M(2n)k(C(T(2n)k+1
)) is nonzero K > 0, that is,

d((fj), Ln(M(2n)k(C(T(2n)k+1
)))) = K.

Then we have the norm ‖fj − gj‖ ≥ K for any (gj) ∈ M(2n)k(C(T(2n)k+1
))n. Note that

it is easy to see that the homomorphisms ϕk are injective. This implies that ‖ϕk+1(fj) −
ϕk+1(gj)‖ ≥ K. For any (hj) ∈M(2n)k+1(C(T(2n)k+2

))n, we have

‖ϕk+1(fj) − hj‖ ≥ ‖ϕk+1(fj) − ϕk+1(hj |T(2n)k+1 )‖ ≥ K,

where hj |T(2n)k+1 (z) = hj(z, 1) for z ∈ T
(2n)k+1

and 1 = (1)nl=1 ∈ T
2n. To check this,

we can use the identification of M(2n)k+1(C(T(2n)k+2
)) as above. Therefore, we obtain

d((ϕk+1(fj)), Ln(M(2n)k+1(C(T(2n)k+2
)))) ≥ K. This implies that sr(An) ≥ n + 1. In fact,

if sr(An) ≤ n, then the element (fj) is approximated by (lj) ∈ An such that
∑n

j=1 l
∗
j lj is

invertible in An, and (lj) can be replaced with elements of Ln(M(2n)k(C(T(2n)k+1
))), which

implies that there exists no such constant K > 0. This is the contradiction.
For the estimate of the connected stable rank, we use [Rf2, Theorem 4.7] and [Ns,

Corollary 2.5] to obtain

csr(M(2n)k−1(C(T(2n)k

))) ≤ {(csr(C(T(2n)k

)) − 1)/(2n)k−1} + 1

≤ {[((2n)k + 1)/2]/(2n)k−1} + 1 = n+ 1.

Therefore, we have csr(An) ≤ n+ 1 (cf. [Ns, The formula (1.6)]). �

Corollary 1.1 There exists an inductive limit of discrete groups such that a simple induc-
tive limit of their group C∗-algebras has stable rank n+ 1.

Proof. Note that C(T2n) ∼= C∗(Z2n) the group C∗-algebra of Z2n, and

M(2n)k(C(T(2n)k+1
)) ∼= C(T(2n)k+1

) ⊗M(2n)k(C)

∼= C∗(Z(2n)k+1
) ⊗ C∗(Z(2n)k �τ Z(2n)k),

where Z(2n)k �τ Z(2n)k is the semi-direct product by cyclic groups Z(2n)k with τ the action
by the translation, and

C∗(Z(2n)k+1
) ⊗ C∗(Z(2n)k �τ Z(2n)k) ∼= C∗(Z(2n)k+1 × (Z(2n)k �τ Z(2n)k)).

Thus, the required inductive limit of discrete groups is given by the direct product groups
Z(2n)k+1 × (Z(2n)k �τ Z(2n)k) for k ≥ 0, where Z0 �τ Z0 = 0. �

Remark. It is evident that the connecting homomorphisms (ϕk) of the group C∗-algebras
C∗(Z(2n)k+1 × (Z(2n)k �τ Z(2n)k)) are not coming from the (natural) homomorphisms of the
groups Z(2n)k+1 × (Z(2n)k �τ Z(2n)k). Therefore, the interpretation above in the corollary
seems to be not useful. But it suggests that inductive limits of group C∗-algebras might be
of interest.

Similarly as Theorem 1.1, we obtain
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Theorem 1.2 There exists a simple inductive limit C∗-algebra Bn without slow dimension
growth and bounded dimension such that

RR(Bn) = n+ 1.

Proof. The construction of Bn is almost the same as that of An of Theorem 1.1. We take
the inductive limit of Bn as follows:

C(Tn)
ψ1−−−−→ Mn(C(T2n2

))
ψ2−−−−→ Mn2(C(T2n3

))
ψ3−−−−→ · · ·

where the connecting homomorphisms ψk are defined by the same as ϕk of An. Note that
RR(C(Tn)) = n by [BP, Proposition 1.1], and

RR(Mnk(C(T2nk+1
))) = {2nk+1/(2nk − 1)} = {n+ (n/(2nk − 1))} = n+ 1

by [BE, Corollary 3.2]. Hence, RR(Bn) ≤ n+ 1. The rest of the proof is similar with that
of Theorem 1.1 just by considering self-adjoint elements (bj)nj=0 of (Bn)n+1 with

∑n
j=0 b

2
j

invertible in Bn. �

Remark. The equality in the statement is better than Villadsen’s estimate of the real rank
in [Vl].

Similarly as Corollary 1.1, we obtain

Corollary 1.2 There exists an inductive limit of discrete groups such that a simple induc-
tive limit of their group C∗-algebras has real rank n+ 1.

Remark. We in fact have

RR(An) = n+ 1, sr(Bn) = n+ 1, and csr(Bn) ≤ n+ 1

by using the methods of Theorems 1.2 and 1.1 respectively.

Furthermore,

Theorem 1.3 There exists a simple inductive limit C∗-algebra C∞ without slow dimension
growth and bounded dimension such that

sr(C∞) = ∞, and RR(C∞) = ∞.

Proof. We take an inductive limit for C∞ as follows:

· · · χk−1−−−−→ Mnk(C(T2knk+1
)) χk−−−−→ Mnk+1(C(T2(k+1)nk+2

))
χk+1−−−−→ · · ·

where the connecting homomorphisms χk (k ≥ 1) are defined similarly as ϕk and ψk in
Theorems 1.1 and 1.2 respectively. Note that

sr(Mnk(C(T2knk+1
))) = {[2knk+1/2]/nk} + 1 = kn+ 1,

RR(Mnk(C(T2knk+1
))) = {2knk+1/(2nk − 1)} = {kn+ (kn/(2nk − 1))} = kn.

Thus, the claim follows from showing sr(C∞) ≥ kn+ 1 and RR(C∞) ≥ kn as given in the
proof of Theorem 1.1. �
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