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Abstract.Font and Jansana studied the Leibniz filters and the logic determined by
the Leibniz filters of a given protoalgebraic sentential logic. A filter is Leibniz when
it is the smallest among all the filters on the same algebra having the same Leibniz
congruence. Inspired by their work, a study of the N-Leibniz theory systems of an
N-protoalgebraic π-institution is initiated. A theory system is N-Leibniz if it is the
smallest among all theory systems having the same Leibniz N-congruence system. In
this study, some of the results of Font and Jansana on Leibniz filters are adapted to
cover the case of N-protoalgebraic π-institutions. The N-Leibniz operator, used in
the present setting, is the operator associating with a given theory family of a given
π-institution the Leibniz N-congruence system of the theory family, as introduced in
previous work by the author.

1 Introduction Josep Maria Font and Ramon Jansana in [7] study the Leibniz filters of
a protoalgebraic logic S = 〈L,�S〉. Starting from the observation that the Leibniz operator
need not be injective on the collection of S-filters on an L-algebra A, they single out those
S-filters F on A that are included in every S-filter on A having the same Leibniz congruence
as F . These are the Leibniz S-filters of A.

The work of Font and Jansana may be split into two major parts. In the first part,
they study general properties of Leibniz filters and, in the second, they introduce and study
properties of the sentential logic S+ defined by all those S-matrices of the form 〈A, F 〉, with
F Leibniz. The logic S+ is called the strong version of the protoalgebraic logic S. Font and
Jansana were led to the introduction of S+ by their motivation to explain a phenomenon
observed in a variety of specific examples, e.g., modal logic, quantum logic and many-valued
logic, among others, in which logics come naturally in pairs, one stronger than the other,
but with the same theorems. It turns out that in these examples the strongest logic of the
pair is the strong version of the other logic in this specific formal sense. Jansana in [8]
continues the study started in [7].

Our main interest here in the work of Font and Jansana focuses on the first part of their
work, i.e., on the study of Leibniz filters and their basic properties. The first main property
of Leibniz filters (Theorem 3 of [7]) is that the Leibniz operator ΩA on any algebra A is
an isomorphism between 〈Fi+S (A),⊆〉 and 〈ConAlgSA,⊆〉, where by Fi+S (A) is denoted the
collection of all Leibniz S-filters on the algebra A, for a protoalgebraic logic S. For the
collection AlgS of S-algebras, the reader may consult Section 2.2 of [6]. The second property
(Theorem 8 of [7]) is that a strict surjective homomorphism from an S-matrix 〈A, F 〉 onto an
S-matrix 〈B, G〉 induces a strict surjective homomorphism between the associated Leibniz
matrices 〈A, F+〉 and 〈B, G+〉, where by F+ is denoted the unique Leibniz S-filter included
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in the S-filter F and having the same Leibniz congruence as F , for a protoalgebraic logic S,
and similarly for G+. Another important result is a characterization of the Leibniz S-filters
F on an algebra A as those filters for which the quotient F/ΩA(F ) is the smallest S-
filter on the quotient algebra A/ΩA(F ). All three of these properties, and some additional
results following from these properties, will be shown to have important counterparts in the
π-institution framework.

In the present work, an analog of Leibniz filters is introduced for N -protoalgebraic π-
institutions, based on the N -Leibniz operator, introduced in recent work by the author [16],
after the original Leibniz operator of Blok and Pigozzi [3]. Several of the properties that
were established in [7] for Leibniz filters are now studied in this setting for N -Leibniz theory
systems. The study of the strong version of an N -protoalgebraic π-institution, an analog of
the strong version of a protoalgebraic logic, is postponed for future work, since the theories
of equivalential and weakly algebraizable π-institutions, whose analogs play key roles in the
developments in [7] and [8], are still under development.

In the remaining of the introduction we present some basic elements of the theory leading
to the study of Leibniz theory systems and, then, provide a summary of the contents of the
paper.

In [16] the notion of an N -protoalgebraic π-institution was introduced after protoalge-
braic deductive systems [2]. Let I = 〈Sign, SEN, C〉 be a π-institution and N a category of
natural transformations on SEN. Given a theory family T of I, the Leibniz N -congruence
system ΩN(T ) is the largest N -congruence system of I that is compatible with T (see
Propositions 2.3 and 2.4 of [16]). I is said to be N -protoalgebraic (Section 3 of [16]) if the
Leibniz N -congruence system operator ΩN is monotone on all theory families of I, i.e., if
for all T, T ′ ∈ ThFam(I),

T ≤ T ′ implies ΩN (T ) ≤ ΩN (T ′).

Several properties of N -protoalgebraic π-institutions were presented in [16] and some more
in [17]. Both [16] and [17] will provide important background information for the develop-
ments in the present work.

Based on this notion of N -protoalgebraicity and taking after the work of Font and
Jansana [7], a theory system of a π-institution I = 〈Sign, SEN, C〉, with N a category of
natural transformations on SEN, will be said to be N -Leibniz if it is included in all theory
systems of I with the same Leibniz N -congruence system. It is shown that, similarly with
the sentential logic situation, if I is N -protoalgebraic, then every theory system T of I
includes a unique N -Leibniz theory system TN of I with the same Leibniz N -congruence
system. Furthermore, analogs of the properties reviewed above for Leibniz filters of a
protoalgebraic sentential logic will be presented for Leibniz N -theory systems of an N -
protoalgebraic π-institution. In Theorem 3, it is shown that, if 〈F,α〉 : SEN →se SEN′ is a
surjective singleton (N,N ′)-epimorphic translation and by I ′min = 〈Sign′, SEN′, C′min〉 is
denoted the 〈F,α〉-min (N,N ′)-model of I on SEN′, then the N ′-Leibniz operator ΩN ′

is
an isomorphism between 〈ThSysN ′

(I′),≤〉 and 〈Con〈F,α〉
AlgN (I)

(SEN′),≤〉 (see [17] for relevant
definitions). In Theorem 8, it is shown that, if 〈F,α〉 : SEN →se SEN′ and 〈G,β〉 : SEN′ →se

SEN′′ are surjective singleton (N,N ′)- and (N ′, N ′′)-epimorphic translations, respectively,
with G : Sign′ → Sign′′ an isomorphism,

SEN′ SEN′′�
〈G,β〉

I

〈F,α〉
�

�
�

��

〈GF,βFα〉
�

�
�
��
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and T ′ and T ′′ are theory systems of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′

and of the 〈GF,βFα〉-min (N,N ′′)-model I ′′min of I on SEN′′, respectively, such that
T ′ = β−1(T ′′), then T ′N ′

= β−1(T ′′N ′′
).

Finally, in the characterization Proposition 10, similar to Proposition 10 of [7], it is shown
that, if 〈F,α〉 : SEN →se SEN′ is a surjective singleton (N,N ′)-epimorphic translation, a
theory system T of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′ isN ′-Leibniz if and only

if T/ΩN ′
(T ) is the smallest theory system of the 〈F, πΩN′

(T )
F α〉-min (N,N ′ΩN′

(T ))-model of

I on SEN′ΩN′
(T ). All the results mentioned above presuppose that I is an N -protoalgebraic

π-institution and parallel the corresponding results of [7] for protoalgebraic sentential logics.
For necessary background on general categorical notions and notation, the reader is

referred to any of [1, 4, 9]. For protoalgebraic deductive systems, the original source is
[2], but also a good part of the book [5] by Czelakowski is devoted to the topic. For an
overview of the theory of algebraic semantics of sentential logics that inspired the current
developments on the categorical level, the monograph [6] is an excellent source. Finally, for
background on all notions developed so far in the categorical theory of abstract algebraic
logic, that made possible the transfer of many of the results on sentential logics of [6] to
π-institutions, the reader may consult [10, 11, 12, 13, 14, 15, 16, 17] in that order.

2 Leibniz Theory Systems Consider an N -protoalgebraic π-institution I = 〈Sign,
SEN, C〉, with N a category of natural transformations on SEN. A theory system T =
{TΣ}Σ∈|Sign| is said to be an N -Leibniz theory system of I, if, for every theory system
T ′ = {T ′

Σ}Σ∈|Sign| of I, such that ΩN (T ) = ΩN (T ′), we have T ≤ T ′.
Recall that ThSys(I) denotes the collection of all theory systems of I. Let, by analogy

with the notation Fi+S (A) of [7] for sentential logics, ThSysN (I) denote the collection of
all N -Leibniz theory systems of a π-institution I, where the N in place of the +, stems
from the intention of making the dependence on the category N of natural transformations
transparent.

Call an N -protoalgebraic π-institution I N -weakly algebraizable iff, for all theory
systems T, T ′ of I, ΩN (T ) = ΩN (T ′) implies T = T ′. Then it is easily seen that, if I is
N -weakly algebraizable, then every theory system of I is an N -Leibniz theory system. In
other words, if I is N -weakly algebraizable, then ThSys(I) = ThSysN (I).

The following proposition, an analog of Proposition 2 of [7], shows that, given any theory
system T in an N -prealgebraic π-institution [16] , there exists a unique N -Leibniz theory
system TN , such that ΩN (TN) = ΩN (T ).

Proposition 1 Let I = 〈Sign, SEN, C〉 be an N -prealgebraic π-institution. For every
theory system T of I, there exists a unique N -Leibniz theory system TN of I, such that
ΩN (TN) = ΩN (T ).

Proof:
We show that TN = {TN

Σ }Σ∈|Sign|, defined, for all Σ ∈ |Sign|, by

TN
Σ =

⋂
{T ′

Σ : T ′ ∈ ThSys(I) with ΩN (T ′) = ΩN (T )},

i.e., TN =
⋂{T ′ ∈ ThSys(I) : ΩN (T ′) = ΩN (T )}, is such that ΩN(TN ) = ΩN (T ). Since,

by Proposition 2.2 of [16], TN is a theory system of I, it will then be obvious that TN is the
smallest theory system of I with ΩN (TN ) = ΩN(T ) and is, therefore, an N -Leibniz theory
system.
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We have, indeed,

ΩN (TN) = ΩN (
⋂{T ′ ∈ ThSys(I) : ΩN (T ′) = ΩN (T )})

=
⋂{ΩN (T ′) : T ′ ∈ ThSys(I) : ΩN (T ′) = ΩN (T )}

= ΩN (T ),

where the first equation follows from the definition of TN and the second follows from the
characterization of N -prealgebraicity given in Lemma 3.10 of [16]. �

Proposition 1, together with Corollary 3.9 of [16] yield immediately

Corollary 2 Let I = 〈Sign, SEN, C〉 be an N -protoalgebraic π-institution. For every the-
ory system T of I, there exists a unique N -Leibniz theory system TN of I, such that
ΩN (TN) = ΩN (T ).

As a consequence of the definition and of Proposition 1, we have that TN ≤ T and that
an arbitrary theory system T is N -Leibniz if and only if TN = T .

Suppose, now, that I = 〈Sign, SEN, C〉, with N a category of natural transformations
on SEN, is an N -protoalgebraic π-institution and that 〈F,α〉 : SEN →se SEN′ is a surjective
singleton (N,N ′)-epimorphic translation. It was shown in Proposition 5.22 of [16] that the
〈F,α〉-min (N,N ′)-model I ′min of I on SEN′ isN ′-protoalgebraic. Next, it is shown that the
N ′-Leibniz operator is an isomorphism between the lattice of all N ′-Leibniz theory systems
of I ′min and that of all AlgN (I)-N ′congruence systems θ on SEN′, where θ is an AlgN (I)-
N ′-congruence system because the 〈F, πθ

Fα〉-min model of I on SEN′θ is N ′θ-reduced. This
is an analog of Theorem 3 of [7] for π-institutions.

Theorem 3 Let I = 〈Sign, SEN, C〉, be an N -protoalgebraic π-institution and 〈F,α〉 :
SEN →se SEN′ a surjective singleton (N,N ′)-epimorphic translation and denote by I ′min =
〈Sign′, SEN′, C′min〉 the 〈F,α〉-min (N,N ′)-model of I on SEN′. The N ′-Leibniz operator
ΩN ′

is an isomorphism between the 〈ThSysN ′
(I′min),≤〉 and 〈Con〈F,α〉

AlgN (I)
(SEN′),≤〉.

Proof:
One can rely on Propositions 5.3 and 5.4 of [17].
To reveal more details, suppose that we know only that the N ′-Leibniz operator ΩN ′

is a mapping from the lattice 〈ThSysN ′
(I′min),≤〉 into 〈Con〈F,α〉

AlgN (I)
(SEN′),≤〉. It is clearly

one-to-one because of the definition of ThSysN ′
(I′min). By Theorem 5.2 of [17], for everyN ′-

congruence system θ ∈ Con〈F,α〉
AlgN (I)

(SEN′), there exists a theory system T ∈ ThSys(I′min),

such that θ = ΩN ′
(T ). Therefore, we obtain θ = ΩN ′

(TN ′
) and TN ′ ∈ ThSysN ′

(I′min).
So ΩN ′

is also onto. It is clearly order-preserving by N -protoalgebraicity of I and the
surjectivity of 〈F,α〉 (Proposition 5.22 of [16]). To show that it is an order-isomorphism,
suppose that T, T ′ are two theory systems in ThSysN ′

(I′min), such that ΩN ′
(T ) ≤ ΩN ′

(T ′).
We have

ΩN ′
((T ∩ T ′)N ′

) = ΩN ′
(T ∩ T ′) (by the definition of N ′

)
= ΩN ′

(T ) ∩ ΩN ′
(T ′) (by N ′-protoalgebraicity)

= ΩN ′
(T ) (by hypothesis).

Therefore, since T is an N ′-Leibniz theory system, we get that (T ∩ T ′)N ′
= T, whence

T ≤ T ∩ T ′, i.e., T ≤ T ′. �
Theorem 3 has the following two corollaries, analogs, respectively, of Corollaries 4 and

5 of [7].
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Corollary 4 Given an N -protoalgebraic π-institution I = 〈Sign, SEN, C〉 and a theory
system T of I, TN is the largest N -Leibniz theory system ≤-contained in T .

Proof:
Suppose that T ′ ∈ ThSysN (I) and T ′ ≤ T . Then, by N -protoalgebraicity, ΩN (T ′) ≤

ΩN (T ) and, by the definition of N , ΩN(T ) = ΩN (TN). Therefore ΩN (T ′) ≤ ΩN (TN).
Hence, by Theorem 3, we get that T ′ ≤ TN . �

Now, Corollary 4 immediately yields

Corollary 5 Let I = 〈Sign, SEN, C〉 be an N -protoalgebraic π-institution. For all theory
systems T, T ′ of I, if T ≤ T ′, then TN ≤ T ′N .

The following proposition characterizes those theory systems of a given N -protoalgebraic
π-institution whose Leibniz N -congruence systems are the identity congruence systems.

Proposition 6 Let I = 〈Sign, SEN, C〉 be an N -protoalgebraic π-institution and 〈F,α〉 :
SEN →se SEN′ a surjective singleton (N,N ′)-epimorphic translation. The theory system T
of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′ is such that ΩN ′

(T ) = ∆SEN′ if and
only if SEN′ is in AlgN (I)s via 〈F,α〉 and TN ′

is the only N ′-Leibniz theory system of I ′

≤-included in T .

Proof:
Suppose, first, that the theory system T of the 〈F,α〉-min (N,N ′)-model I ′min of I

on SEN′ is such that ΩN ′
(T ) = ∆SEN′ . Then, by the definition of AlgN(I)∗s, we have

SEN′ ∈ AlgN (I)∗s and, since, by Corollary 5.23 of [16], AlgN (I)∗s = AlgN (I)s, we obtain
SEN′ ∈ AlgN (I)s. Now, suppose that T ′ is an N ′-Leibniz theory system of I ′, such that
T ′ ≤ T . Then by Corollary 5, T ′ = T ′N ′ ≤ TN ′

. Therefore, by N ′-protoalgebraicity,
ΩN ′

(T ′) ≤ ΩN ′
(TN ′

) = ΩN ′
(T ) = ∆SEN′ . Hence ΩN ′

(T ′) = ∆SEN′ = ΩN ′
(TN ′

). Theorem
3 now implies that T ′ = TN ′

, whence TN ′
is the only N ′-Leibniz theory system that is

included in T .
Suppose, conversely, that SEN′ is in AlgN (I)s via 〈F,α〉 and TN ′

is the only N ′-
Leibniz theory system of I ′ ≤-included in T . Since, by Corollary 5.23 of [16], AlgN (I)∗s =
AlgN (I)s, there exists, by the definition of AlgN (I)∗s, a theory system T ′ of the 〈F,α〉-min
(N,N ′)-model of I on SEN′, such that ΩN ′

(T ′) = ∆SEN′ . Then, we have that ΩN ′
(T ′N ′

) =
ΩN ′

(T ′) = ∆SEN′ ≤ ΩN ′
(TN ′

), whence, by Theorem 3, we obtain T ′N ′ ≤ TN ′ ≤ T . On
the other hand, we have, by the hypothesis, that TN ′

is the only N ′-Leibniz theory system
≤-included in T, whence T ′N ′

= TN ′
and, therefore, ΩN ′

(T ) = ΩN ′
(TN ′

) = ΩN ′
(T ′N ′

) =
∆SEN′ , as was to be shown. �

We immediately obtain

Corollary 7 Let I = 〈Sign, SEN, C〉 be an N -protoalgebraic π-institution and 〈F,α〉 :
SEN →se SEN′ a surjective singleton (N,N ′)-epimorphic translation. If T, T ′ are theory
systems of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′, such that ΩN ′

(T ) = ΩN ′
(T ′) =

∆SEN′ , then TN ′
= T ′N ′

.

The next result is an analog of Theorem 8 of [7] for π-institutions. It says, roughly
speaking, that, if a singleton surjective (N ′, N ′′)-epimorphic translation between two sen-
tence functors SEN′ and SEN′′ preserves theory systems of min models on SEN′ and SEN′′,
then it also preserves their corresponding Leibniz images.
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Theorem 8 Suppose that I = 〈Sign, SEN, C〉 is an N -protoalgebraic π-institution, SEN′ :
Sign′ → Set and SEN′′ : Sign′′ → Set two functors and N ′, N ′′ categories of natu-
ral transformations on SEN′, SEN′′, respectively. Suppose that 〈F,α〉 : SEN →se SEN′

and 〈G,β〉 : SEN′ →se SEN′′ are surjective singleton (N,N ′)- and (N ′, N ′′)-epimorphic
translations, respectively, with G : Sign′ → Sign′′ an isomorphism. Then, if T ′ and
T ′′ are theory systems of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′ and of the
〈GF,βFα〉-min (N,N ′′)-model I ′′min of I on SEN′′, respectively, such that T ′ = β−1(T ′′),
then T ′N ′

= β−1(T ′′N ′′
).

SEN′ SEN′′�
〈G,β〉

I

〈F,α〉
�

�
�

��

〈GF,βFα〉
�

�
�
��

Proof:
The family β−1(T ′′N ′′

) is a theory family of I ′min, since the closure system generated
by 〈G,β〉 : SEN′ → I ′′min on SEN′ is included in I ′min. Now, we have, using Lemma 5.21
of [16],

ΩN ′
(β−1(T ′′N ′′

)) = β−1(ΩN ′′
(T ′′N ′′

)) (by Lemma 5.21 of [16])
= β−1(ΩN ′′

(T ′′)) (by the definition of N ′′
)

= ΩN ′
(β−1(T ′′)) (by Lemma 5.21 of [16])

= ΩN ′
(T ′). (by the hypothesis)

Therefore, by the definition of an N ′-Leibniz theory system T ′N ′ ≤ β−1(T ′′N ′′
).

For the reverse inclusion, we first show, following the proof of Theorem 8 of [7], that

β−1(β(T ′N ′
)) = T ′N ′

.(1)

The inclusion T ′N ′
Σ′ ⊆ β−1

Σ′ (βΣ′(T ′N ′
Σ′ )), for all Σ′ ∈ |Sign′|, is set-theoretic. For the reverse

inclusion, suppose that φ′ ∈ β−1
Σ′ (βΣ′ (T ′N ′

Σ′ )). Then, there exists ψ′ ∈ T ′N ′
Σ′ , such that

βΣ′(φ′) = βΣ′(ψ′). Therefore, since 〈βΣ′(φ′), βΣ′(ψ′)〉 ∈ ΩN ′′
G(Σ′)(T

′′), we get that 〈φ′, ψ′〉 ∈
β−1

Σ′ (ΩN ′′
G(Σ′)(T

′′)) = ΩN ′
Σ′ (T ′) = ΩN ′

Σ′ (T ′N ′
). But ψ′ ∈ T ′N ′

Σ′ and ΩN ′
(T ′N ′

) is compatible

with T ′N ′
, whence φ′ ∈ T ′N ′

Σ′ as well. This concludes the proof of (1).
By the surjectivity of 〈G,β〉 and (1), we get that β(T ′N ′

) is a theory family of I ′′min.
So we obtain

β−1(ΩN ′′
(β(T ′N ′

))) = ΩN ′
(β−1(β(T ′N ′

))) (by Lemma 5.21 of [16])
= ΩN ′

(T ′N ′
) (by (1))

= ΩN ′
(T ′) (by the definition of N ′

)
= ΩN ′

(β−1(T ′′)) (by the hypothesis)
= β−1(ΩN ′′

(T ′′)). (by Lemma 5.21 of [16])

Thus, once more by the surjectivity of 〈G,β〉, we get that ΩN ′′
(β(T ′N ′

)) = ΩN ′′
(T ′′) and,

hence, T ′′N ′′ ≤ β(T ′N ′
), i.e., that β−1(T ′′N ′′

) ≤ T ′N ′
, which was to be shown. �

An immediate corollary of Theorem 8 is that, under the same hypotheses as in the
theorem, if, for a theory system T ′ of I ′min and a theory system T ′′ of I ′′min, it holds that
T ′ = β−1(T ′′), then T ′ is N ′-Leibniz if and only if T ′′ is N ′′-Leibniz.



CAAL: LEIBNIZ THEORY SYSTEMS 173

Corollary 9 Suppose that I = 〈Sign, SEN, C〉 is an N -protoalgebraic π-institution, SEN′ :
Sign′ → Set and SEN′′ : Sign′′ → Set two functors and N ′, N ′′ categories of natu-
ral transformations on SEN′, SEN′′, respectively. Suppose that 〈F,α〉 : SEN → SEN′ and
〈G,β〉 : SEN′ → SEN′′ are surjective singleton (N,N ′)- and (N ′, N ′′)-epimorphic trans-
lations, respectively, with G : Sign′ → Sign′′ an isomorphism. If T ′ and T ′′ are theory
systems of the 〈F,α〉-min (N,N ′)-model I ′min of I on SEN′ and of the 〈GF,βFα〉-min
(N,N ′′)-model I ′′min of I on SEN′′, respectively, such that T ′ = β−1(T ′′), then the theory
system T ′ is N ′-Leibniz in I ′min if and only if the theory system T ′′ is N ′′-Leibniz in I ′′min.

With the help of Corollary 9, a characterization of N ′-Leibniz theory systems of min
(N,N ′)-models of an N -protoalgebraic π-institution via surjective singleton (N,N ′)-epi-
morphic translations may be given. Proposition 10 forms an analog of Proposition 10 of [7]
in the π-institution framework.

Proposition 10 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transfor-
mations on SEN, is an N -protoalgebraic π-institution. Let 〈F,α〉 : SEN →se SEN′ be a
surjective singleton (N,N ′)-epimorphic translation. A theory system T of the 〈F,α〉-min
(N,N ′)-model I ′min of I on SEN′ is N ′-Leibniz if and only if T/ΩN ′

(T ) is the smallest

theory system, i.e., the theorem system, of the 〈F, πΩN′
(T )

F α〉-min (N,N ′ΩN′
(T ))-model of I

on SEN′ΩN′
(T ).

Proof:
Note that the following commutative triangle satisfies all the necessary conditions of the

hypothesis of Theorem 8 and of Corollary 9.

SEN′ SEN′ΩN′
(T )�

〈ISign′ , πΩN′
(T )〉

I

〈F,α〉
�

�
�

��
〈F, πΩN′

(T )
F α〉

�
�

�
��

Suppose that T is N ′-Leibniz. Then, since T = (πΩN′
(T ))−1(T/ΩN ′

(T )), we obtain, by
Corollary 9, that T/ΩN ′

(T ) is also N ′ΩN′
(T )-Leibniz. Let T ′′ be a theory system of the

〈F, πΩN′
(T )

F α〉-min (N,N ′ΩN′
(T ))-model of I on SEN′ΩN′

(T ). Consider the theory system
T ′′ ∩ T/ΩN ′

(T ). We have

(T ′′ ∩ T/ΩN ′
(T ))N ′ΩN′

(T ) ≤ T ′′ ∩ T/ΩN ′
(T ) ≤ T/ΩN ′

(T ),

whence, by N -protoalgebraicity and Proposition 5.22 of [16],

ΩN ′ΩN′
(T )

((T ′′ ∩ T/ΩN ′
(T ))N ′ΩN′

(T )
) ≤ ΩN ′ΩN′

(T )
(T/ΩN ′

(T )) = ∆
SEN′ΩN′ (T )

and, therefore, ΩN ′ΩN′
(T )

((T ′′∩T/ΩN ′
(T ))N ′ΩN′

(T )
) = ΩN ′ΩN′

(T )
(T/ΩN ′

(T )) = ∆
SEN′ΩN′ (T ) .

But both T/ΩN ′
(T ) and (T ′′ ∩ T/ΩN ′

(T ))N ′ΩN′
(T )

are N ′ΩN′
(T )-Leibniz and, therefore,

T/ΩN ′
(T ) = (T ′′ ∩ T/ΩN ′

(T ))N ′ΩN′
(T )

. Thus T/ΩN ′
(T ) = T ′′ ∩ T/ΩN ′

(T ), which yields

T/ΩN ′
(T ) ≤ T ′′. Thus T/ΩN ′

(T ) is the smallest theory system of the 〈F, πΩN′
(T )

F α〉-min

(N,N ′ΩN′
(T ))-model of I on SEN′ΩN′

(T ).



174 GEORGE VOUTSADAKIS

Suppose, conversely, that T/ΩN ′
(T ) is the smallest theory system of the 〈F, πΩN′

(T )
F α〉-

min (N,N ′ΩN′
(T ))-model of I on SEN′ΩN′

(T ). Since ΩN ′
(T ) = ΩN ′

(TN ′
), it makes sense

to consider the two quotients T/ΩN ′
(T ) and TN ′

/ΩN ′
(T ). Obviously, since TN ′ ≤ T,

we have that TN ′
/ΩN ′

(T ) ≤ T/ΩN ′
(T ), whence, since both are theory systems of the

〈F, πΩN′
(T )

F α〉-min (N,N ′ΩN′
(T ))-model of I on SEN′ΩN′

(T ), we obtain, by the hypothesis,
that TN ′

/ΩN ′
(T ) = T/ΩN ′

(T ), whence, by Corollary 4.16 of [16], we obtain that TN ′
= T

and T is N ′-Leibniz. �

Proposition 11 For every N -protoalgebraic π-institution I = 〈Sign, SEN, C〉, the collec-
tion ThSysN (I) forms a join-complete subsemilattice of the complete lattice ThSys(I) =
〈ThSys(I),≤〉 of all theory systems of I.

Proof:
Suppose that {T i : i ∈ I} is a collection of theory systems in ThSysN(I). Then T i =

(T i)N ≤ (
∨

i∈I T
i)N , by Corollary 5. Therefore,

∨
i∈I T

i ≤ (
∨

i∈I T
i)N and, since the

reverse inclusion always holds, (
∨

i∈I T
i)N =

∨
i∈I T

i. Hence
∨

i∈I T
i is indeed an N -Leibniz

theory system. �
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