
Scientiae Mathematicae Japonicae Online, e-2005, 213–221 213

THE TOPOLOGICAL CENTER OF L1(K)∗∗

R. A. Kamyabi-Gol

Received December 17, 2004

Abstract. Let K be a (commutative) locally compact hypergroup with a left Haar
measure and L1(K) be the hypergroup algebra of K. In this paper we show that the
topological (algebraic) center of the Banach algebra L1(K)∗∗ is L1(K).

1 Introduction The theory of hypergroups was initiated by Dunkl [4], Jewett [7] and
Spector [17] in the early 1970’s and has received a good deal of attention from harmonic
analysts (note that Jewett calls hypergroups “convos” in his paper [7]). In [12], Pym also
considers convolution structures which are close to hypergroups. A fairly complete history
is given in Ross’s survey article [13] (see also [14]). Hypergroups arise in a natural way as
a double coset space, and the space of conjugacy classes of a compact group ([13] and [1]).
In particular, locally compact groups are hypergroups. Here we follow Jewett [7]. It is still
unknown if an arbitrary hypergroup admits a left Haar measure but all the known examples
do [7, §5].
Throughout, K will denote a hypergroup with a left Haar measure λ.
Let L1(K) denotes the hypergroup algebra of K i.e. all Borel measurable functions φ on K
with ‖φ‖1 =

∫
K |φ(x)|dλ(x) <∞ (with functions equal almost everywhere identified), and

the multiplication defined by

φ ∗ ψ(x) =
∫

K

φ(x ∗ y)ψ(y̆) dλ(y) (see [7, §5.5]).

Let the second dual L1(K)∗∗ (= L∞(K)∗) of L1(K) be equipped with the first Arens
product [3]. Then L1(K)∗∗ is a Banach algebra with this product. The topological center
of L1(K)∗∗ is defined by

Z(L1(K)∗∗) = {m ∈ L1(K)∗∗ : the mapping n �−→ mn is
w∗ − continuous on L1(K)∗∗}.

In [9], Lau and Losert have shown that the topological center of L1(G)∗∗ is L1(G) where G
is a locally compact group (see also [2], [10]).

Note that when K is commutative, then Z(L1(K)∗∗) is precisely the algebraic center of
L1(K)∗∗ .

This paper is organized as follows:
Section 2 consists of some notation and preliminary results that we need in the sequel. The
technical Lemma 2.7 in this section plays a key role in proving our main results (Theorem
3.5).
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In section 3 we show that Z(L1(K)∗∗) = L1(K) (Theorem 3.5).
This paper will form part of the author’s Ph.D thesis under the guideness of Professor
Anthony T. Lau, to whom he wishes to express his deepest gratitude for the valuable
suggestions and constant encouragement.

2 Preliminaries and some technical lemmas The notation used in this paper is that
of [7] with the following exceptions:
x → x̆ denotes the involoution on the hypergroup K, δx the Dirac measure concentrated
at x (x ∈ K), and 1X the characteristic function of the non-empty set X ⊆ K. For C ⊆ K
and y ∈ K, let C ∗ y denote the subset C ∗ {y} in K.

Lemma 2.1 Let K be a locally compact non-compact hypergroup. Then there exists a family
{Ci : i ∈ I} of compact subsets of K, indexed by I, yi, zi ∈ K, i ∈ I such that Ci

◦ (the
interior of Ci) is non-empty, ∪i∈ICi

◦ = K, {Ci : i ∈ I} is closed under finite unions, and

(a) the families {Ci ∗ yi : i ∈ I} and {Ci ∗ zi : i ∈ I} are pairwise disjoint.

(b) Ci ∗ yi ∗ y̆j ∩ Cp ∗ zp ∗ z̆q = ∅, i �= j and p �= q, i, j, p, q ∈ I.

Proof: Let {Ci : i ∈ I} be a family of compact subsets of K with Ci
◦ nonempty, K =

∪i∈ICi
◦ and that the index set I has minimal cardinality among all such families. By taking

finite union of such sets, we may assume that {Ci : i ∈ I} is closed under finite unions. We
may also assume that I is well ordered in such a way that each nontrivial order segment
{i ∈ I : i ≤ j}, j ∈ I, of I has smaller cardinality than I. We now proceed with the
selection of yi, zi, i ∈ I by transfinite induction. Assume that yj, zj have been selected for
j < i. Then yi has to meet the following requirements:
from (a) for p < i

Ci ∗ yi ∩Cp ∗ yp = ∅,
from (b) for any p �= q, j < i

((Ci ∗ yi) ∗ y̆j) ∩ ((Cp ∗ zp) ∗ z̆q) = ∅,
and (by changing i with j in (b))

((Cj ∗ yj) ∗ y̆i) ∩ ((Cp ∗ zp) ∗ z̆q) = ∅.
Now by using 4.1B in [7] they are equivalent to

yi /∈ C̆i ∗ (Cp ∗ yp) (1)
yi /∈ (C̆i ∗ (((Cp ∗ zp) ∗ z̆q) ∗ yj)) (2)
yi /∈ ((Cp ∗ zp) ∗ z̆q )̆ ∗ (Cj ∗ yj) for j, p, q < i and p �= q (3)

respectively.
Such choice of yi is possible, since the collection of compact sets (see [7, 3.2B]) on the right
hand side of (1), (2) and (3) do not cover K, by minimality of I. Similarly, we can find zi

such that

zi /∈ C̆i ∗ (Cp ∗ zp) p < i,

zi /∈ C̆i ∗ (((Cp ∗ yp) ∗ y̆q) ∗ zj)
and zi /∈ ((Cp ∗ yp) ∗ y̆q )̆ ∗ (Cj ∗ zj) for j, p, q < i and p �= q.

Now by transfinite induction the proof is complete. �
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For a Borel function f on K and x ∈ K, xf denotes the left translation

xf(y) = f(x ∗ y) =
∫

K

f(t) dδx ∗ δy(t),

and fx the right translation

fx(y) = f(y ∗ x) =
∫

K

f(t) dδy ∗ δx(t),

if the integrals exist. We write x∗yf and fx∗y for y( xf) and (fy)x respectively.
The function f̆ is given by f̆(x) = f(x̆). The integral

∫
. . . dλ(x) is often denoted by

∫
. . . dx.

Let (LP (K), ‖.‖p), 1 ≤ p ≤ ∞, denote the usual Banach spaces of Borel functions on K [7,
§6.2]. Then L∞(K) is a commutative Banach algebra with pointwise multiplication and the
essential supremum norm ‖ . ‖∞, L∞(K) = L1(K)∗ [7, §6.2.]. We say that X ⊆ L∞(K)
is translation invariant if xf ∈ X and fx ∈ X for f ∈ X, x ∈ K; also X is topologically
translation invariant if φ ∗ f ∈ X and f ∗ φ̆ ∈ X for f ∈ X,φ ∈ P 1(K) = {φ ∈ L1(K) : φ ≥
0, ‖ φ ‖1= 1}.
In addition, we make use of the following abbreviations:

C00(K) : the set of continuous functions with compact support on K.
C(K) : the set of bounded continuous functions on K.
UCr(K) = {f ∈ C(K) : x �−→ xf is continuous from K into (C(K), ‖ . ‖∞)}.
UCl(K) = {f ∈ C(K) : x �−→ fx is continuous from K into (C(K), ‖ . ‖∞)}.

It is known that

UCr(K) = {f ∈ C(K) : x �−→ xf is continuous from K into
(C(K)) with the weak-topology}

[16, Theorem 4.2.2, p 88].
Each of the spaces UCr(K) and UCl(K) is a normed closed, conjugate closed, translation
invariant and topologically translation invariant subspace of C(K) containing the constant
functions and C0(K) [15, Lemma 2.2.]. Furthermore

(i) UCr(K) = L1(K) ∗ UCr(K) = L1(K) ∗ L∞(K)

(ii) UCl(K) = UCl(K) ∗ L1(K )̆ = L∞(K) ∗ L1(K )̆ [15, Lemma 2.2.].

Note that UCr(K) is in general not an algebra [15, Remark 2.3(b)].
For φ ∈ L1(K), we write φ̃(x) = ∆(x̆)φ(x̆) where ∆ is the modular function on K; then
‖φ̃‖ = ‖φ‖1. If f ∈ LP (K), 1 ≤ p ≤ ∞, x ∈ K, then ‖ xf‖p ≤ ‖f‖, and this is in general not
an isometry [7, §3.3]. The mapping x �−→ xf is continuous from K to (LP (K), ‖.‖p), 1 ≤
p <∞, [7, 2.2B and 5.4H].
It is easy to show that L1(K) has a bounded approximate identity(B.A.I) {ei : i ∈ I} ⊆
C+

00(K) such that ‖ei‖ = 1 (see [15, Lemma 2.1]).
For any Banach space X , we denote by X∗ and X∗∗ its first and second dual. Let A be
a Banach algebra. For any f ∈ A∗ and a ∈ A, we may define a linear functional fa on A
by 〈fa, b〉 = 〈f, ab〉, (b ∈ A). One can check that fa ∈ A∗ and ‖fa‖ ≤ ‖f‖‖a‖. Now for
n ∈ A∗∗, we may define nf ∈ A∗ by 〈nf, a〉 = 〈n, fa〉; clearly we have ‖nf‖ ≤ ‖n‖‖f‖.
Next for m ∈ A∗∗, define mn ∈ A∗∗ by 〈mn, f〉 = 〈m,nf〉. We have ‖mn‖ ≤ ‖m‖‖n‖, and
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A∗∗ becomes a Banach algebra with the multiplication mn, just defined, referred to as the
first Arens product, versus another multiplication on A∗∗ called the second Arens product,
which is denoted by m ◦ n and defined successively as follows:

〈m ◦ n, f〉 = 〈n, fm〉, in which 〈fm, a〉 = 〈m,af〉, where 〈af, b〉 = 〈f, ba〉,
herein m,n, f, a, and b are taken as above.

¿From now on A∗∗ will always be regarded as a Banach algebra with the first Arens product.
Let Z(A∗∗) denote all m ∈ A∗∗ such that

mn = m ◦ n
for all n ∈ A∗∗. We call Z(A∗∗) the topological center of A∗∗.

Lemma 2.2 Z(A∗∗) is a closed subalgebra of A∗∗ containing A.

For a proof see [3, p.310] or [9, Lemma 1].

Lemma 2.3 For any m ∈ A∗∗, the following are equivalent:

(a) m ∈ Z(A∗∗);

(b) the map n→ mn from A∗∗ into A∗∗ is w∗ -w∗ continuous;

(c) the map n → mn from A∗∗ into A∗∗ is w∗ -w∗ continuous on norm bounded subsets
of A∗∗.

For a proof see [3, p.313].
Note that for n fixed in A∗∗, the mapping m �−→ mn is always w∗ -w∗ continuous.
We collect here some facts about the Arens product on L1(K)∗∗ that we shall need.

Lemma 2.4 Let φ,ψ ∈ L1(K), f ∈ L∞(K). Then

(i) 〈ψf, φ〉 = 〈fφ, ψ〉.
(ii) ψf = f ∗ ψ̆ ∈ UCl(K), fφ= φ̃ ∗ f ∈ UCr(K).

(iii) a(ψf) = ψ( af), (fφ)a = (fa)φ for a ∈ K.

Proof: immediate.

Lemma 2.5 Let 0 �= m ∈ L∞(K)∗. Then there is a net {uα} in L1(K) such that ‖uα‖ ≤
‖m‖, all uα have compact support and uα → m in the w∗-topology of L∞(K)∗.

Proof: This follows from Goldstine’s theorem and the density of C00(K) in L1(K). �

Lemma 2.6 If m ∈ Z(L1(K)∗∗) and f ∈ L∞(K), then fm ∈ UCr(K) and (fm)(x ∗ y) =
〈m, fx∗y〉.
Proof: We may assume that m �= 0. Let {uα} be the net in the Lemma 2.5. Then
〈n, fm〉 = 〈m ◦ n, f〉 = 〈mn, f〉 = 〈m,nf〉 = limα〈uα, nf〉 = limα〈uαn, f〉 = limα〈n, fuα〉,
for all n ∈ L∞(K)∗. That is, fuα → fm weakly for all f ∈ L∞(K). Replacing {uα} by
a suitable convex combinations, we may assume fuα → fm in norm. Note that fuα =
ũα ∗ f ∈ UCr(K) (Lemma 2.4(ii)). It follows that fm ∈ UCr(K).
Furthermore, if f ∈ L∞(K), y ∈ K then

fm(y) = lim
α
ũα ∗ f(y) = lim

α

∫
K

ũα(x)f(x̆ ∗ y)dx =
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lim
α

∫
K

uα(x)f(x ∗ y)dx = lim
α
〈uα, fy〉 = 〈m, fy〉

(using [7, 5.5A]).
Now if φ ∈ L1(K), a ∈ K, then by what we have seen above

〈φ, (fm)a〉 = (fm)φ(a) = f(m ◦ φ)(a) =
f(mφ)(a) = 〈mφ, fa〉 = 〈m ◦ φ, fa〉 = 〈φ, (fa)m〉

since m ∈ Z(L1(K)∗∗); i.e. (fm)a = (fa)m.
Now for x, y ∈ K,

fm(x ∗ y) = (fm)y(x) = (fy)m(x)
= 〈m, (fy)x〉 = 〈m, fx∗y〉

Hence, (fm)(x ∗ y) = 〈m, fx∗y〉. �

Lemma 2.7 If n ∈ Z(L1(K)∗∗) and u ∈ L1(K) be such that (n − u)(f) = 0 for all
f ∈ C0(K), then n = u.

Proof: By Lemma 2.2, it is enough to show that any element of Z(L1(K)∗∗) vanishing on
C0(K) is zero. So let n ∈ Z(L1(K)∗∗) such that n(f) = 0 for all f ∈ C0(K). First we show
that n(f) = 0 for all f ∈ L∞(K) vanishing outside a compact subset of K. Let ε > 0 be
given. Since fn is continuous (Lemma 2.6), we can find V ⊆ {x : |fn(x)− fn(e)| < ε} such
that V is open with compact closure. Put ν = 1V

λ(V ) ; then f ∗ ν̆ ∈ C0(K). Hence by using
2.4(ii),

fn ∗ ν̆(e) = ν(fn)(e) = (νf)n(e) = (f ∗ ν̆)n(e) = 〈n, f ∗ ν̆〉 = 0.

It follows from Lemma 2.6 that

|n(f)| = |fn(e) − (fn ∗ ν̆(e))| =
1

λ(V )
|
∫

V

(fn(e) − fn(x))dx| ≤ ε

λ(V )

∫
V

dx = ε.

Hence, we may assume that K is non-compact. Now let {uα} be the net in Lemma 2.5.
Replacing {uα} by a convex combination of {uα} if necessary, we may assume that for any
f ∈ L∞(K) :

‖ fuα − fn ‖→ 0.(1)

(see the proof of Lemma 2.6)
If n �= 0, we may assume that n is positive and ‖ n ‖= 1. Now for any probability measure
µ ∈M(K) , ‖ nµ ‖= 1.
Let 0 < ε < 1/6, then (using separation theorem for locally convex spaces) there exists
f ∈ L∞(K) such that

|〈nµ, f〉| > 1 − ε,(2)

for all probablity measure µ ∈ M(K) with compact support. Let {Ci : i ∈ I} be a family
of compact subsets of K and let yi, zi ∈ K, and i ∈ I satisfying the conditions of Lemma
2.1. For each i, define

f ′
i(x) =

{
f(x ∗ y̆i) if x ∈ Ci ∗ yi,

0 otherwise;

and
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f
′′
i (x) =

{
f(x ∗ z̆i) if x ∈ Ci ∗ zi,

0 otherwise.

For any finite subset σ of I, let

f ′
σ = Σi∈σf

′
i and f

′′
σ = Σi∈σf

′′
i .

Since the positive and negative parts of Re(f ′σ), Im(f ′σ), Re(f
′′
σ ) and Im(f

′′
σ ) are mono-

tonically increasing bounded nets of positive functions in L∞(K), there exists f ′, f
′′

in
L∞(K) such that

f ′
σ → f ′ and f

′′
σ → f

′′

in the w∗-topology of L∞(K).
By (1) we may choose α such that

‖ fuα − fn ‖< ε, ‖ f ′uα − f ′n ‖< ε and ‖ f ′′
uα − f

′′
n ‖< ε.

Since each measure uα has compact support, the family {Ci : i ∈ I} is closed under finite
unions and K = ∪{C◦

i : i ∈ I}, there exists i0 ∈ I such that supp uα ⊆ Ci0 . Let g′ = f ′
yi0

and g
′′

= f
′′
zi0

, then

|n(g′)| > 1 − 3ε and |n(g
′′
)| > 1 − 3ε (3).

Indeed, since 1Ci0
(f ′σ)yi0

→ 1Ci0
(f ′yi0

) in the w∗-topology of L∞(K) and 1Ci0
(f ′σ)yi0

=
1Ci0fyi0∗y̆i0

for σ containing i0, it follows that 1Ci0
g′ = 1Ci0

fyi0∗y̆i0
, namely g′ = fyi0∗y̆i0

on Ci0 . Hence by Lemma 2.6,

ε > |f ′uα(yi0) − f ′n(yi0)| = |uα(f ′yi0
) − n(f ′

yi0
)|

= |uα(fyi0∗y̆i0
) − n(g′)| = |fuα(yi0 ∗ y̆i0) − n(g′)|.

Now since
|fn(yi0 ∗ y̆i0)| = |n(fyi0∗y̆i0

)| > 1 − ε (by (2))

and
|fn(yi0 ∗ y̆i0) − fuα(yi0 ∗ y̆i0)| = |n(fyi0∗y̆i0

) − uα(fyi0∗y̆i0
)| < ε,

we have

|fuα(yi0 ∗ y̆i0)| ≥
|fn(yi0 ∗ y̆i0)| − |fuα(yi0 ∗ y̆i0) − fn(yi0 ∗ y̆i0)| > 1 − ε− ε = 1 − 2ε.

Consequently,

|n(g′)| ≥ |fuα(yi0 ∗ y̆i0)| − |fuα(yi0 ∗ y̆i0) − n(g′)| > 1 − 3ε.

Similarly, |n(g
′′
)| > 1 − 3ε.

By (a) and (b) of Lemma 2.1, the support of g′g
′′

is contained in the compact set D0 =
(Ci0 ∗ yi0 ∗ y̆i0) ∩ (Ci0 ∗ zi0 ∗ z̆i0). Let h ∈ C0(K) with h = 1 on D0 and ‖ 1 − h ‖≤ 1

‖f‖+1

(see [?, Lemma 4]), we have by (3) and what we have shown first,

〈|g′(1 − h)|, n〉 ≥ |n(g′ − g′h)| = |n(g′)| > 1 − 3ε
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and similarly, 〈|g′′
(1 − h)|, n〉 > 1 − 3ε.

Hence, by adding these inequalities,we get

〈(|g′| + |g′′ |)(|1 − h|), n〉 > 2 − 6ε > 1.

But ‖ (|g′|+ |g′′ |)(|1−h|) ‖≤ 1. This contradicts the assumption ‖ n ‖= 1 and we are done.
�

3 Topological center of L1 (K)∗∗ In this section, we shall show that the topological
center of L1(K)∗∗ is L1(K).

Lemma 3.1 If {ei}i∈I be a bounded approximate identity for L1(K) and f ∈ UCr(K),
then

∫
K
f(x) ei(x) dx �−→ f(e).

Proof: By [15, Lemma 2.2(i)] and Lemma 2.4(ii), f = gφ for some g ∈ UCr(K) and
φ ∈ L1(K). Then by using Lemma 2.3, Lemma 2.6, and [15, Lemma 2.2(i)], we have

∫
K

f(x) ei(x) dx = 〈ei, f〉 = 〈ei, gφ〉 = 〈φei, g〉 �−→ 〈φ, g〉 = gφ(e) = f(e). �

Lemma 3.2 Let H be a compact subhypergroup of K with the normalized Haar measure
λH and {Un} be a decreasing sequence of relatively compact neighborhoods of H with H =
∩∞

n=1Un. Put µn = 1Un

λ(Un) , then µn �−→ λH in the σ(M(K), C(K)) topology of M(K).

Proof: Define {U ′
n}∞n=1 in L1(K/H) by U ′

n(x ∗H) = U ′
n(ẋ) =

∫
H µn(x ∗ t) dλ(t), then by

[8, Remark 2.5, p 180] we have
∫

K/H

U ′
n(ẋ) dẋ =

∫
K/H

∫
H

µn(x ∗ t) dλH(t) dẋ =
∫

K

µn(x) dx = 1,

so U ′
n ∈ L1(K/H). We have also supp U ′

n ⊆ Un/H . Indeed if x ∗ H = ẋ /∈ Un/H =
{a ∗H : a ∈ Un}, then x ∗ t∩Un = ∅ for all t ∈ H (using [7, 10.3A]). Thus {U ′

n} is a B.A.I
in L1(K/H). Now for f ∈ C00(K), by using [8, Remark 2.5] and Lemma 3.1

∫
K

µn(x) f(x) dx =
∫

K/H

f ′(ẋ)U ′
n(ẋ) dẋ �−→ f ′(e ∗H) =

∫
H

f(t) dλH(t).

Hence 〈µn, f〉 �−→ 〈λH , f〉 for all f ∈ C00(K). On the other hand {µn} has a w∗-cluster
point in C(K)∗ , say µ ( by Alaoglu theorem). Then µ = λH on C00(K) and hence on
C0(K). Now since ‖λH‖ = 1 as an element of M(K) and ‖mun‖ = 1 �−→ ‖λH‖ = 1, so by
[11, Theorem 3.9] we have µ = λH on C(K). �

Lemma 3.3 Let H be a compact subhypergroup of K such that K/H is metrizable and
m ∈ Z(L∞(K)∗). Then mλH ∈ L1(K), where λH is the normalized Haar measure on H.

Proof: First we show that if, for µ ∈ M(K), there exists a sequence {un} in L1(K)
converging µ in the σ(M(K), C(K)) topology, then mµ ∈ L1(K) for any m ∈ Z(L∞(K)∗).
Let u ∈ L1(K) and m ∈ Z(L∞(K)∗) and ν = m|C0(K). Then for f ∈ C0(K) by using
Lemma 2.4(ii), we have

〈mu, f〉 = 〈m,uf 〉 = 〈ν, uf 〉 = 〈ν ∗ u, f〉 (see [7, 4.2E]).

Since mu ∈ Z(L∞(K)∗), it follows from Lemma 2.7 that mu = ν ∗ u. Now if f ∈ L∞(K),
fm ∈ UCr(K) (Lemma 2.6). Hence, 〈mµ, f〉 = 〈µ, fm〉 = limn〈un, fm〉 = limn〈mun, f〉.
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We know that mun ∈ L1(K) for all n and that L1(K) is weakly sequentially complete; it
follows that mµ ∈ L1(K). Now let {Un} be a decreasing sequence of relatively compact
neighborhoods of H such that H = ∩∞

n=1Un. Such a sequence exists, since the canonical
map π : K → K/H is continuous, open and onto and K is locally compact Hausdorff and
K/H is Hausdorff. Put µn = 1Un

λ(Un) ; then µn ∈ L1(K) and µn → λH in the σ(M(K), C(K))
topology of M(K) (Lemma 3.2); so by what we have shown above, mλH ∈ L1(K). �

To show that Z(L∞(K)∗) = L1(K), we need one more lemma.

Lemma 3.4 Let H be a compact subhypergroup of K and m ∈ Z(L∞(K)∗). If f ∈ L∞(K)
is right H-periodic (i.e. fx = f for all x ∈ H ) then 〈m, f〉 = 〈mλH , f〉.
Proof: As the proof of Lemma 2.6 for any a ∈ H , (fm)a = (fa)m. Consequently, by
Lemma 2.6,
〈m, f〉 = fm(e) =

∫
H fm(e)dλH(x)

=
∫

H
fm(x)dλH(x)

= 〈λH , fm〉 = 〈mλH , f〉. �

Now we are ready to prove the main theorem of this section.

Theorem 3.5 Let K be a locally compact hypergroup with left Haar measure, then
Z(L∞(K)∗) = L1(K).

Proof: We follow ideas in the proof of Theorem 1 in [9]. By Lemma 2.2, it suffices to show
that Z(L∞(K)∗) ⊆ L1(K). Let m ∈ Z(L∞(K)∗) and µ = m|C0(K). Also by Lemma 2.7, it
is enough to show that µ ∈ L1(K). Let B be a compact subset of K with λ(B) = 0. We
may assume that B contains the identity of K. Then there exists a decreasing sequence of
open relatively compact sets Un ⊇ B such that (λ+ |µ|)(Un \B) → 0 (by regularity).
By induction, we construct a sequence φn in C0(K) such that 0 ≤ φn ≤ 1, φn = 1 on B
and that φn = 0 on Un ∩Vn−1, where V0 = K and Vn = {y ∈ K : φn(y) �= 0} for all n ∈ IN .
For any n ∈ IN , dn(x, y) =‖ (φn)x − (φn)y ‖∞ defines a continuous psedometric on K and
Cn = {x ∈ K : dn(x, e) = 0} is a compact subhypergroup of K.
Indeed Cn is closed; it contains the identity and Cn ∗Cn ⊆ Cn. We note that Cn is compact,
since Cn ⊆ Ūn. Moreover, Cn is a compact subhypergroup of K by [7, 10.2F].
But if C = ∩∞

n=1Cn, then K/C is metrizable and hence by Lemma 3.3, mλC ∈ L1(K).
Consequently, Lemma 3.4 implies 〈µ, f〉 = 〈mλC , f〉 for all right C-periodic functions f .
Also, since {Vn} is decreasing λ(Vn) → λ(B) = 0, hence, mλC(Vn) → 0 (since mλC ∈
L1(K)). Since B ⊆ Vn ⊆ Un, µ(Vn) → µ(B) consequently, µ(B) = 0.
Now by regularity of µ, we have µ� λ i.e. µ ∈ L1(K). �

Definition 3.6 L1(K) is called Arens regular if mn = m ◦ n for all m,n ∈ L1(K)∗∗.

The following corollary was proved by Young in [18] (see also [9]) for locally compact groups.
For hypergroups, it was shown by Skantharajah [16, Theorem 5.2.3].

Corollary 3.7 ([16]) L1(K) is Arens regular if and only if K is finite.

Proof: If K is finite, then L1(K) is reflexive and hence Arens regular.
If L1(K) is Arens regular, then L1(K)∗∗ = L1(K) by Theorem 3.5. Hence, L∞(K) is
reflexive and consequently of finite dimension. Therefore, K is finite. �

Corollary 3.8 If K is commutative then L1(K) is the algebraic center of the algebra
L1(K)∗∗.
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