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H-FILTERS OF HILBERT ALGEBRAS
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Abstract. We introduce the concept of Hilbert filter (H-filter, in abbreviation) in
Hilbert algebras, and study how to generate an H-filter by a set.

1. Introduction

Following the introduction of Hilbert algebras by A. Diego [5], the algebra and related
concepts were developed by D. Busneag [2 - 4]. The present author [7, 8] gave a characteri-
zation of a deductive system in a Hilbert algebra, and introduced the notion of commutative
Hilbert algebras and gave some characterizations of a commutative Hilbert algebra. In this
paper, we introduce the concept of a Hilbert filter (H-filter, in abbreviation) in Hilbert
algebras, and study how to generate an H-filter by a set. We also discuss how to generate
an H-filter by an H-filter and an element.

We include some elementary aspects of Hilbert algebras that are necessary for this paper,
and for more details we refer to [2 - 4] and [5].

A Hilbert algebra is a triple (H,→, 1), where H is a nonempty set, “ → ” is a binary
operation on H , 1 ∈ H is an element such that the following three axioms are satisfied for
every x, y, z ∈ H :

(i) x → (y → x) = 1,
ii) (x → (y → z)) → ((x → y) → (x → z)) = 1,

(iii) if x → y = y → x = 1 then x = y.

If H is a Hilbert algebra, then the relation x ≤ y iff x → y = 1 is a partial order
on H , which will be called the natural ordering on H . With respect to this ordering 1 is
the largest element of H . A bounded Hilbert algebra is a Hilbert algebra with a smallest
element 0 relative to the natural ordering. In a bounded Hilbert algebra H we define a
unary operation “ C ” on H by C(x) := x → 0 for all x ∈ H .

In a Hilbert algebra H , the following hold:
(1) x ≤ y → x,
(2) x → 1 = 1,
(3) x → (y → z) = (x → y) → (x → z),
(4) 1 → x = x,
(5) x → (y → z) = y → (x → z),
(6) x → x = 1.
(7) x ≤ y implies z → x ≤ z → y and y → z ≤ x → z,
(8) C(0) = 1 and C(1) = 0,
(9) x ≤ y implies C(y) ≤ C(x),

(10) x ≤ C(C(x)),
(11) x → y ≤ (y → z) → (x → z),
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(12) x → y ≤ C(y) → C(x),
(13) x ≤ (x → y) → y and ((x → y) → y) → y = x → y.

In the sequel, the binary operation “ → ” will be denoted by juxtaposition.
For any x, y in a Hilbert algebra H , we define x∨y by (yx)x. Note that x∨y is an upper

bound of x and y.
A Hilbert algebra H is said to be commutative ([8, Definition 2.1]) if for all x, y ∈ H ,

(yx)x = (xy)y, i.e., x ∨ y = y ∨ x.

A subset D of a Hilbert algebra H is called a deductive system of H if it satisfies:

(i) 1 ∈ D,
(ii) x ∈ D and xy ∈ D imply y ∈ D.

2. H-filters

In the sequel H will denote a bounded Hilbert algebra unless otherwise specified. We
begin with the following definition.

Definition 2.1. A non-empty subset F of H is called a Hilbert filter (H-filter, in abbrevi-
ation) if

(F1) 0 ∈ F ,
(F2) C(C(y)C(x)) ∈ F and y ∈ F imply x ∈ F ,

for all x, y ∈ H .

Under this definition {0} and H are the simplest examples of H-filters.

Example 2.2. Consider a bounded Hilbert algebra H := {1, x, y, z, 0} with Cayley table
as follows:

1 x y z 0
1 1 x y z 0
x 1 1 y z 0
y 1 x 1 z z
z 1 1 y 1 y
0 1 1 1 1 1

It is easily verified that F := {0, y} and G := {0, z} are H-filters of H.

Theorem 2.3. Let F be an H-filter of H and y ∈ F . If C(y) ≤ C(x), then x ∈ F for all
x ∈ H .

Proof. If C(y) ≤ C(x), then C(y)C(x) = 1 and so C(C(y)C(x)) = C(1) = 0 ∈ F . It follows
from (F2) that x ∈ F , ending the proof.

Since x ≤ y implies C(y) ≤ C(x) by (9), we have the following corollary.

Corollary 2.4. Let F be an H-filter of H and y ∈ F . If x ≤ y, then x ∈ F for all x ∈ H .

Lemma 2.5. If H is commutative, then

(i) C(C(x)C(y)) = C(yx),
(ii) C(C(x)) = x, for all x, y ∈ H .
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Proof. (i) From (9) and (12) we know that C(C(x)C(y)) ≤ C(yx). Now

C(yx)C(C(x)C(y)) = ((yx)0)(((x0)(y0))0)

= ((x0)(y0))(((yx)0)0) [by (5)]

= (y((x0)0))(((yx)0)0) [by (5)]

= (y((0x)x))((0(yx))(yx))[by commutativity]

= (yx)(yx) = 1, [by (4) and (6)]

which implies that C(yx) ≤ C(C(x)C(y)). Hence C(C(x)C(y)) = C(yx).
(ii) Note that x∨0 = (0x)x = 1x = x and 0∨x = (x0)0 = C(C(x)). By the commutativity,

we have C(C(x)) = x.

If H is commutative, then we have a characterization of an H-filter by using Lemma
2.5(i).

Theorem 2.6. Assume that H is commutative and let F be a non-empty subset of H .
Then F is an H-filter if and only if it satisfies (F1) and
(F3) C(xy) ∈ F and y ∈ F imply x ∈ F for all x, y ∈ H .

For a non-empty subset F of H , we define

C(F ) := {C(x)|x ∈ F}.
In general, C(F ) may not be a deductive system even if F is an H-filter of H . In fact,
in Example 2.2, C(F ) = {1, z} is not a deductive system of H since zx = 1 ∈ C(F ) and
x /∈ C(F ).

Theorem 2.7. Assume that H is commutative. If F is an H-filter, then C(F ) is a deductive
system of H .

Proof. If F is an H-filter, then 0 ∈ F and so C(0) = 1 ∈ C(F ). Let x ∈ C(F ) and
xy ∈ C(F ) for all x, y ∈ H . Then x = C(u) and xy = C(v) for some u, v ∈ F . By using
Lemma 2.5(ii), we have

C(C(u)C(C(y))) = C(C(u)y) = C(xy) = C(C(v)) = v ∈ F.

It follows from (F2) that C(y) ∈ F so that y = C(C(y)) ∈ C(F ). This completes the
proof.

Observation 2.8 Suppose F is a non-empty family of H-filters of H . Then F = ∩F is
also an H-filter of H .

Let A be a subset of H . The least H-filter containing A is called the H-filter generated
by A, written 〈A〉.

Since H is clearly an H-filter containing A, in view of Observation 2.8 we know that the
definition is well-defined. We start with the following.

Observation 2.9. Let A and B be subsets of H . Then the following hold:
(i) 〈{0}〉 = {0}, 〈∅〉 = {0}.
(ii) 〈H〉 = H , 〈{1}〉 = H .
(iii) A ⊆ B implies 〈A〉 ⊆ 〈B〉.
(iv) x ≤ y implies 〈{x}〉 ⊆ 〈{y}〉.
(v) if A is an H-filter of H , then 〈A〉 = A.
The next statement gives a description of elements of 〈A〉.
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Theorem 2.8. If A is a non-empty subset of H , then

〈A〉 = {x ∈ H |C(an)(...(C(a1)C(x))...) = 1 for some a1, ..., an ∈ A}.
In order to prove Theorem 2.10 we need the following facts: For any natural number n

we define xny recursively as follows: x1y = xy and xn+1y = x(xny). By (5) and induction
we know that
(14) z(xn(...(x1y)...)) = xn(...(x1(zy))...).

As a special case of (14) we get
(15) z(xny) = xn(zy).

Now let a, y, x1, ..., xn be elements of a Hilbert algebra H . Then

(((xn(...(x1(ya))...))a)a)(xn(...(x1(ya))...))

= xn(...(x1(y((((xn(...(x1(ya))...))a)a)a)))...) [by (5)]

= xn(...(x1(y((xn(...(x1(ya))...))a)))...) [by (13)]

= (xn(...(x1(ya))...))(xn(...(x1(ya))...)) [by (5)]

= 1, [by (6)]

which implies that
((xn(...(x1(ya))...))a)a ≤ xn(...(x1(ya))...).

The reverse inequality follows from (13). Hence we have
(16) ((xn(...(x1(ya))...))a)a = xn(...(x1(ya))...).

Substituting 0 for a and assuming x1 = x2 = ... = xn = x in (16), we obtain
(17) C(C(xnC(y))) = xnC(y).

Proof of Theorem 2.10. Denote

U = {x ∈ H |C(an)(...(C(a1)C(x))...) = 1 for some a1, ..., an ∈ A}.
We first prove that U is an H-filter. Since A is non-empty, there exists a ∈ A. Then
C(a)C(0) = C(a)1 = 1, whence 0 ∈ U . Let C(C(y)C(x)) ∈ U and y ∈ U . Then there exist
ai ∈ A (i = 1, ..., n) and bj ∈ A (j = 1, ...m) such that
(18) C(an)(...(C(a1)C(C(C(y)C(x))))...) = 1 and C(bm)(...(C(b1)C(y))...) = 1.

It follows from (17) that (18) implies

C(an)(...(C(a1)(C(y)C(x)))...) = 1,

and so C(y) ≤ C(an)(...(C(a1)C(x))...). By using (7) we get

1 = C(bm)(...(C(b1)C(y))...)

≤ C(bm)(...(C(b1)(C(an)(...(C(a1)C(x))...)))...),

and hence C(bm)(...(C(b1)(C(an)(...(C(a1)(C(x))...)))...) = 1. This shows that x ∈ U .
Therefore U is an H-filter. Now it is clear that A ⊆ U . Let V be any H-filter containing A
and let x ∈ U . Then C(an)(...(C(a1)C(x))...) = 1 for some a1, ..., an ∈ A. Thus

1 = C(an)(C(an−1)(...(C(a1)C(x))...))

= C(an)(C(an−1)(...(C(a1)(x0))...))

= C(an)(((C(an−1)(...(C(a1)(x0))...))0)0) [by (17)]

= C(an)(C(C(C(an−1)(...(C(a1)C(x))...)))),

which implies that

C(C(an)(C(C(C(an−1)(...(C(a1)C(x))...))))) = C(1) = 0 ∈ V.
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Noticing an ∈ A ⊆ V and V to be an H-filter, we have C(C(an−1)(...(C(a1)C(x))...)) ∈ V.
Now

C(C(an−1)(...(C(a1)C(x))...))

= C(C(an−1)(C(an−2)(...(C(a1)C(x))...)))

= C(C(an−1)(C(C(C(an−2)(...(C(a1)C(x))...))))).[by (17)]

Since an−1 ∈ A ⊆ V , it follows from (F2) that C(C(an−2)(...(C(a1)C(x))...)) ∈ V . Repeat-
ing the above argument we conclude that C(C(x)) ∈ V . Since x ≤ C(C(x)), we have x ∈ V
by Corollary 2.4. This proves that U ⊆ V , whence U = 〈A〉. This completes the proof.

If A = {a1, ..., an}, we will denote 〈{a1, ..., an}〉 = 〈a1, ..., an〉 for the sake of convenience.
The following corollary is immediate from Theorem 2.10.

Corollary 2.9. For any a ∈ H , we have

〈a〉 = {x ∈ H |C(a)nC(x) = 1 for some natural number n}.
The following theorem shows how to generate an H-filter by given an H-filter and an

element.

Theorem 2.10. Let F be an H-filter of H and a ∈ H . Then

〈F ∪ {a}〉 = {x ∈ H |C(C(a)nC(x)) ∈ F for some natural number n}.
Proof. Denote

U = {x ∈ H |C(C(a)nC(x)) ∈ F for some natural number n}.
Since C(C(a)nC(a)) = C(1) = 0 ∈ F , therefore a ∈ U . Let x ∈ F . Since C(x) ≤
C(a)C(x) = C(C(C(a)C(x))), it follows from Theorem 2.3 that C(C(a)C(x)) ∈ F so that
x ∈ U . Hence F ∪ {a} ⊆ U . In order to prove that U is an H-filter, let C(C(y)C(x)) ∈ U
and y ∈ U . Then there are natural numbers n and m such that
(19) C(C(a)nC(C(C(y)C(x)))) ∈ F and
(20) C(C(a)mC(y)) ∈ F , respectively.

From (17) it follows that (19) is precisely the following
(21) C(C(a)n(C(y)C(x)) ∈ F .

(20) and (21) imply that C(C(a)n(C(y)C(x)) = u and C(C(a)mC(y)) = v for some
u, v ∈ F . Using (17) we get

(22) C(a)n(C(y)C(x)) = C(C(C(a)n(C(y)C(x))) = C(u) and
(23) C(a)mC(y) = C(C(C(a)mC(y))) = C(v).
From (22) we know that C(y) ≤ C(u)(C(a)nC(x)), which implies from (5), (7) and (23)
that

C(v) = C(a)mC(y) ≤ C(u)(C(a)m+nC(x)).
Hence

C(v)(C(u)(C(C(C(a)m+nC(x)))))

= C(v)(C(u)(C(a)m+nC(x))) [by (17)]
= 1.

Since u, v ∈ F , it follows from Observation 2.9(v) and Theorem 2.10 that

C(C(a)m+nC(x)) ∈ F

so that x ∈ U . Clearly, 0 ∈ U . Therefore U is an H-filter. Finally let V be an H-
filter containing F and a. If x ∈ U , then there exists a natural number n such that
C(C(a)nC(x)) ∈ F ⊆ V . Thus, by (17), we have

C(C(a)(C(C(C(a)n−1C(x))))) = C(C(a)nC(x)) ∈ V.
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Combining a ∈ V and using (F2) we get C(C(a)n−1C(x)) ∈ V . Repeating the procedure
above, we conclude that C(C(x)) ∈ V . It follows from (10) and Corollary 2.4 that x ∈
V . This proves that U ⊆ V . Therefore U is the least H-filter containing F and a, i.e.,
〈F ∪ {a}〉 = U . This completes the proof.
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