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ABSTRACT. We introduce the concept of Hilbert filter (H-filter, in abbreviation) in
Hilbert algebras, and study how to generate an H-filter by a set.

1. INTRODUCTION

Following the introduction of Hilbert algebras by A. Diego [5], the algebra and related
concepts were developed by D. Busneag [2 - 4]. The present author [7, 8] gave a characteri-
zation of a deductive system in a Hilbert algebra, and introduced the notion of commutative
Hilbert algebras and gave some characterizations of a commutative Hilbert algebra. In this
paper, we introduce the concept of a Hilbert filter (H-filter, in abbreviation) in Hilbert
algebras, and study how to generate an H-filter by a set. We also discuss how to generate
an H-filter by an H-filter and an element.

We include some elementary aspects of Hilbert algebras that are necessary for this paper,
and for more details we refer to [2 - 4] and [5].

A Hilbert algebra is a triple (H,—, 1), where H is a nonempty set, “ — ” is a binary
operation on H, 1 € H is an element such that the following three axioms are satisfied for
every z,y,z € H:

(i) z—(y— =) =1,

i) (= (y—2)—=((z—y) —(@—2)=1

(iii) if e my=y —ax=1then x = y.

If H is a Hilbert algebra, then the relation x < y iff + — y = 1 is a partial order
on H, which will be called the natural ordering on H. With respect to this ordering 1 is
the largest element of H. A bounded Hilbert algebra is a Hilbert algebra with a smallest
element 0 relative to the natural ordering. In a bounded Hilbert algebra H we define a
unary operation “ C'” on H by C(z) :=x — 0 for all z € H.

In a Hilbert algebra H, the following hold:

= (y—z)=(@—y) —(r—2),
l—-2x=uz,
r—(y—2)=y—(z—2),

C(0) =1 and C(1)

)
)
)
)
)
)z <yimpliesz —wz<z—oyandy — 2z <z — z,
) =0,

9) x <y implies C(y) < C(x),

)

)
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(12) = — y < C(y) — C(z),
(13) z<(z—y)—yand ((z—y) -y y=a—y.

“ 7

In the sequel, the binary operation “ — ” will be denoted by juxtaposition.

For any z,y in a Hilbert algebra H, we define xVy by (yz)z. Note that xV y is an upper
bound of x and y.

A Hilbert algebra H is said to be commutative ([8, Definition 2.1]) if for all z,y € H,

(yx)x = (zy)y, i.e, zVy=yVuz.

A subset D of a Hilbert algebra H is called a deductive system of H if it satisfies:

(i) 1€ D,
(ii) z € D and zy € D imply y € D.

2. H-FILTERS

In the sequel H will denote a bounded Hilbert algebra unless otherwise specified. We
begin with the following definition.

Definition 2.1. A non-empty subset F of H is called a Hilbert filter (H-filter, in abbrevi-
ation) if

(F1) 0 e F,
(F2) C(C(y)C(z)) € Fandy € F imply z € F,
for all x,y € H.

Under this definition {0} and H are the simplest examples of H-filters.

Example 2.2. Consider a bounded Hilbert algebra H := {1, z,y, 2,0} with Cayley table
as follows:

ey =
— = ==
— =8 =88
S SIS NS
[\ SRR S 3 IR\
R N O oo

o

1
It is easily verified that F := {0,y} and G := {0, z} are H-filters of H.

Theorem 2.3. Let F' be an H-filter of H and y € F. If C(y) < C(x), then x € F for all
r e H.

Proof. If C(y) < C(x), then C(y)C(x) =1 and so C(C(y)C(z)) = C(1) =0 € F. It follows
from (F2) that € F, ending the proof. O

Since z < y implies C(y) < C(x) by (9), we have the following corollary.
Corollary 2.4. Let F be an H-filter of H and y € F. If x <y, then x € F for all x € H.

Lemma 2.5. If H is commutative, then

(i) C(C(z)C(y)) = Clyx),
(ii) C(C(x)) =z, for all z,y € H.
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Proof. (i) From (9) and (12) we know that C(C(z)C(y
Clyz)C(C(2)C(y)) = ((y2)0)(((x0)(y0))0

~—

) < C(yx). Now

)0)
= ((20)(y0))(((4)0)0) [by (5)]
= (4((=0)0))(((yx)0)0) [by (5)]
= (y((02)2))((0(yz))(yx)) by commutativity]
= (yz)(yz) =1, [by (4) and (6)]

which implies that C'(yz) < C(C(x)C(y)). Hence C(C(z)C(y)) = C(yx).
(ii) Note that V0 = (0z)x = 1z = z and OVa = (20)0 = C(C(x)). By the commutativity,
we have C(C(x)) = x. O

If H is commutative, then we have a characterization of an H-filter by using Lemma
2.5(1).
Theorem 2.6. Assume that H is commutative and let F' be a non-empty subset of H.
Then F' is an H-filter if and only if it satisfies (F1) and
(F3) C(zy) € Fand y € F imply € F for all z,y € H.

For a non-empty subset F' of H, we define
C(F):={C(x)|z € F}.

In general, C(F') may not be a deductive system even if F' is an H-filter of H. In fact,
in Example 2.2, C(F) = {1, z} is not a deductive system of H since zz = 1 € C(F') and

x ¢ C(F).

Theorem 2.7. Assume that H is commutative. If F'is an H-filter, then C(F') is a deductive
system of H.

Proof. If F' is an H-filter, then 0 € F and so C(0) = 1 € C(F). Let z € C(F) and
xy € C(F) for all z,y € H. Then z = C(u) and zy = C(v) for some u,v € F. By using
Lemma 2.5(ii), we have

C(CW)C(C(y)) = C(Clu)y) = C(zy) = C(C(v)) =v € F.

It follows from (F2) that C(y) € F so that y = C(C(y)) € C(F). This completes the
proof. O

Observation 2.8 Suppose F is a non-empty family of H-filters of H. Then F' = NF is
also an H-filter of H.

Let A be a subset of H. The least H-filter containing A is called the H-filter generated
by A, written (A).

Since H is clearly an H-filter containing A, in view of Observation 2.8 we know that the
definition is well-defined. We start with the following.

Observation 2.9. Let A and B be subsets of H. Then the following hold:

i) ({0}) = {0} (0) = {0}.
(i) (H) = H, ({1}) = H

(iii) ACB 1mphes (A) C (B).
iv)
(v)

1

(iv) = <y implies ({z}) € ({y}).
v) if A is an H-filter of H, then (A) = A.

The next statement gives a description of elements of (A).
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Theorem 2.8. If A is a non-empty subset of H, then
(A) = {z € H|C(ay)(...(C(a1)C(x))...) = 1 for some ay,...,an € A}.

In order to prove Theorem 2.10 we need the following facts: For any natural number n
we define 2™y recursively as follows: x'y = 2y and 2"ty = x(2"y). By (5) and induction
we know that

As a special case of (14) we get
(15) z(z"y) = 2" (2y).
Now let a,y,x1,...,z, be elements of a Hilbert algebra H. Then

((zn(-..(z1(ya))...))a)a) (@n(...(x1(ya))...))
= Zp (.- (21 (y((((zn (... (21 (ya))...))a)a)a)))...) [by (5)
= Tn (- (21 (y((@n (- (21(ya))...))a)))-..) [by (13)
= (@n(.(z1(ya))..)) (@n (.. (z1(ya))...)) [by (5)
=1, [by (6)

which implies that

((xn(...(z1(ya))...))a)a < zp(...(21(ya))...).

The reverse inequality follows from (13). Hence we have

(16) ((zn(...(z1(ya))...))a)a = z,(...(z1(ya))...).

Substituting 0 for @ and assuming z1 = z2 = ... = z,, = = in (16), we obtain
(17) C(C(z"C(y))) = z"C(y).
Proof of Theorem 2.10. Denote
U ={z € H|C(an)(...(C(a1)C(x))...) = 1 for some ay,...,a, € A}.

We first prove that U is an H-filter. Since A is non-empty, there exists a € A. Then
C(a)C(0) = C(a)l =1, whence 0 € U. Let C(C(y)C(z)) € U and y € U. Then there exist
a; € A(i=1,..,n)and b; € A (j =1,...m) such that
(18) C(an)(...(C(a)C(C(C(y)C(x))))...) = 1 and C(by)(...(C(b1)C(y))...) = 1.

It follows from (17) that (18) implies

Clan)(--(Clar)(C(y)C(x)))-.) = 1,

and so C(y) < C(an)( .(C(a1)C(x))...). By using (7) we get
Cbm) (- (C(b1)C(y)).)

b ) (-..(C(01)(C(an)(...(C(a1)C(x))...)))--.),

c(
and hence C(by,)(...(C(b1)(C(an)(...(C(a1)(C(x))...)))...) = 1. This shows that x € U.
Therefore U is an H-filter. Now it is clear that A C U. Let V be any H-filter containing A
and let z € U. Then C’(an)( .(C(a1)C(x))...) =1 for some ay,...,a, € A. Thus

C(an)(Clan-1)(-.(Cla1)C(x))-..))
(Clan-1)(.(C(a1)(20))...))
(((C(an-1)(-.(C(a1)(20))...))0)0)  [by (17)]
( (-(Cla1)C(x)).-)))),

\/\ ||

n)(Clan—1
C(an) (@n—1
C(an)
Clan)(C(C(Clan—1)

which implies that
C(C(an)(C(C(Clan-1)(-..(C(a1)C())...))))) = C(1) =0 € V.
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Noticing a, € A CV and V to be an H-filter, we have C(C(an—1)(...(C(a1)C(z))...)) € V.

Now

C(Clan-1)(-(Clar)C())...))

= C(Clan-1)(Clan—2)(..(Cla1)C(2))...)))

= C(Clan-1)(C(C(Clan—2)(--(C(a1)C(x))...))))).[by (17)]
Since a,—1 € A C V, it follows from (F2) that C(C(an—2)(...(C(a1)C(x))...)) € V. Repeat-
ing the above argument we conclude that C(C(x)) € V. Since x < C(C(z)), we havez € V
by Corollary 2.4. This proves that U C V, whence U = (A). This completes the proof.

If A={ay,..,an}, we will denote ({aq,...,an}) = (a1, ..., a,) for the sake of convenience.
The following corollary is immediate from Theorem 2.10.

Corollary 2.9. For any a € H, we have
(a) = {z € H|C(a)"C(x) =1 for some natural number n}.

The following theorem shows how to generate an H-filter by given an H-filter and an
element.

Theorem 2.10. Let F' be an H-filter of H and a € H. Then
(FU{a}) ={zx € HIC(C(a)"C(z)) € F for some natural number n}.
Proof. Denote
U= {z € H|IC(C(a)*C(x)) € F for some natural number n}.

Since C(C(a)"C(a)) = C(1) = 0 € F, therefore a € U. Let x € F. Since C(z) <
C(a)C(z) = C(C(C(a)C(x))), it follows from Theorem 2.3 that C(C(a)C(x)) € F so that
x € U. Hence F U {a} CU. In order to prove that U is an H-filter, let C(C(y)C(z)) € U
and y € U. Then there are natural numbers n and m such that
(19) C(C(a)"C(C(CH)C@)) € F and
(20) C(C(a)™C(y)) € F, respectively.

From (17) it follows that (19) is precisely the following
(21) C(C(a)"(C(y)C(x)) € F.

(20) and (21) imply that C(C(a)™(C(y)C(z)) = u and C(C(a)™C(y)) = v for some

u,v € F. Using (17) we get
(22) C(a)"(C(y)C(x)) = C(C(C(a)"(C(y)C(x))) = C(u) and
(23) C(a)™C(y) = C(C(C(a)"C(y))) = C(v).
From (22) we know that C'(y) < C(u)(C(a)*C(x)), which implies from (5), (7) and (23)
that

C(v) = C(a)"C(y) < C(u)(C(a)™ " C(x)).
Hence
C()(C(u)(C(C(C(a)™ T C(2)))))
= C()(Cw)(C(a)™ ™ C(2)))  [by (17)]
=1.
Since u,v € F, it follows from Observation 2.9(v) and Theorem 2.10 that
C(C(a)™"C(x)) € F

so that x € U. Clearly, 0 € U. Therefore U is an H-filter. Finally let V be an H-
filter containing F' and a. If © € U, then there exists a natural number n such that
C(C(a)*C(xz)) € F C V. Thus, by (17), we have

C(C(a)(C(C(C(a)" 1 C(@))))) = C(C(a)"C () € V.



236 Y. B. JUN AND K. H. KIM

Combining a € V and using (F2) we get C(C(a)""'C(z)) € V. Repeating the procedure
above, we conclude that C(C(x)) € V. It follows from (10) and Corollary 2.4 that z €
V. This proves that U C V. Therefore U is the least H-filter containing F' and a, i.e.,
(FU{a}) =U. This completes the proof. O
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