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A STONE-WEIERSTRASS TYPE THEOREM FOR SEMIUNIFORM
CONVERGENCE SPACES
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Abstract. A Stone-Weierstraß type theorem for semiuniform convergence spaces is
proved. It implies the classical Stone-Weierstraß theorem as well as a Stone-Weierstraß
type theorem for filter spaces due to Bentley, Hušek and Lowen-Colebunders [1].

0. Introduction

In 1885 K. Weierstraß [8] proved his approximation theorem. M. H. Stone [7] proved the
so-called Stone-Weierstraß theorem in 1937. A reformulation of the latter one can be found
in Gillman-Jerison’s book [4]. Furthermore, a Stone-Weierstraß type theorem for proximity
spaces is proved in Čech’s book [2], where a proximity space there is more general than an
Efremovič proximity space (cf.[3]). It is well-known that the construct of Efremovič prox-
imity spaces (and proximally continuous maps) is concretely isomorphic to the construct of
precompact (=totally bounded) uniform spaces (and uniformly continuous maps). In 2000,
H. L. Bentley, M. Hušek and E. Lowen-Colebunders [1] established a Stone-Weierstraß type
theorem for an unstructured set using the above mentioned Stone-Weierstraß theorem for
Efremovič proximity spaces. Indeed, they showed that both theorems are equivalent.

Here their Stone-Weierstraß type theorem for an unstructured set is used in order to
derive a Stone-Weierstraß type theorem for semiuniform convergence spaces. Semiuniform
convergence spaces play an essential role in Convenient Topology since they form a strong
topological universe in which topological and uniform concepts are available. Additionally,
the construct Fil of filter spaces (and Cauchy continuous maps) can be nicely embedded
into the construct SUConv of semiuniform convergence spaces (and uniformly continuous
maps) (cf. [6] for more detailed information).
From the Stone-Weierstraß type theorem for semiuniform convergence spaces a correspond-
ing theorem for filter spaces due to Bentley/Hušek/Lowen-Colebunders [1] can be derived
as well as the classical Stone-Weierstraß theorem (as formulated by Gillman-Jerison).

Finally, concerning Stone-Weierstraß type theorems it turns out that the semiuniform
convergence space case, the filter space case and the unstructured set case are equivalent.
The terminology of this paper corresponds to [6].

1. Preliminaries

For each set X , let F (X) be the set of all real-valued functions on X endowed with the
uniformity of uniform convergence. In the following all subsets of F (X) are assumed to be
endowed with the subspace uniformity of this uniformity. In particular the subspace F*(X)
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of all bounded real-valued functions on X is metrizable by means of the metric d defined
by

d(f, g) = sup{|f(x) − g(x) | : x ∈ X}.
(Let Ru be the usual uniform space of real numbers, i.e. {Vε : ε > 0} is a base for its
uniformity U , where Vε = {(x, y) : |x − y |< ε}. Then {W (Vε) : ε > 0} is a base for the
uniformity of uniform convergence on F (X), where W (Vε) = {(f, g) : (f(x), g(x)) ∈ Vε},
and B = {W (Vε)∩ (F*(X)× F*(X)) : ε > 0} is a base for the uniformity of F*(X). Thus,
(1) B′ = {{(f, g) ∈ F*(X) × F*(X) : |f(x) − g(x) |≤ ε for each x ∈ X} :

ε > 0}
is also a base for this uniformity, whereas
(2) B′′ = {{(f, g) ∈ F*(X) × F*(X) : d(f, g) ≤ ε} : ε > 0}
is a base for the uniformity induced by d. Since for each (f, g) ∈ F*(X) × F*(X),

d(f, g) ≤ ε iff |f(x) − g(x) |≤ ε for each x ∈ X,

it follows from (1) and (2) that the uniformity of F*(X) coincides with the uniformity
induced by d.).
F (X) may also be regarded as an algebra over the field R of real numbers containing a unit
element different from zero, namely the constant function 1 : X → R, defined by 1(x) = 1
for each x ∈ X . In the following subalgebras of F (X) are also assumed to contain 1 (and
thus all constant functions), e.g. F*(X) is a subalgebra of F (X).
H. L. Bentley, M. Hušek and E. Lowen-Colebunders [1] have proved the following Stone-
Weierstraß type theorem for an unstructured set:

1.1 Theorem. Let X be a set, let B be a subalgebra of F*(X), and let f ∈ F*(X).
Then f belongs to the closure clF*(X)B of B in F*(X) iff when-ever F is a filter on X such
that g(F) converges for every g ∈ B then f(F) converges too.

In the realm of semiuniform convergence spaces we do not make a notational distinction
between the usual uniform space Ru of real numbers and its corresponding semiuniform
convergence space whose uniform filters are exactly those filters on R × R containing the
usual uniformity U of R.

1.2 Proposition. Let (X,JX) be a semiuniform convergence space and let f ∈ F (X).
Then the following are equivalent:
(1) f : (X,JX) → Ru is uniformly continuous.
(2) For each F ∈ JX the following is satisfied: For each ε > 0 there is some

F ∈ F such that |f(x) − f(y) |< ε for all (x, y) ∈ F , i.e. f × f [F ] ⊂ Vε.
(3) (f × f)−1[U ] ∈ ⋂

F∈JX

F for each U ∈ U .

1.3 Lemma. Let X = (X,JX) be a semiuniform convergence space and let U(X) be
the set of all uniformly continuous maps from X into Ru. Then U(X) is closed in F (X).

Proof. In order to prove that F (X) \ U(X) is open, let f ∈ F (X) \ U(X). Thus, there
is some U ∈ U such that (f × f)−1[U ] /∈ ⋂

F∈JX

F . Furthermore, there is some symmet-

ric V ∈ U with V 3 ⊂ U . If g ∈ W (V )(f), i.e. (f(x), g(x)) ∈ V for each x ∈ X , then
(g × g)−1[V ] ⊂ (f × f)−1[U ], and consequently, (g × g)−1[V ] /∈ ⋂

F∈JX

F , i.e. g is not uni-

formly continuous. Hence, W (V )(f) ⊂ F (X) \ U(X).
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1.4 Corollary. The set U*(X) of all bounded uniformly continuous maps from a semiuni-
form convergence space X = (X,JX) into Ru may be regarded as a subalgebra of F*(X),
which is closed in the subspace F*(X) of F (X).
Proof. Let f, g : X → Ru be bounded uniformly continuous maps from a semiuniform
uniform convergence space X into Ru and let λ ∈ R. Using 1.2.(2), f + g, f · g, λf and
1 belong to U*(X), i.e. U*(X) is a subalgebra of F*(X). By the preceeding lemma,
clF (X)U(X) = U(X). Furthermore,

U*(X) ⊂ clF*(X)U*(X) = (clF (X)U*(X)) ∩ F*(X)

⊂ U(X) ∩ F*(X) = U*(X),

since clF (X)U*(X) ⊂ clF (X)U(X) = U(X). Thus, U*(X) = clF*(x)U*(X).

2. The Main Result

2.1 Theorem. Let X = (X,JX) be a semiuniform convergence space, let B be a sub-
algebra of U*(X), and let f ∈ U*(X). Then f ∈ clU*(X)B iff the following is satisfied:
Whenever F is a filter on X such that g(F) converges for each g ∈ B, then f(F) converges
too.

Proof. clU*(X)B = (clF*(X)B) ∩ U*(X) = clF*(X)B since clF*(X)B ⊂
clF*(X)U*(X) = U*(X) (cf. 1.4). By 1.1, f ∈ clF*(X)B iff the condition in 2.1 is fulfilled.

2.2 Corollary. Let X = (X,JX) be a semiuniform convergence space, and let B be a
subalgebra of U*(X) such that JX is the initial SUConv-structure w.r.t. (g)g∈F . Then B
is dense in U*(X).

Proof. Since (g : (X,JX) → (R, [U ]g))g∈B with [U ]g = [U ] for each g ∈ B is an ini-
tial source in SUConv, (g : (X, γJX ) → (R, γ[U ]g))g∈B is an initial source in Fil (cf. [6;
2.3.3.17]) where γ[U ]g is the set of all Cauchy filters in Ru, i.e. the set of all convergent
filters in the usual topological space Rt (in other words: (R, γ[U ]g) is the space Rt regarded
as a filter space.). Thus, the condition in 2.1 means that f : (X, γJX ) → Rt is Cauchy
continuous. Since this is true for each f ∈ U*(X), f ∈ clU*(X)B.

2.3 Remarks. 1) The semiuniform convergence X in 2.2 is a uniform space, since Unif
is bireflective in SUConv.
2) Let A be a compact subset of the usual topological space Rt of real numbers, e.g.
A = [0, 1] (=closed unit interval). Since there is a unique uniformity on A which induces
the topology of A (i.e. the topology induced by the Euclidean metric on R), A may be
regarded as a (uniform) subspace of Ru denoted by Au. In particular, the inclusion map
i : Au → Ru is uniformly continuous, and the uniformity of Au is the coarsest uniformity
such that i is uniformly continuous, i.e. the initial uniformity w.r.t. i : A → Ru. If Ru

and Au are considered to be semiuniform convergence spaces, the semiuniform convergence
structure of Au is the initial SUConv-structure w.r.t. i : A → Ru (Unif is bireflectively
embedded in SUConv).
The smallest subalgebra B of U*(Au) containing i : Au → Ru and 1 : Au → Ru is the
algebra of all real-valued polynomial functions on Au, and it generates Au initially, i.e. the
SUConv-structure of Au is initial w.r.t. B (since it is already initial w.r.t. {i} ⊂ B). Let
the topological subspace of Rt determined by A be denoted by At, and let C(At) be the set
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of all continuous maps from At to Rt, then

U*(Au) = U(Au) = C(At),

since A is compact. By 2.2, for each continuous map f : At → Rt, there is a sequence
(Pn)n∈N of polynomial functions on At converging uniformly to f . This is the classical
Weierstraß approximation theorem.

2.4 Proposition. Let X = (X,JX) be a precompact semiuniform convergence space. Then
each uniformly continuous map f : X → Ru is bounded, i.e. U*(X) = U(X).

Proof. Since X is precompact and f ∈ U(X), f [X ] ⊂ Ru is precompact (=totally bounded),
i.e. f [X ] is bounded.

2.5 Corollary (Weierstraß theorem for bounded sets). Let A ⊂ R be bounded, and let
A be the subspace (in SUConv) of Ru determined by A. Then the algebra of all real-
valued polynomial functions on A is dense in U(A), i.e. for each uniformly continuous
map f : A → Ru, there is a sequence (Pn)n∈N of polynomial functions on A converging
uniformly to f .

Proof. By assumption, A is a precompact semiuniform convergence space because A
is metrizable by means of the metric induced by the Euclidean metric on R, and a subset
of R is bounded iff it is totally bounded (=precompact) (cf. e.g. [5; 4.1.12]). By 2.4,
U*(A) = U(A). Since A is initially generated by i : A → Ru, it is also initially generated
by B. By 2.2, B is dense in U(A).

3. Gillman-Jerison’s Version of the Stone-Weierstraß Theorem

3.1 Theorem ([4; 16.4]). Let X = (X,X ) be a compact Hausdorff space, and let B be
a subalgebra of the algebra C(X) of all continuous maps from X into Rt. If f ∈ C(X), then
f ∈ clC(X)B iff the following is satisfied: For each S ⊂ X such that g | S is constant for
each g ∈ B, f |S is constant.

Proof. Since X = (X,X ) is a compact Hausdorff space, there is a unique uniformity
V inducing X such that U*(X, [V ]) = U(X, [V ]) = C(X). Now let us apply 2.1:
“⇒”. By assumption, g |S is constant for each g ∈ B, i.e. for each g ∈ B there is some xg ∈ R

such that g[S] = {xg}. If (S) denotes the filter generated by S, then g((S)) = (g[S]) = ẋg

converges to xg for each g ∈ B which implies that f((S)) converges to some x ∈ R. Let
s1, s2 ∈ S. Obviously, f(ṡi) ⊃ f((S)) converges to x for each i ∈ {1, 2}, and by continuity
of f , it converges also to f(si). Since filter convergence in Rt is unique, x = f(s1) = f(s2),
i.e. f |S is constant.
“⇐”. Let F be a filter on X such that g(F) converges for each g ∈ B. The set S of all
adherence points of F is non-empty, since X is compact, and g |S is constant for each g ∈ B
because g(F) converges. Consequently, f |S is constant, i.e. f [S] = {x} for some x ∈ R.
In order to prove that f(F) converges to x, let V be an open neighborhood of x. Then
f−1[V ] ⊃ S is open in X, i.e. f−1[V ] ∈ U(s) =

⋂{H : H is a filter on X converging to s in
X} for each s ∈ S. Since X is compact each ultrafilter U containing F converges to some
s ∈ S. Thus, f−1[V ] ∈ ⋂{U : U is an ultrafilter on X with U ⊃ F} = F . Hence, V ∈ f(F).

3.2 Corollary (Stone’s Theorem [7]). Let X = (X,X ) be a compact Hausdorff space,
and let B be a subalgebra of C(X). Then B is dense in C(X) iff B separates points of X.
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Proof. If B is dense in C(X), each f ∈ C(X) fulfills the condition in the above theo-
rem. Since X is compact, C(X) separates points of X. Let x, y ∈ X such that x 	= y,
and put S = {x, y}. Then there is some f ∈ C(X) such that f |S is non-constant, which
implies that there is some g ∈ B such that g |S is non-constant, i.e. B separates points of
X. Conversely, let B separate points of X. Then any non-empty subset S of X such that
g |S is constant for all g ∈ B is a singleton, which implies that for each f ∈ C(X), f |S is
constant. By 3.1, B is dense in C(X).

4. A Stone-Weierstraß Type Theorem for Filter Spaces (and Cauchy Spaces)

The construct Fil of filter spaces (and Cauchy continuous maps) is concretely isomor-
phic to the construct Fil-D-SUConv of Fil-determined semiuniform convergence spaces
(and uniformly continuous maps) (cf. [6; 2.3.3.5]). In the following Rt is regarded as a
Fil-determined semiuniform convergence space (or a filter space), i.e. the Cauchy filters in
Rt are exactly the convergent filters. If X = (X,JX) ∈|Fil-D-SUConv|, then the set of
all bounded Cauchy continuous maps between X and Rt is denoted by Γ*(X). The same
notation is used if X is a filter space. Since Γ*(X) = U*(X) (cf. [6; 2.3.3.25.2)]), our main
theorem 2.1 can be applied in order to obtain the following theorem.

4.1 Theorem ([1; theorem 3]). Let X be a filter space (or a Fil-determined semiuniform
convergence space), let B be a subalgebra of Γ*(X), and let f ∈ Γ*(X). Then f ∈ clΓ*(X)B
iff the following is satisfied: Whenever F is a filter on X such that g(F) converges for each
g ∈ B, then f(F) converges.

Since Fil-D-SUConv (∼= Fil) is bireflective in SUConv, initial structures in Fil-D-
SUConv (or in Fil) are formed as in SUConv. Applying corollary 2.2 one obtains the
following corollary.

4.2 Corollary ([1; theorem 4]). Let X be a filter space (resp. a Fil-determined semi-
uniform convergence space), and let B be a subalgebra of Γ*(X) initially generating the
Fil-structure (resp. the Fil-D-SUConv-structure) of X. Then B is dense in Γ*(X).

4.3 Remarks. 1) Bentley, Hušek and Lowen-Colebunders [1] have observed that 4.2 fol-
lows also from 4.1, since the condition characterizing f ∈ clΓ*(X)B in 4.1 means exactly
that f : X → Rt is Cauchy continuous provided that X is initially generated by B.
2) The above results 4.1 and 4.2 can be specialized to Cauchy spaces (concerning 4.2 note
that the construct Chy of Cauchy spaces [and Cauchy continuous maps] is bireflective in
Fil which implies that initial structures in Chy are formed as in Fil) (cf. [1; theorem 6
and theorem 7).

5. A Stone-Weierstraß Type Theorem for an Unstructured Set

5.1 Theorem (=Theorem 1.1). Let X be a set, let B be a subalgebra of F*(X), and
let f ∈ F*(X). Then f ∈ clF*(X)B iff the following is satisfied: Whenever F is filter on X
such that g(F) converges for every g ∈ B then f(F) converges too.

Proof. A) Endow X with the initial Fil-structure γ w.r.t. B, where each g ∈ B is re-
garded as a map from X into Rt, i.e. the reals carrying the usual Fil-structure (cf. 4.).
Then B is a subalgebra of Γ*(X), where X = (X, γ). By means of 4.2, B is dense in Γ*(X).
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B) Now the above theorem can be proved:
a) “⇐” (indirect). Let f ∈ F*(X) such that f /∈ clF*(X)B. By 1.4, Γ*(X) is closed in
F*(X), which implies clF*(X)B = clΓ*(X)B. Since, by A), clΓ*(X)B = Γ*(X), it follows
clF*(X)B = Γ*(X). Thus, f /∈ Γ*(X), i.e. f : X → Rt is not Cauchy continuous. Hence,
there is a Cauchy filter F on X such that f(F) does not converge. Since F is a Cauchy
filter, g(F) converges for each g ∈ B ⊂ Γ*(X). Consequently, the condition in 5.1 is not
fulfilled.
b) “⇒”. Let f ∈ clF*(X)B = Γ*(X) (cf. a)), and let F be a filter on X such that g(F)
converges for each g ∈ B. Then F is a Cauchy filter on X. Since f is Cauchy continuous,
f(F) is a Cauchy filter on Rt, i.e. f(F) converges.

6. Final Remark

In this paper the following implications have been proved:

1.1 2.1
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⇓

3.1

3.2

=⇒=⇒=⇒ 2.2

4.1

=⇒4.2

�
�

��

�
�

��

5.1 (= 1.1)

Thus, the statements 1.1, 2.1, 2.2, 4.1 and 4.2 are equivalent.
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[5] Herrlich, H.: 1986, Einführung in die Topologie, Heldermann, Berlin.

[6] Preuß, G.: 2002, Foundations of Topology, Kluwer, Dordrecht.

[7] Stone, M. H.: 1937, ’Applications of the theory of Boolean rings to general topology’, Trans.

Amer. Math. Soc. 41, 373-481.
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