A STONE-WEIERSTRASS TYPE THEOREM FOR SEMIUNIFORM CONVERGENCE SPACES

GERHARD PREUSS

Received April 22, 2005

ABSTRACT. A Stone-Weierstraß type theorem for semiuniform convergence spaces is proved. It implies the classical Stone-Weierstraß theorem as well as a Stone-Weierstraß type theorem for filter spaces due to Bentley, Hušek and Lowen-Colebunders [1].

0. Introduction

In 1885 K. Weierstraß [8] proved his approximation theorem. M. H. Stone [7] proved the so-called Stone-Weierstraß theorem in 1937. A reformulation of the latter one can be found in Gillman-Jerison's book [4]. Furthermore, a Stone-Weierstraß type theorem for proximity spaces is proved in Čech's book [2], where a proximity space there is more general than an Efremovič proximity space (cf.[3]). It is well-known that the construct of Efremovič proximity spaces (and proximally continuous maps) is concretely isomorphic to the construct of precompact (=totally bounded) uniform spaces (and uniformly continuous maps). In 2000, H. L. Bentley, M. Hušek and E. Lowen-Colebunders [1] established a Stone-Weierstraß theorem for Efremovič proximity spaces. Indeed, they showed that both theorems are equivalent.

Here their Stone-Weierstraß type theorem for an unstructured set is used in order to derive a Stone-Weierstraß type theorem for semiuniform convergence spaces. Semiuniform convergence spaces play an essential role in Convenient Topology since they form a strong topological universe in which topological and uniform concepts are available. Additionally, the construct **Fil** of filter spaces (and Cauchy continuous maps) can be nicely embedded into the construct **SUConv** of semiuniform convergence spaces (and uniformly continuous maps) (cf. [6] for more detailed information).

From the Stone-Weierstraß type theorem for semiuniform convergence spaces a corresponding theorem for filter spaces due to Bentley/Hušek/Lowen-Colebunders [1] can be derived as well as the classical Stone-Weierstraß theorem (as formulated by Gillman-Jerison).

Finally, concerning Stone-Weierstraß type theorems it turns out that the semiuniform convergence space case, the filter space case and the unstructured set case are equivalent. The terminology of this paper corresponds to [6].

1. Preliminaries

For each set X, let F(X) be the set of all real-valued functions on X endowed with the uniformity of uniform convergence. In the following all subsets of F(X) are assumed to be endowed with the subspace uniformity of this uniformity. In particular the subspace $F^*(X)$

²⁰⁰⁰ Mathematics Subject Classification. 46E25, 54C35, 54E15.

Key words and phrases. Semiuniform convergence spaces, filter spaces, algebra of functions, uniformity of uniform convergence.

GERHARD PREUSS

of all bounded real-valued functions on X is metrizable by means of the metric d defined by

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in X\}.$$

(Let \mathbb{R}_u be the usual uniform space of real numbers, i.e. $\{V_{\varepsilon}: \varepsilon > 0\}$ is a base for its uniformity \mathcal{U} , where $V_{\varepsilon} = \{(x, y) : |x - y| < \varepsilon\}$. Then $\{W(V_{\varepsilon}) : \varepsilon > 0\}$ is a base for the uniformity of uniform convergence on F(X), where $W(V_{\varepsilon}) = \{(f,g) : (f(x),g(x)) \in V_{\varepsilon}\},\$ and $\mathcal{B} = \{W(V_{\varepsilon}) \cap (F^*(X) \times F^*(X)) : \varepsilon > 0\}$ is a base for the uniformity of $F^*(X)$. Thus, (1) $\mathcal{B}' = \{\{(f,g) \in F^*(X) \times F^*(X) : |f(x) - g(x)| \le \varepsilon \text{ for each } x \in X\} :$ $\varepsilon > 0$

is also a base for this uniformity, whereas

(2) $\mathcal{B}'' = \{\{(f,g) \in F^*(X) \times F^*(X) : d(f,g) \le \varepsilon\} : \varepsilon > 0\}$ is a base for the uniformity induced by d. Since for each $(f,g) \in F^*(X) \times F^*(X)$,

$$d(f,g) \leq \varepsilon$$
 iff $|f(x) - g(x)| \leq \varepsilon$ for each $x \in X$,

it follows from (1) and (2) that the uniformity of $F^*(X)$ coincides with the uniformity induced by d.).

F(X) may also be regarded as an algebra over the field \mathbb{R} of real numbers containing a unit element different from zero, namely the constant function $\overline{1}: X \to \mathbb{R}$, defined by $\overline{1}(x) = 1$ for each $x \in X$. In the following subalgebras of F(X) are also assumed to contain $\overline{1}$ (and thus all constant functions), e.g. $F^*(X)$ is a subalgebra of F(X).

H. L. Bentley, M. Hušek and E. Lowen-Colebunders [1] have proved the following Stone-Weierstraß type theorem for an unstructured set:

1.1 Theorem. Let X be a set, let \mathcal{B} be a subalgebra of $F^*(X)$, and let $f \in F^*(X)$. Then f belongs to the closure $cl_{F^{*}(X)}\mathcal{B}$ of \mathcal{B} in $F^{*}(X)$ iff when-ever \mathcal{F} is a filter on X such that $g(\mathcal{F})$ converges for every $g \in \mathcal{B}$ then $f(\mathcal{F})$ converges too.

In the realm of semiuniform convergence spaces we do not make a notational distinction between the usual uniform space \mathbb{R}_u of real numbers and its corresponding semiuniform convergence space whose uniform filters are exactly those filters on $\mathbb{R} \times \mathbb{R}$ containing the usual uniformity \mathcal{U} of \mathbb{R} .

1.2 Proposition. Let (X, \mathcal{J}_X) be a semiuniform convergence space and let $f \in F(X)$. Then the following are equivalent:

- (1) $f: (X, \mathcal{J}_X) \to \mathbb{R}_u$ is uniformly continuous.
- (2) For each $\mathcal{F} \in \mathcal{J}_X$ the following is satisfied: For each $\varepsilon > 0$ there is some
- $F \in \mathcal{F} \text{ such that } |f(x) f(y)| < \varepsilon \text{ for all } (x, y) \in F, \text{ i.e. } f \times f[F] \subset V_{\varepsilon}.$ (3) $(f \times f)^{-1}[U] \in \bigcap_{\mathcal{F} \in \mathcal{J}_X} \mathcal{F} \text{ for each } U \in \mathcal{U}.$

1.3 Lemma. Let $\mathbf{X} = (X, \mathcal{J}_X)$ be a semiuniform convergence space and let $U(\mathbf{X})$ be the set of all uniformly continuous maps from **X** into \mathbb{R}_u . Then $U(\mathbf{X})$ is closed in F(X).

Proof. In order to prove that $F(X) \setminus U(\mathbf{X})$ is open, let $f \in F(X) \setminus U(\mathbf{X})$. Thus, there is some $U \in \mathcal{U}$ such that $(f \times f)^{-1}[U] \notin \bigcap_{\mathcal{F} \in \mathcal{J}_X} \mathcal{F}$. Furthermore, there is some symmetric $V \in \mathcal{U}$ with $V^3 \subset U$. If $g \in W(V)(f)$, i.e. $(f(x), g(x)) \in V$ for each $x \in X$, then $(g \times g)^{-1}[V] \subset (f \times f)^{-1}[U]$, and consequently, $(g \times g)^{-1}[V] \notin \bigcap_{\mathcal{F} \in \mathcal{J}_X} \mathcal{F}$, i.e. g is not uniformly continuous. Hence, $W(V)(f) \subset F(X) \setminus U(\mathbf{X})$.

1.4 Corollary. The set $U^*(\mathbf{X})$ of all bounded uniformly continuous maps from a semiuniform convergence space $\mathbf{X} = (X, \mathcal{J}_X)$ into \mathbb{R}_u may be regarded as a subalgebra of $F^*(X)$, which is closed in the subspace $F^*(X)$ of F(X).

Proof. Let $f, g : \mathbf{X} \to \mathbb{R}_u$ be bounded uniformly continuous maps from a semiuniform uniform convergence space \mathbf{X} into \mathbb{R}_u and let $\lambda \in \mathbb{R}$. Using 1.2.(2), $f + g, f \cdot g, \lambda f$ and $\overline{1}$ belong to $U^*(\mathbf{X})$, i.e. $U^*(\mathbf{X})$ is a subalgebra of $F^*(X)$. By the preceeding lemma, $cl_{F(X)}U(\mathbf{X}) = U(\mathbf{X})$. Furthermore,

$$U^*(\mathbf{X}) \subset cl_{F^*(X)}U^*(\mathbf{X}) = (cl_{F(X)}U^*(\mathbf{X})) \cap F^*(X)$$
$$\subset U(\mathbf{X}) \cap F^*(X) = U^*(\mathbf{X}),$$

since $cl_{F(X)}U^*(\mathbf{X}) \subset cl_{F(X)}U(\mathbf{X}) = U(\mathbf{X})$. Thus, $U^*(\mathbf{X}) = cl_{F^*(x)}U^*(\mathbf{X})$.

2. The Main Result

2.1 Theorem. Let $\mathbf{X} = (X, \mathcal{J}_X)$ be a semiuniform convergence space, let \mathcal{B} be a subalgebra of $U^*(\mathbf{X})$, and let $f \in U^*(\mathbf{X})$. Then $f \in cl_{U^*(\mathbf{X})}\mathcal{B}$ iff the following is satisfied: Whenever \mathcal{F} is a filter on X such that $g(\mathcal{F})$ converges for each $g \in \mathcal{B}$, then $f(\mathcal{F})$ converges too.

Proof. $cl_{U^*(\mathbf{X})}\mathcal{B} = (cl_{F^*(X)}\mathcal{B}) \cap U^*(\mathbf{X}) = cl_{F^*(X)}\mathcal{B}$ since $cl_{F^*(X)}\mathcal{B} \subset cl_{F^*(X)}U^*(\mathbf{X}) = U^*(\mathbf{X})$ (cf. 1.4). By 1.1, $f \in cl_{F^*(X)}\mathcal{B}$ iff the condition in 2.1 is fulfilled.

2.2 Corollary. Let $\mathbf{X} = (X, \mathcal{J}_X)$ be a semiuniform convergence space, and let \mathcal{B} be a subalgebra of $U^*(\mathbf{X})$ such that \mathcal{J}_X is the initial **SUConv**-structure w.r.t. $(g)_{g \in \mathcal{F}}$. Then \mathcal{B} is dense in $U^*(\mathbf{X})$.

Proof. Since $(g : (X, \mathcal{J}_X) \to (\mathbb{R}, [\mathcal{U}]^g))_{g \in \mathcal{B}}$ with $[\mathcal{U}]^g = [\mathcal{U}]$ for each $g \in \mathcal{B}$ is an initial source in **SUConv**, $(g : (X, \gamma_{\mathcal{J}_X}) \to (\mathbb{R}, \gamma_{[\mathcal{U}]^g}))_{g \in \mathcal{B}}$ is an initial source in **Fil** (cf. [6; 2.3.3.17]) where $\gamma_{[\mathcal{U}]^g}$ is the set of all Cauchy filters in \mathbb{R}_u , i.e. the set of all convergent filters in the usual topological space \mathbb{R}_t (in other words: $(\mathbb{R}, \gamma_{[\mathcal{U}]^g})$ is the space \mathbb{R}_t regarded as a filter space.). Thus, the condition in 2.1 means that $f : (X, \gamma_{\mathcal{J}_X}) \to \mathbb{R}_t$ is Cauchy continuous. Since this is true for each $f \in U^*(\mathbf{X}), f \in cl_{U^*(\mathbf{X})}\mathcal{B}$.

2.3 Remarks. 1) The semiuniform convergence **X** in 2.2 is a uniform space, since **Unif** is bireflective in **SUConv**.

2) Let A be a compact subset of the usual topological space \mathbb{R}_t of real numbers, e.g. A = [0, 1] (=closed unit interval). Since there is a unique uniformity on A which induces the topology of A (i.e. the topology induced by the Euclidean metric on \mathbb{R}), A may be regarded as a (uniform) subspace of \mathbb{R}_u denoted by A_u . In particular, the inclusion map $i : A_u \to \mathbb{R}_u$ is uniformly continuous, and the uniformity of A_u is the coarsest uniformity such that i is uniformly continuous, i.e. the initial uniformity w.r.t. $i : A \to \mathbb{R}_u$. If \mathbb{R}_u and A_u are considered to be semiuniform convergence spaces, the semiuniform convergence structure of A_u is the initial **SUConv**-structure w.r.t. $i : A \to \mathbb{R}_u$ (**Unif** is bireflectively embedded in **SUConv**).

The smallest subalgebra \mathcal{B} of $U^*(A_u)$ containing $i : A_u \to \mathbb{R}_u$ and $\overline{1} : A_u \to \mathbb{R}_u$ is the algebra of all real-valued polynomial functions on A_u , and it generates A_u initially, i.e. the **SUConv**-structure of A_u is initial w.r.t. \mathcal{B} (since it is already initial w.r.t. $\{i\} \subset \mathcal{B}$). Let the topological subspace of \mathbb{R}_t determined by A be denoted by A_t , and let $C(A_t)$ be the set

of all continuous maps from A_t to \mathbb{R}_t , then

$$U^*(A_u) = U(A_u) = C(A_t),$$

since A is compact. By 2.2, for each continuous map $f : A_t \to \mathbb{R}_t$, there is a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomial functions on A_t converging uniformly to f. This is the classical Weierstraß approximation theorem.

2.4 Proposition. Let $\mathbf{X} = (X, \mathcal{J}_X)$ be a precompact semiuniform convergence space. Then each uniformly continuous map $f : \mathbf{X} \to \mathbb{R}_u$ is bounded, i.e. $\mathbf{U}^*(\mathbf{X}) = U(\mathbf{X})$.

Proof. Since **X** is precompact and $f \in U(\mathbf{X}), f[X] \subset \mathbb{R}_u$ is precompact (=totally bounded), i.e. f[X] is bounded.

2.5 Corollary (Weierstraß theorem for bounded sets). Let $A \subset \mathbb{R}$ be bounded, and let \mathbf{A} be the subspace (in **SUConv**) of \mathbb{R}_u determined by A. Then the algebra of all realvalued polynomial functions on \mathbf{A} is dense in $U(\mathbf{A})$, i.e. for each uniformly continuous map $f : \mathbf{A} \to \mathbb{R}_u$, there is a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomial functions on \mathbf{A} converging uniformly to f.

Proof. By assumption, **A** is a precompact semiuniform convergence space because **A** is metrizable by means of the metric induced by the Euclidean metric on \mathbb{R} , and a subset of \mathbb{R} is bounded iff it is totally bounded (=precompact) (cf. e.g. [5; 4.1.12]). By 2.4, $U^*(\mathbf{A}) = U(\mathbf{A})$. Since **A** is initially generated by $i : A \to \mathbb{R}_u$, it is also initially generated by \mathcal{B} . By 2.2, \mathcal{B} is dense in $U(\mathbf{A})$.

3. Gillman-Jerison's Version of the Stone-Weierstraß Theorem

3.1 Theorem ([4; 16.4]). Let $\mathbf{X} = (X, \mathcal{X})$ be a compact Hausdorff space, and let \mathcal{B} be a subalgebra of the algebra $C(\mathbf{X})$ of all continuous maps from \mathbf{X} into \mathbb{R}_t . If $f \in C(\mathbf{X})$, then $f \in cl_{C(\mathbf{X})}\mathcal{B}$ iff the following is satisfied: For each $S \subset X$ such that $g \mid S$ is constant for each $g \in \mathcal{B}, f \mid S$ is constant.

Proof. Since $\mathbf{X} = (X, \mathcal{X})$ is a compact Hausdorff space, there is a unique uniformity \mathcal{V} inducing \mathcal{X} such that $U^*(X, [\mathcal{V}]) = U(X, [\mathcal{V}]) = C(\mathbf{X})$. Now let us apply 2.1:

" \Rightarrow ". By assumption, g | S is constant for each $g \in \mathcal{B}$, i.e. for each $g \in \mathcal{B}$ there is some $x_g \in \mathbb{R}$ such that $g[S] = \{x_g\}$. If (S) denotes the filter generated by S, then $g((S)) = (g[S]) = \dot{x}_g$ converges to x_g for each $g \in \mathcal{B}$ which implies that f((S)) converges to some $x \in \mathbb{R}$. Let $s_1, s_2 \in S$. Obviously, $f(\dot{s}_i) \supset f((S))$ converges to x for each $i \in \{1, 2\}$, and by continuity of f, it converges also to $f(s_i)$. Since filter convergence in \mathbb{R}_t is unique, $x = f(s_1) = f(s_2)$, i.e. f | S is constant.

"⇐". Let \mathcal{F} be a filter on X such that $g(\mathcal{F})$ converges for each $g \in \mathcal{B}$. The set S of all adherence points of \mathcal{F} is non-empty, since \mathbf{X} is compact, and g | S is constant for each $g \in \mathcal{B}$ because $g(\mathcal{F})$ converges. Consequently, f | S is constant, i.e. $f[S] = \{x\}$ for some $x \in \mathbb{R}$. In order to prove that $f(\mathcal{F})$ converges to x, let V be an open neighborhood of x. Then $f^{-1}[V] \supset S$ is open in \mathbf{X} , i.e. $f^{-1}[V] \in \mathcal{U}(s) = \bigcap \{\mathcal{H} : \mathcal{H} \text{ is a filter on } X$ converging to s in \mathbf{X} } for each $s \in S$. Since \mathbf{X} is compact each ultrafilter \mathcal{U} containing \mathcal{F} converges to some $s \in S$. Thus, $f^{-1}[V] \in \bigcap \{\mathcal{U} : \mathcal{U} \text{ is an ultrafilter on } X \text{ with } \mathcal{U} \supset \mathcal{F} \} = \mathcal{F}$. Hence, $V \in f(\mathcal{F})$.

3.2 Corollary (Stone's Theorem [7]). Let $\mathbf{X} = (X, \mathcal{X})$ be a compact Hausdorff space, and let \mathcal{B} be a subalgebra of $C(\mathbf{X})$. Then \mathcal{B} is dense in $C(\mathbf{X})$ iff \mathcal{B} separates points of \mathbf{X} .

Proof. If \mathcal{B} is dense in $C(\mathbf{X})$, each $f \in C(\mathbf{X})$ fulfills the condition in the above theorem. Since \mathbf{X} is compact, $C(\mathbf{X})$ separates points of \mathbf{X} . Let $x, y \in X$ such that $x \neq y$, and put $S = \{x, y\}$. Then there is some $f \in C(\mathbf{X})$ such that $f \mid S$ is non-constant, which implies that there is some $g \in \mathcal{B}$ such that $g \mid S$ is non-constant, i.e. \mathcal{B} separates points of \mathbf{X} . Conversely, let \mathcal{B} separate points of \mathbf{X} . Then any non-empty subset S of X such that $g \mid S$ is constant for all $g \in \mathcal{B}$ is a singleton, which implies that for each $f \in C(\mathbf{X}), f \mid S$ is constant. By 3.1, \mathcal{B} is dense in $C(\mathbf{X})$.

4. A Stone-Weierstraß Type Theorem for Filter Spaces (and Cauchy Spaces)

The construct **Fil** of filter spaces (and Cauchy continuous maps) is concretely isomorphic to the construct **Fil-D-SUConv** of **Fil**-determined semiuniform convergence spaces (and uniformly continuous maps) (cf. [6; 2.3.3.5]). In the following \mathbb{R}_t is regarded as a **Fil**-determined semiuniform convergence space (or a filter space), i.e. the Cauchy filters in \mathbb{R}_t are exactly the convergent filters. If $\mathbf{X} = (X, \mathcal{J}_X) \in |\mathbf{Fil}-\mathbf{D}-\mathbf{SUConv}|$, then the set of all bounded Cauchy continuous maps between \mathbf{X} and \mathbb{R}_t is denoted by $\Gamma^*(\mathbf{X})$. The same notation is used if \mathbf{X} is a filter space. Since $\Gamma^*(\mathbf{X}) = U^*(\mathbf{X})$ (cf. [6; 2.3.3.25.2)]), our main theorem 2.1 can be applied in order to obtain the following theorem.

4.1 Theorem ([1; theorem 3]). Let \mathbf{X} be a filter space (or a Fil-determined semiuniform convergence space), let \mathcal{B} be a subalgebra of $\Gamma^*(\mathbf{X})$, and let $f \in \Gamma^*(\mathbf{X})$. Then $f \in cl_{\Gamma^*(\mathbf{X})}\mathcal{B}$ iff the following is satisfied: Whenever \mathcal{F} is a filter on X such that $g(\mathcal{F})$ converges for each $g \in \mathcal{B}$, then $f(\mathcal{F})$ converges.

Since **Fil-D-SUConv** (\cong **Fil**) is bireflective in **SUConv**, initial structures in **Fil-D-SUConv** (or in **Fil**) are formed as in **SUConv**. Applying corollary 2.2 one obtains the following corollary.

4.2 Corollary ([1; theorem 4]). Let \mathbf{X} be a filter space (resp. a Fil-determined semiuniform convergence space), and let \mathcal{B} be a subalgebra of $\Gamma^*(\mathbf{X})$ initially generating the Fil-structure (resp. the Fil-D-SUConv-structure) of \mathbf{X} . Then \mathcal{B} is dense in $\Gamma^*(\mathbf{X})$.

4.3 Remarks. 1) Bentley, Hušek and Lowen-Colebunders [1] have observed that 4.2 follows also from 4.1, since the condition characterizing $f \in cl_{\Gamma^*(\mathbf{X})}\mathcal{B}$ in 4.1 means exactly that $f: \mathbf{X} \to \mathbb{R}_t$ is Cauchy continuous provided that \mathbf{X} is initially generated by \mathcal{B} .

2) The above results 4.1 and 4.2 can be specialized to Cauchy spaces (concerning 4.2 note that the construct **Chy** of Cauchy spaces [and Cauchy continuous maps] is bireflective in **Fil** which implies that initial structures in **Chy** are formed as in **Fil**) (cf. [1; theorem 6 and theorem 7).

5. A Stone-Weierstraß Type Theorem for an Unstructured Set

5.1 Theorem (=Theorem 1.1). Let X be a set, let \mathcal{B} be a subalgebra of $F^*(X)$, and let $f \in F^*(X)$. Then $f \in cl_{F^*(X)}\mathcal{B}$ iff the following is satisfied: Whenever \mathcal{F} is filter on X such that $g(\mathcal{F})$ converges for every $g \in \mathcal{B}$ then $f(\mathcal{F})$ converges too.

Proof. A) Endow X with the initial **Fil**-structure γ w.r.t. \mathcal{B} , where each $g \in \mathcal{B}$ is regarded as a map from X into \mathbb{R}_t , i.e. the reals carrying the usual **Fil**-structure (cf. 4.). Then \mathcal{B} is a subalgebra of $\Gamma^*(\mathbf{X})$, where $\mathbf{X} = (X, \gamma)$. By means of 4.2, \mathcal{B} is dense in $\Gamma^*(\mathbf{X})$.

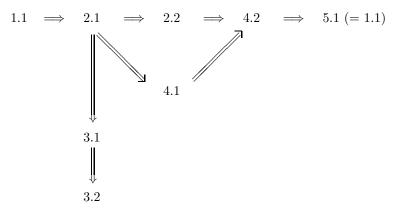
B) Now the above theorem can be proved:

a) " \Leftarrow " (indirect). Let $f \in F^*(X)$ such that $f \notin cl_{F^*(X)}\mathcal{B}$. By 1.4, $\Gamma^*(\mathbf{X})$ is closed in $F^*(X)$, which implies $cl_{F^*(X)}\mathcal{B} = cl_{\Gamma^*(\mathbf{X})}\mathcal{B}$. Since, by A), $cl_{\Gamma^*(\mathbf{X})}\mathcal{B} = \Gamma^*(\mathbf{X})$, it follows $cl_{F^*(X)}\mathcal{B} = \Gamma^*(\mathbf{X})$. Thus, $f \notin \Gamma^*(\mathbf{X})$, i.e. $f : \mathbf{X} \to \mathbb{R}_t$ is not Cauchy continuous. Hence, there is a Cauchy filter \mathcal{F} on X such that $f(\mathcal{F})$ does not converge. Since \mathcal{F} is a Cauchy filter, $g(\mathcal{F})$ converges for each $g \in \mathcal{B} \subset \Gamma^*(\mathbf{X})$. Consequently, the condition in 5.1 is not fulfilled.

b) " \Rightarrow ". Let $f \in cl_{F^*(X)}\mathcal{B} = \Gamma^*(\mathbf{X})$ (cf. a)), and let \mathcal{F} be a filter on X such that $g(\mathcal{F})$ converges for each $g \in \mathcal{B}$. Then \mathcal{F} is a Cauchy filter on \mathbf{X} . Since f is Cauchy continuous, $f(\mathcal{F})$ is a Cauchy filter on \mathbb{R}_t , i.e. $f(\mathcal{F})$ converges.

6. Final Remark

In this paper the following implications have been proved:



Thus, the statements 1.1, 2.1, 2.2, 4.1 and 4.2 are equivalent.

References

[1] Bentley, H. L., Hušek, M. and E. Lowen-Colebunders: 2000, 'A Stone-Weierstraß type theorem for an unstructured set - with applications', *Applied Categorical Structures* 8, 425-434.

[2] Čech, E.: 1966, *Topological Spaces*, Revised edition by M. Frolik and M. Katětov, Interscience, London.

[3] Efremovič, V. A.: 1952, 'The geometry of proximity', Mat. Sbornik **31** (73), 189-200.

[4] Gillman, L. and M. Jerison: 1960, Rings of Continuous Functions, van Nostrand, Princeton.

[5] Herrlich, H.: 1986, *Einführung in die Topologie*, Heldermann, Berlin.

[6] Preuß, G.: 2002, Foundations of Topology, Kluwer, Dordrecht.

[7] Stone, M. H.: 1937, 'Applications of the theory of Boolean rings to general topology', *Trans. Amer. Math. Soc.* 41, 373-481.

[8] Weierstraß, K.: 1885, 'Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente', S. B. Deutsche Akad. Wiss. Berlin KL. Math. Phys. Tech., 633-639, 789-805.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FREE UNIVERSITY BERLIN, 14195 BERLIN, GERMANY