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PROPERTY B(P,w) AND WEAK #-REFINABILITY OF PRODUCT
SPACES
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ABSTRACT. In this paper we shall show: (1) Let X be a zero-dimensional metric space
and Y be a P-space. If Y has property B(D,w), then X X Y has property B(D,w).

(2) Let X be a regular o-space and Y be a P-space. If Y has property B(LF,w),
then X X Y has property B(LF,w).

(3) Let X be a normal strong X-space and Y be a P-space. If Y has property
B(LF,w), then X x Y has property B(LF,w).

(4) Let X be a strong Y-space and Y be a P-space. If Y is weak f-refinable (resp.
weak §0-refinable), then X x Y is weak 0-refinable. (resp. weak §0-refinable).

1. INTRODUCTION

Throughout this paper we assume that each space is a Hausdorff space. Each map is
assumed to be continuous.
Smith [13] introduced the notion of weak f-refinability and has shown that
f-refinable = weakly f-refinable = weakly #-refinable
and the implications are not reversible. And he [15] introduced the notions of property
B(D,w) and property B(LF,w) and he proved the following:
property B(D,w) = weakly f-refinable;
f-refinable = property B(LF,w) .
It is obvious that
paracompact = propertyB(D,w) = property B(LF,w).

In this paper we shall investigate the conditions for the product space X xY" has property
B(D,w), property B(LF,w) and weak f-refinability.
The following results are known.

Theorem A. Suppose X is a Y-space and Y is a P-space. If X and Y are both para-
compact (regular Lindeldf, regular subparacompact, submetacompact (f-refinable), weakly
O-refinable, weak §@-refinable), then so is X x Y. (The Lindelof case and paracompact
case are proved in Nagami [8], the subparacompact case in Lutzer [5], the submetacompact
case in Burke [2, pp.400-401] and the weak 6-refinability case in Yajima [16]. For the weak
df-refinability case, the proof is similar to the case of weak #-refinability.)

Yajima’s theorem is a more general form, i.e., the following.

Theorem B. ([16]). Suppose X is a strong X-space and Y is a P-space. If Y is a weakly
f-refinable, then sois X x Y.
Same result for the weak df-refinability case can be shown similarly.
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In this paper we shall show that the similar results of Theorem B hold for the case of
weak O-refinability and weak d0-refinability.
It is known that
X is a metric space = X is a o-space = X is a Y-space.
Let Y be a P-space. We consider property B(D,w) of X x Y when X is a zero-dimensional
metric space and property B(LF,w) of X x Y when X is a regular o-space or a normal
Y.-space.

Let © be a set. Denote Q" = {(ag,a1,...,an—1)|a; € Q,i = 0,...,n — 1} for each
n € w0 = J,e, 0" and Q¥ = {(a0, 1, ..., A, ...y )|, € Q for each n € w}. For
each 0 = (ap, a1, ...,ap—1) € Q" and a € Q, we denote o V a = (ap, 1, ..., p_1,). For
each 0 = (ag, a1, ..., p, ...) € Q¥, we denote o [ n = (ag, a1, ...,an—1). It is obvious that
olneQr.

A space Y is said to be a P-space ([7]) if for any open cover {U(c)|o € Q<“} of Y where
U(o) CU(o V) for each 0 € Q™ and « € Q, then there is a closed cover {K(c)|o € Q<¥}
of X such that
(i) K(o) C U(o) for each o € Q<%

(ii) for each o € Q¥ if |, U(o [ n) =Y, then ., K(o [n) =Y.

For a space X, dimX denotes the covering dimension of X and X is a zero-dimensional
space means dimX = 0.

A subset A of X is called a “clopen” set if A is both an open set and a closed set of X.

The following lemmas 1 ~ 3 are well known.

Lemma 1. If X is a zero-dimensional metric space, then X has a base B satisfying the
following conditions:

(i) B = U,cy, Bn, Bn is a discrete cover of X by clopen sets,

(ii) Bn, = {B(0)|lo € Q"}, B(0) = Upecq Blo V) for each o € Q"

(#ii) for each x € X, there is a o € Q¥ such that {B(o [ n)|n € w} is a local base of x in
X.

Lemma 1 follows from the following.

Theorem C (Katétov [4], Morita [6], or cf. 12.2 Theorem in [10]). A space X is a metric
space with dim X < 0 if and only if X is a subset of a Baire 0-dimensional space.

A collection F of subsets of X is called a net of X if for each x € X and each open set
U, there is an F' € F such that z € FF C U.
A space X is called a o-space if o-locally finite net ([9], [11]).

Lemma 2. ([9, Theorem 1]). If X is a o-space, then X has a net F satisfying the following
conditions:

(i) F = Unew Fns Fn is a locally finite closed cover of X,

(i) Frn = {F(0)|oc € Q"}, F(0) = Upeq F(o V a) for each o € Q"

(ii3) for each x € X, there is a o € Q¥ such that {F(o | n)|n € w} is a net of x.

A space X is called a Y-space if X has a ¥-net ([8]).

Lemma 3. (/8, 1.4. Lemma/). If X is a X-space, then X has a spectral ¥-net F, i. e.,
satisfying the following conditions:

(i) F = Unew Fns Fn is a locally finite closed cover of X,

(ii) Frn = {F(0)|oc € Q"}, F(0) = Upeq F(o V a) for each o € Q",

(#ii) for each x € X, there is a 0 € Q¥ such that {F (o | n)|n € w} is a K-net of C(z),
i. e., if U is an open set in X such that C(x) C U, then F(o [ n) C U for some n. Here

C(x) = Nyew Fo [ ).
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A space X is called a strong YX-space if X has a ¥-net such that C(x) is compact for
each z € X.
The following lemma is obvious.

Lemma 4. Let us define ¢ : w X w — w by ¢(n,m) =n+ w

Then ¢ is a bijection satisfying the conditions:
ifm' ,mew andm’ < m, then d)(n,m') < ¢(n,m) for each n € w.

2. PROPERTY B(D,w)

Definition 1. (Smith [15]). A space X is called to have property B(D,w) if for every open
cover G of X, there is a cover H = J,,.,, Hn of X such that 'H is a refinement of G and
satisfies the conditions: for each n < w,

(1)n Hn is a discrete collection of closed subsets of X ~ U<, (U Hm),

(1) n Upen(UHm) is closed in X. Here |, .o(UHm) = 0.
It is obvious that property B(D,w) is closed hereditary.

Notation. Let K be a collection of subsets in X and A a subset of X. Then we denote
KIA={KNAK € K}.

Let U and V be collections of subsets in X. We denote V < U if V is a refinement or a
partial refinement of U.

Lemma 5. In Definition 1, the condition (ii) follows from (i).
Proof. (By induction) . The condition (i7); follows from (i)o. Put A, = ,,,,(UHm).

Assume that (ii), hold. By (i)n, UH,N (X~ A,) = UH, and by (ii),,, A,, = A,,. Therefore
App1=(UHp)UA, = (UHA)N(X NA)U((UHR) NALUA, = (UHR)UA, = Ay
(]

Theorem 1. Let X be a zero-dimensional metric space and Y be a P-space. If Y has
property B(D,w), then X XY has property B(D,w).

Proof. Let B = |, ., Bn be a base of X satisfying the conditions in Lemma 1. Let
G = {G¢l¢ € E} is an open cover of X x Y. For each ¢ € Q<% and each £ € E, let
U(o; &) = U{U|U is an open set in Y, B(o) x U C G¢}. Then U(o;§) is an open set in Y
and B(o) x U(0;€) C Ge. Put U(0) = Ugez U(03€). Then

(1) {U(o)|o € <} is an open cover of Y.

Proof. Let y € Y. Let us choose a point z € X and a o € Q¥ such that {o | n;n € w} be
a local base of x in X. Since G is a cover of X x Y, there is a £ € = such that (x,y) € Ge.
Then there are an n and an open set U with (x,y) € B(o | n) x U C G¢. By the definition
of U(c [ n),U CU(c | n). Thusy € U(o | n).

(2) U(o) CU(o V ) for each o € Q™ and a € Q.
Proof. This follows from B(c V «) C B(o).

Since Y is a P-space, there is a closed cover {K (o)|o € Q<“} of Y such that
(3) K(0) C U(o) for each o € Q<¥,
(4) for each o € Q¥ if | J,,U(o [ n) =Y, then |J,, K(c [n) =Y.
The following holds.
(5) Let « be an arbitrary element of X and let o € Q¥ such that {B(c [ n) : n < w} is a
local base of . Then |J,,_ U(c [n) =Y.

n<w
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For each o € Q<% U, = {U(0;£)|€ € =} is an open cover of U(c). Since Y has property
B(D,w) and K(o) is closed in Y, K(o) has property B(D,w). Therefore there is a cover
Ko = Upmew Kom of K(0) such that for each m < w,

(1)o- Koym < Us.
(i1)o. Ko,m is a discrete collection of closed subsets of K (o) \ U, .,, (UKq,)-
We may assume that K., = {K(0,m,§)|{ € E} with K(o,m, &) C U(o;§) for each &.

Let ¢ : w X w — w be the bijection defined in Lemma 4. For each k = ¢(n,m) € w and
each o € Q" let L(k,0,&) = B(o) x K(o,m,&) and put Ly = {L(k,0,&)|c € Q™ ¢ € E}.
Then

(i) £L=Upep Lrisacoverof X x Y, L <G.

(ii) For each k < w, Lx|X xY ~ ;. (U L) is a discrete collection of closed subsets of
X xY N Uien(UL).

Proof of (i). Let (xz,y) € X xY. Let o € Q¥ such that {B(c [ n) : n € w} is a local
base of 2. Then, by (4) and (5), U, ¢, K(c [ n) =Y. Thus y € K(o [ n) for some n € w
and so (z,y) € B(o [ n) x K(o | n,m,¢&) for some m and £. Let us put k = ¢(n,m). Then
(z,y) € ULk

Since B(o) x K(o,m,€§) C B(o) x U(0,£) C G¢ for each 0 € Q< and £ € E,L£ < G.

Proof of (ii). Let k = ¢(n,m). Put H = X x Y ~ U;.,(ULi). We shall prove the
following.
(a) LN H is closed in H for each L € Ly,.
(b) {LN H|L € L} is discrete in H.

Proof of (a). Let L = B(o) x K(o,m,§),0 € Q", ¢ € Z. For a moment, to simplify the
notation, let us put B(o) = B, K(o,m,{) = K and A =J,_,,,(UKo,). Since K is a closed
subset of K (o) \ A, B x K is a closed subset of B x K (o)~ B x A. Therefore (Bx K)NH
is a closed subset of (B x K(0)) N H ~ (B x A) N H. Since ¢(n,i) < k for each i < m,
B x AcC U,(ULi). Therefore (B x A)NH =§. Thus (B x K) N H is a closed subset of
(Bx K(o))NH. Hence LN H = (B x K)N H is a closed subset of H.

Proof of (b). Let (x,y) € H. Since B, is a discrete cover of X, there is only element
o of Q" such that x € B(o). For each i < m, since ¢(n,i) < k,(z,y) ¢ L(¢(n,i),0,8) =
B(o) x K(0,i,§). Thus y ¢ K(0,i,§) for each £ € E. Therefore y ¢ U, ,,(UKq:). If
y ¢ K(o), there is a neighborhood V of y in Y such that VN K(o) = 0. If y € K(0),
then y € K(0) ~ U, (UKs:). By (ii)s, there is a neighborhood V' of y in Y such that
VNK(o,m,&) #( for at most one £ € E. Put W = B(o) x V. Then W is a neighborhood
of (z,y) in X x Y such that W N L # § for at most one L € L. O

3. Property B(LF,w)

Definition 2. (Smith [15]). A space X is called to have property B(LF,w) if for every
open cover G of X, there is a cover H = H,, of X such that H is a refinement of G
such that for each n < w,

(i) Hy is a locally finite collection of closed subsets of X ~ U, (U Hm),

(it) Upper (U Hm) is closed in X.
It is obvious that property B(LF,w) is closed hereditary.

Definition 3. (Chaber [3] or cf. [15]). A space X is called to have property by if for every
open cover G of X, there is a cover H = U, ., Hn of X such that H is a refinement of G such
that for each n < w, Hy is a locally finite collection of closed subsets of X \U,,<,,(UHm)-

n<w
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Property by is the same notion of property B(LF,w). This fact is shown by the similar
proof of Lemma 5.

Each regular o-space is a strong Y-space, each strong Y-space is submetacompact and
each submetacompact space has property B(LF,w) ([15, Theorem 1.4 (2)]).

Theorem 2. Let X be a regular o-space andY be a P-space. If Y has property B(LF,w),
then X x Y has property B(LF,w).

Proof. We shall show that X x Y has property b;. Let F = J, o, Fn be a net of X
satisfying the conditions in Lemma 2. Let G = {G¢|¢ € E} is an open cover of X x Y. For
each o € Q<% and each £ € =, let U(0;&) = [J{U|U is an open set in Y, F(0) x U C G¢}.
Then U(0;€) is an open set in Y and F/(0) x U(0;§) C Ge. Put U(0) = Ugez U(0;€). Then

(1) {U(o)|o € 2=} is an open cover of Y.
(2) U(o) C U(o V «) for each o and a.

Since Y is a P-space, there is a closed cover {K (o)|o € Q<“} of Y such that
(3) K(o) Cc U(o) for each o € Q<¥,
(4) for each 0 € Q¥ if | J,,U(o [ n) =Y, then |J,, K(c [n) =Y.
The following holds.

(5) Let « be an arbitrary element of X and let o € Q¥ such that {F(c [ n) :n < w} is a
net of . Then |J,,.,U(c [n) =Y.

For each o € Q<% U, = {U(0;¢)|€ € =} is an open cover of U(c). Since Y has property
B(LF,w) and K (o) is closed in Y, K (o) has property B(LF,w). Therefore there is a cover
Ko = Upmew Kom of K(o) such that for each m < w,

(D)o Koym = {K(o,m,§)|¢ € E} such that K(o,m,&) C U(o,m,§) for each &,
(i1)g Ko,m is a locally finite collection of closed subsets of K (o) ~\ U, ,,,(UKs:)-

Let ¢ : w X w — w be the bijection defined in Lemma 4. For each k& = ¢(n,m) € w and each
o€ Q" let L(k,0,8) = F(o) x K(o,m,&) and put Ly, = {L(k,0,§)|oc € Q*, £ € E}. Then

(i) £=Upecy, Lr is acover of X x Y and £ < G,

(ii) for each k < w, Lx|X x Y U, (U £:) is a locally finite collection of closed subsets
of X xY N U;n(ULr).

Proof of (i). This proof is similar to that of (i) in Theorem 1.

Proof of (ii). Put H =X xY N~ U, (UL:i) where k = ¢(n,m) € w. We shall prove the
following.
(a) LN H is closed in H for each L € Ly,.
(b) {LN H|L € Ly} is locally finite in H.

Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let (z,y) € H. Since F, is locally finite in X, there is a neighborhood U
of z and a finite subset {o;|j = 1,2, ...,p} of Q" such that UN F(0) # 0 < o € {0;|j =
1,2,...,p} and = € F(o;) for each j = 1,2,...,p. For each i < m, since ¢(n,i) < k, (z,y) ¢
L(¢(n,i),0,§) = F(o) x K(0,i,§) for each o € Q™. Since z € F(0;),y ¢ K(0j,3,§) for
each £ € Z. Therefore y ¢ |, _,, Ko, i- If y ¢ K(0;), there is a neighborhood Vj of y in Y’
such that V; N K (o) = 0. If y € K(0j), then y € K(05) ~ U, ., Ko, i- By (i4)s,, there is a
neighborhood Vj of y in Y such that V; N K (o, m,§) # 0 is at most finite finite number of
Ee=Z Put V= ﬂ?zl Vi and W =U x V. Then W is a neighborhood of (z,y) in X xY
such that W N L # () for at most finite number of L € Lg. O
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Theorem 3. Let X be a normal strong Y-space and Y be a P-space. If Y has property
B(LF,w), then X XY has property B(LF,w).

Proof. Let F =, c,, Fn be a spectral ¥-net of X, i.e., for some set Q, F,, = {F(0)|o €
Q"} is a locally finite closed cover of X for each n € w satisfying the conditions in Lemma
3.

We shall show that X x Y has property bi. Let G = {G¢|{ € =} is an open cover of
X xY. For each o € Q<%, let W, is the maximal family of U, x V) satisfying the following
conditions:

(1) Uy is an open set in X, Uy D F(0),
(2) Vy is an open set in Y,
(3) there is a finite open cover Uy, » of Uy such that {U x VA|U € Uy 2} < G.

Put W, = {Ux x VA|A € As}. Since U, is a finite open cover of F'(c) and F(o) is
normal, there is a finite closed cover F, x = {Fu|U € Uy 2} of F (o) such that Fy C U for
each U € Uy ».

For each 0 € Q<%, put V(o) = Uy, Va- Then

(4) Let 0 € Qv. If {F(c | n)n € w} is a K-net of C(x) for a point x € X, then
UnEw V(U r TL) = Y

Proof. Let y be an arbitrary element of Y. Then (z,y) € G¢ for some { € E. Then,
since C(z) is compact, there is a finite set {U;|i = 1,2, ..., k} of open sets in X and an open
set V of Y such that C(x) C U¥_ U;,y € V,{U; x V|i =1,2,....,k} < G. Then there is an
n such that C(x) C F(o | n) C U. By the definition of V(¢ | n),V C V(o | n). Thus
y e V(o [n).

(5) V(o) C V(o V a) for each 0 € Q<% and each a € Q.

Since Y is a P-space, there is a closed cover {K (o)|o € Q<“} of Y such that
(6) K(o) C V(o) for each o € Q<¥,
(7) for each o € Q¥ if J,,c, V(o [n) =Y, then U, ., K(c [n) =Y.

For each o € Q<¥, V, = {Vi|\ € A,} is an open cover of K(o). Since Y has property
B(LF,w) and K (o) is closed in Y, K (o) has property B(LF,w). Therefore there is a cover
Ko = Umew Koym of K(o) such that for each m < w,

(D)o Koym = {K(a,m,\)|A € Ay} such that K(o,m,\) C Vy for each X € A,
(i1)g Ko,m is a locally finite collection of closed subsets of K (o) ~\ U, ,,,(UKs:)-

Let ¢ : w X w — w be the bijection defined in Lemma 4. For each k£ = ¢(n,m) € w, let
Ly ={F x K(o,m,\)|c € Q"X € Ay, F € F5»}. Then

(i) £L= U, Lr is acover of X x Y and £ < G,

(ii) for each k < w, Lix|X x Y U, (U L) is a locally finite collection of closed subsets
of X xY ~Un(ULr).

Proof of (i). Let (x,y) € X xY. Let 0 € Q¥ such that {F(o [ n) : n € w} is a K-net
of C(x). Then, by (4) and (7), U,c,, K(o [ n) =Y. Thus y € K(o [ n,m,\) for some
n€wand m e w,\ € A,. Since |JFsinn = F(o [ n), z € F for some F € Fypp . Thus
(z,y) € F x K(o | n,m, ). Therefore (z,y) € | Lk.

Let L = F x K(o,m,\) € L;, where k = ¢(n,m). Then F C U for some U € U,  and
K(o,m,\) C Va. By (3), U x Vi C G¢ for some § € =. Thus L C Ge.

Proof of (ii). Put H = X xY N~ {J,.,(ULi) where k = ¢(n,m). We shall prove the
following.
(a) LN H is closed in H for each L € Ly,.
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(b) {LN H|L € Ly} is locally finite in H.
Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let (z,y) € H. Since F,, is locally finite in X, there is a neighborhood U
of z and a finite subset {o;|j =1,2,...,p} of Q" such that UNF(0) # 0 <= o € {0;|j =
1,2,...,p} and = € F(o;) for each j = 1,2,...,p. For each i < m, since ¢(n,i) < k, (z,y) ¢
L(¢(n,i),0,A\) = F(0o) x K(o,i, ) for each 0 € Q™. Since z € F(o;),y ¢ K(oj,i,\) for
each A € A,. Therefore y ¢ |J,_,, Ko, ,i- If y & K(0y), there is a neighborhood Vj of y in YV’
such that V; N K (o) = 0. If y € K(o;), then y € K(0;) \ U, Ko;,i- By (i1)o,, there is
a neighborhood Vj of y in Y such that A; = {\ € A, |V; N K(0;,m,&) # 0} is a finite set.
Put V = ﬂ§=1 Vi and W = U x V. Then W is a neighborhood of (z,y) in X x Y such that
W N L # ( for at most finite number of L € L.

To show this, let L be an arbitrary element of L. Then L = F x K(o,m, ) for each
oceQ", Ae A, and F € F, . Suppose WNL # (). Then o = o; for some j =1,2,...,p.
And V;NK(oj,m,\) # 0. Therefore A € A,,. Since F,, » is finite, such L is at most finite.
O

Remark. Price and Smith [12] introduced the notion of property B(C P,w) which is weaker
than propertyB(LF,w).

Definition 4. ([12]). A space X is called to have property B(C'P,w) if for every open cover
G of X, there is a cover H = | H, of X such that H is a refinement of G such that for
each n < w,

(i) Hn is a closure preserving collection of closed subsets of X ~ U, <,,(UHm),

(it) Upper (U Hm) is closed in X.

The condition (ii) follows from (i). It is obvious that property B(C'P,w) is closed hered-
itary.

The following theorem is shown by the similar proof of Theorem 2.

n<w

Theorem 4. Let X be a reqular o-space and Y be a P-space. If Y has property B(CP,w),
then X XY has property B(CP,w).

4. WEAK A-REFINABILITY AND WEAK 06-REFINABILITY

A space X is said to be weakly 0-refinable ([13]) (vesp. 00-refinable ([14])) if for any open
cover G of X there is an open refinement H = (J,,.,, Hn of G such that if z € X there is
some n with 1 <ord(z,H,) < w (resp. 1 <ord(z,H,) < w) and {{UHn|n € w} is point
finite at each z € X. Such cover H is said to be a weak 6 cover (resp. 00 cover).

For an open cover G of X, define G<¥ = {|J g |g’ is a finite subfamily of G}.

The following lemma can be easily proved.

Lemma 6. Let G be an open cover of X. If G<“ has an open refinement which is a weak
O-cover (resp. a weak 60-cover), then G has an open refinement which is a weak -cover
(resp. a weak 00-cover).

Theorem 5. Let X be a strong ¥-space and Y be a P-space.
(a) If Y is weakly O-refinable, then X XY is weakly 0-refinable.
(b) If Y is weakly d0-refinable, then X X Y is weakly 00-refinable.

We only give the proof of part (b).
Proof of (b). Let G = {G¢l¢ € E} be an open cover of X x Y. Let us define
F Wy, Uy x, V(o) and K(o) as in the proof of Theorem 3.
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Let us put M,, = |J{F(0) x K(0)|oc € Q™} for each n € w. Then
(8) M, is a closed subset of X x Y and X x Y =J, ¢, Mn.

For each o € Q<% , V, = {Vi|X € A,} is a collection of open sets in Y, cover K (o) and
V. =V, U{Y ~ K (o)} is an open cover of Y.
Since Y is weakly 60-refinable, there is an open cover K, = Unmecw IC:,’m such that
(1), for each y € Y, there is an m,, with 0 <ord(y, IC;’my) < w,

(i1)o y € UlC;m for at most finitely many m € w.
Put Kom = {K € K, .| KNK (0) # 0} and K, = |J

of open sets in Y, K, covers K(o), and

(9) for each y € Y, there is an m, with ord(y, Ko m,) < w; for each y € K(o), there is an

my, with 0 <ord(y, Ko,m,) < w. And y € |JKs,m for at most finitely many m € w.

We can represent Ko = { K5 ma|A € As} with K, x C V), for each A

Let Q™ well order by < and put F’ﬂ’k = {(0’0,0’1,...,O'kfl)‘O'o,O'l,...,O'kfl € Qn,O'o <
01 < ... < op_1} for each k € w.

For each m = (mq, m1, ..., mk—1) € w* and 7 = (00,01, ..., 0k—1) € Ly g, put L(n,m,7) =
{Uick ((Ux, N Ar) X Koymin) N Ujo MilAi € Agyi < k} where Ar = (J{F(o)|o €
Q" {o;]i < k}}. For each n € w and each m € w*, let L(n,m) = J{L(n, ™, 7)|T € Tpi}.

Then £ = [J{L(n,M)|n € w,M € w<“} is an open refinement of G<* and a weak d0-cover
of X xY.

It is obvious that each element of £ is an open set of X x Y. For each i < k, (Uy, ™
A) X Koy min, C Uy, xVy, C G, for some G € G<“. Thus Uicr ((Ux; N Ar) X Koy iy 2;) C
Uiy Gi' € G=«.

It is sufficient to prove the following.

(10) For each (z,y) € X XY, there are ann € w and m € w<* such that 0 < ord((z,y), L(n,m)) <
w.
(11) For each (z,y) € X x Y, (z,y) € U L(n,m) for finitely many n and .

Proof of (10). Let (z,y) € X x Y. Let us choose an n € w with (z,y) € My, \ Uj<pnM;.
Since JF, is locally finite, there is a finite subset {o;|i = 0,1, ...,k — 1} of Q™ such that x €
F(o) < o €{04li=0,1,....,k — 1}. We may assume that (x,y) € F(og) x K(0p). Since
y € K(0p), there is an mg such that 0 < ord(y, Ksy,me) < w. There are m;,i =1,....,k — 1
such that ord(z, Ko, m,;) <w. Put m = (mo, my,...,mg_1) and 7 = (0¢, 01, ...,0%-1). Then
(10-1) 0 < ord((z,y), L(n,m, 7)) < w.

(10-2) ord((z, y), L(n,m,7 )) = 0 for each 7" € T, with 7 # 7.

Proof of (10-1). Let us choose Ao with ¥ € Ky mg,n,- Since F(og) C Uy, @ € Uxy N
A.. Therefore (z,y) € (Ux, ~ Ar) X Kpymore C L for some L € L(n,m,7). Thus
ord((z,y), L(n,m,T)) > 0.

Let L € £(n,m) with (z,y) € L. Then there areani € {0,1,...,k—1} and a \; € A,, such
that (z,y) € U, X Ky m;. 2, - Such \; are at most countable. Hence ord((z,y), £(n, T, 7)) <
w

mew Kom- Then Ky 5, are collections

Proof of (10-2). Let 7 = (04,04,...,0,_,) € T%. If 7 # 7, then there is an i such
that o; ¢ {o;]i = 0,1,....k —1}. Thus F(o;) N A, = (). Since z € F(o;),x ¢ A, and so
(2,9) & UL(n,m, 7).

Proof of (11). Let us choose an n with (z,y) € M, \ Uj<,M;. For each | < n, let
z(l) = {0 € Q|z € F(0)}. Then z(l) is finite. For each o € x(l), there is a finite set m(o)
of w such that y € UKy <= m € m(o). Put A(l) = [[{m(o)|oc € z(I)}. Then, if
(z,y) € UL, m), then | <n and m € A(l). Since |Uj<,, A(l)| < w, such 7 are finite. O
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It is known that any weakly df-refinable, countably compact space is compact (cf. p.
414 in [2]). Therefore any weakly d0-refinable, countably compact space is compact. Thus
we obtain the following.

Corollary. Let X be a ¥-space and 'Y be a P-space. B
(a) If X and Y are both weakly 0-refinable, then X XY is weakly 0-refinable.
(b) If X and Y are both weakly 00-refinable, then X x Y is weakly 00-refinable.
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