
Scientiae Mathematicae Japonicae Online, e-2005, 305–310 305

SMARANDACHE HYPER ALGEBRAS
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Abstract. The notion of Smarandache hyper I-algebra and Smarandache hyper K-
algebra are introduced, and related properties are investigated.

1. Introduction

Generally, in any human field, a Smarandache Structure on a set A means a weak struc-
ture W on A such that there exists a proper subset B of A which is embedded with a
strong structure S. In [5], W. B. Vasantha Kandasamy studied the concept of Smarandache
groupoids, subgroupoids, ideal of groupoids, semi-normal subgroupoids, Smarandache Bol
groupoids and strong Bol groupoids and obtained many interesting results about them.
Smarandache semigroups are very important for the study of congruences, and it was stud-
ied by R. Padilla [4]. In this paper, we introduce the notion of Smarandache hyper K- and
I-algebras, and investigate its properties.

2. Preliminaries

We include some elementary aspects of hyper K-algebras that are necessary for this
paper, and for more details we refer to [1] and [6]. Let H be a non-empty set endowed with
a hyper operation “◦”, that is, ◦ is a function from H × H to P∗(H) = P(H) \ {∅}. For
two subsets A and B of H , denote by A ◦ B the set

⋃

a∈A,b∈B

a ◦ b.

By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation
“◦” and a constant 0 satisfying the following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) � x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦ H � {x},
(HK4) x � y and y � x imply x = y,

for all x, y, z ∈ H , where x � y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H, A � B is
defined by ∀a ∈ A, ∃b ∈ B such that a � b.

By a hyper I-algebra we mean a non-empty set H endowed with a hyper operation “◦”
and a constant 0 satisfying the following axioms:
(H1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(H2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(H3) x < x,
(H4) x < y and y < x imply x = y
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for all x, y, z ∈ H , where x < y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H, A < B is
defined by ∃a ∈ A and ∃b ∈ B such that a < b. If a hyper I-algebra (H, ◦, 0) satisfies an
additional condition:

(H5) 0 < x for all x ∈ H ,

then (H, ◦, 0) is called a hyper K-algebra (see [1]).
Note that every hyper BCK-algebra is a hyper K-algebra.
In a hyper I-algebra H , the following hold (see [1, Proposition 3.4]):

(a1) (A ◦ B) ◦ C = (A ◦ C) ◦ B,
(a2) A ◦ B < C ⇔ A ◦ C < B,
(a3) A ⊆ B implies A < B

for all nonempty subsets A, B and C of H .
In a hyper K-algebra H , the following hold (see [1, Proposition 3.6]):

(a4) x ∈ x ◦ 0 for all x ∈ H .

3. Smarandache Hyper Algebras and
Smarandache Hyper Ideals

Definition 3.1. A Smarandache hyper I-algebra is defined to be a hyper I-algebra (H, ◦, 0)
in which there exists a proper subset Ω of H such that (Ω, ◦, 0) is a non-trivial hyper K-
algebra.

Example 3.2. Let H = {0, 1, 2} and define an hyper operations “◦1” and “◦2” on H as
follows:

◦1 0 1 2
0 {0} {0} {2}
1 {1} {0} {2}
2 {2} {2} {0, 2}

◦2 0 1 2
0 {0} {0, 1} {2}
1 {1} {0} {2}
2 {2} {0} {0, 1, 2}

Table a1 Table a2

Then (H, ◦1, 0) and (H, ◦2, 0) are Smarandache hyper I-algebras.

Example 3.3. Let H = {0, a, b} and define an hyper operation “◦” on H by the following
Cayley table:

◦ 0 a b
0 {0, a, b} {a, b} {a, b}
a {0, a, b} {0, a, b} {a, b}
b {0, a, b} {a, b} {0, a, b}

Table a4

Then (H, ◦, 0) is not a Smarandache hyper I-algebra since (Ω1 = {0, a}, ◦, 0) and (Ω2 =
{0, b}, ◦, 0) are not hyper K-algebras.

Definition 3.4. A Smarandache hyper K-algebra is defined to be a hyper K-algebra (H, ◦, 0)
in which there exists a proper subset Ω of H such that (Ω, ◦, 0) is a non-trivial hyper BCK-
algebra.

Example 3.5. Let H = {0, a, b, c} and define an hyper operation “◦” on H by the following
Cayley table:
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◦ 0 a b c
0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {a} {0, a} {0, a}
c {c} {a, b, c} {a, b, c} {0, b, c}

Table a3

Then (H, ◦, 0) is a Smarandache hyper K-algebra because (Ω = {0, a, b}, ◦, 0) is a hyper
BCK-algebra.

Example 3.6. Let H = {0, a, b} and define an hyper operation “◦” on H by the following
Cayley table:

◦ 0 a b
0 {0} {0} {0}
a {a, b} {0, a, b} {0, a}
b {b} {a, b} {0, a, b}

Table a4

Then (H, ◦, 0) is not a Smarandache hyper K-algebra since (Ω1 = {0, a}, ◦, 0) and (Ω2 =
{0, b}, ◦, 0) are not hyper BCK-algebras.

In what follows, let H and Ω denote a Smarandache hyper K-algebra and a non-trivial
hyper BCK-algebra which is properly contained in H, respectively.

Definition 3.7. A nonempty subset I of H is called a Smarandache hyper (�,∈)-ideal of
H related to Ω (or briefly, Ω-Smarandache hyper (�,∈)-ideal of H) if it satisfies:
(c1) 0 ∈ I,
(c2) (∀x ∈ Ω) (∀y ∈ I) (x ◦ y � I ⇒ x ∈ I).
If I is a Smarandache hyper (�,∈)-ideal of H related to every hyper BCK-algebra con-
tained in H, we simply say that I is a Smarandache hyper (�,∈)-ideal of H.

Example 3.8. Let H = {0, a, b, c} and define a hyper operation “◦” on H by the following
Cayley table:

◦ 0 a b c
0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0} {b}
c {c} {a, b} {0, a} {0, b}

Table 3

Then (H, ◦, 0) is a Smarandache hyper K-algebra because (Ω = {0, b}, ◦, 0) is a hyper
BCK-algebra. Moreover, a subset {0, c} of H is an Ω-Smarandache hyper (�,∈)-ideal of
H.

Definition 3.9. A nonempty subset I of H is called a Smarandache hyper (<,∈)-ideal of
H related to Ω (or briefly, Ω-Smarandache hyper (<,∈)-ideal of H) if it satisfies:
(c1) 0 ∈ I,

(c2*) (∀x ∈ Ω) (∀y ∈ I) (x ◦ y < I ⇒ x ∈ I).
If I is a Smarandache hyper (<,∈)-ideal of H related to every hyper BCK-algebra contained
in H, we simply say that I is a Smarandache hyper (<,∈)-ideal of H.
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Example 3.10. Consider a Smarandache hyper K-algebra H = {0, a, b, c} described in
Example 3.8. Then a subset {0, a} of H is an Ω-Smarandache hyper (<,∈)-ideal of H ,
where Ω = {0, a, b}. Moreover, a subset {0, c} of H is an Ω-Smarandache hyper (<,∈)-ideal
of H , where Ω = {0, b}.
Theorem 3.11. Every Ω-Smarandache hyper (<,∈)-ideal is a Ω-Smarandache hyper (�
,∈)-ideal.

Proof. Straightforward.

Proposition 3.12. Let A be a subset of Hand let I be an Ω-Smarandache hyper (�,∈)-
ideal of H which is contained in Ω. If A ⊆ Ω and A � I, then A is contained in I.

Proof. Assume that A ⊆ Ω and A � I. Let x ∈ A. Then x ◦ 0 = {x} � I, and so x ∈ I by
(c2). Therefore A is contained in I.

Proposition 3.13. Let H be a Smarandache hyper K-algebra with Ω as a hyper BCK-
algebra. Then

(∀x, y, z, u ∈ Ω) (((x ◦ z) ◦ (y ◦ z)) ◦ u � (x ◦ y) ◦ u).

Proof. Let x, y, z, u ∈ Ω. Since Ω is a hyper BCK-algebra, we have

((x ◦ z) ◦ (y ◦ z)) ◦ u = ((x ◦ u) ◦ z) ◦ (y ◦ z)
= ∪{(w ◦ z) ◦ (y ◦ z) | w ∈ x ◦ u}
� ∪{w ◦ y | w ∈ x ◦ u} = (x ◦ u) ◦ y = (x ◦ y) ◦ u,

which is the desired result.

Definition 3.14. A nonempty subset I of H is called a Smarandache hyper (⊆,∈)-ideal of
H related to Ω (or briefly, Ω-Smarandache hyper (⊆,∈)-ideal of H) if it satisfies:
(c1) 0 ∈ I,
(cw) (∀x ∈ Ω) (∀y ∈ I) (x ◦ y ⊆ I ⇒ x ∈ I).
If I is a Smarandache hyper (⊆,∈)-ideal of H related to every hyper BCK-algebra contained
in H, we simply say that I is a Smarandache hyper (⊆,∈)-ideal of H.

Example 3.15. Let H = {0, a, b, c} and define an hyper operation “◦” on H by the fol-
lowing Cayley table:

◦ 0 a b c
0 {0} {0, a} {0} {0}
a {a} {0} {a} {a}
b {b} {b} {0, b} {0, b}
c {c} {c} {b, c} {0, b, c}

Table a5

Then (H, ◦, 0) is a Smarandache hyper K-algebra because (Ω = {0, b, c}, ◦, 0) is a hyper
BCK-algebra. Moreover, a subset {0, b} of H is an Ω-Smarandache hyper (⊆,∈)-ideal of
H.

Theorem 3.16. Every Smarandache hyper (�,∈)-ideal is a Smarandache hyper (⊆,∈)-
ideal.

Proof. Note that A ⊆ B ⇒ A � B for every subsets A and B of H. Thus the result is
obvious.

The converse of Theorem 3.16 is not true in general as seen in the following example.
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Example 3.17. Consider Example 3.15. Then {0, c} is an Ω-Smarandache hyper (⊆,∈)-
ideal of H which is not an Ω-Smarandache hyper (�,∈)-ideal of H , where Ω = {0, b, c}.
Theorem 3.18. Let Ω1 and Ω2 be hyper BCK-algebras which are properly contained in H
such that Ω1 ⊂ Ω2. Then every Ω2-Smarandache hyper (�, ∈)-ideal is an Ω1-Smarandache
hyper (�, ∈)-ideal.

Proof. Straightforward.

Theorem 3.19. Let Ω1 and Ω2 be hyper BCK-algebras which are properly contained in H
such that Ω1 ⊂ Ω2. Then every Ω2-Smarandache hyper (<, ∈)-ideal is an Ω1-Smarandache
hyper (<, ∈)-ideal.

Proof. Straightforward.

Theorem 3.20. Let Ω1 and Ω2 be hyper BCK-algebras which are properly contained in H
such that Ω1 ⊂ Ω2. Then every Ω2-Smarandache hyper (⊆, ∈)-ideal is an Ω1-Smarandache
hyper (⊆, ∈)-ideal.

Proof. Straightforward.

Definition 3.21. A nonempty subset I of H is called a Smarandache hyper (�, ⊆, ⊆)-ideal
of H related to Ω (or briefly, Ω-Smarandache hyper (�, ⊆, ⊆)-ideal of H) if it satisfies:
(c1) 0 ∈ I,
(cs) (∀x, y, z ∈ Ω) ((x ◦ y) ◦ z � I, y ◦ z ⊆ I ⇒ x ◦ z ⊆ I).

Theorem 3.22. Every Ω-Smarandache hyper (�,⊆,⊆)-ideal is an Ω-Sma- randache hyper
(�,∈)-ideal.

Proof. Let I be an Ω-Smarandache hyper (�,⊆,⊆)-ideal of H and assume that x ◦ y � I
for all x ∈ Ω and y ∈ I. Taking z = 0 in (cs), we have (x ◦ y) ◦ 0 = x ◦ y � I and
y ◦0 = {y} ⊆ I. Using (cs), we conclude that {x} = x◦0 ⊆ I. Hence I is an Ω-Smarandache
hyper (�,∈)-ideal of H.

The following example shows that the converse of Theorem 3.22 is not true in general.

Example 3.23. Let H = {0, a, b, c} and define an hyper operation “◦” on H by the fol-
lowing Cayley table:

◦ 0 a b c
0 {0} {0, a} {0} {0}
a {a} {0, a} {a} {a}
b {b} {b} {0} {0}
c {c} {c} {b} {0, b}

Table a6

Then (H, ◦, 0) is a Smarandache hyper K-algebra because (Ω = {0, b, c}, ◦, 0) is a hyper
BCK-algebra. Moreover, a subset {0} of H is an Ω-Smarandache hyper (�,∈)-ideal of H
which is not an an Ω-Smarandache hyper (�,⊆,⊆)-ideal of H .

Theorem 3.24. If I is an Ω-Smarandache hyper (�,⊆,⊆)-ideal of H, then the set

Ω(Ia) := {x ∈ Ω | x ◦ a ⊆ I}
is an Ω-Smarandache hyper (⊆,∈)-ideal of H for all a ∈ H.

Proof. Obviously 0 ∈ Ω(Ia). Assume that x ◦ y ⊆ Ω(Ia) for all x ∈ Ω and y ∈ Ω(Ia). Then
(x ◦ y) ◦ a ⊆ I, and hence (x ◦ y) ◦ a � I, and y ◦ a ⊆ I. It follows from (cs) that x ◦ a ⊆ I,
that is, x ∈ Ω(Ia). Therefore Ω(Ia) is an Ω-Smarandache hyper (⊆,∈)-ideal of H.
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Theorem 3.25. Let I be an Ω-Smarandache hyper (�,∈)-ideal of H which is contained
in Ω such that the set

Ω(Ia) := {x ∈ Ω | x ◦ a ⊆ I}, a ∈ H

is an Ω-Smarandache hyper (⊆,∈)-ideal of H. Then I is an Ω-Smarandache hyper (�,⊆
,⊆)-ideal of H.

Proof. Assume that (x ◦ y) ◦ z � I and y ◦ z ⊆ I for all x, y, z ∈ Ω. From y ◦ z ⊆ I, we get
y ∈ Ω(Iz). Since (x ◦ y) ◦ z ⊆ Ω, it follows from Proposition 3.12 that (x ◦ y) ◦ z ⊆ I so that
w ◦ z ⊆ I, that is, w ∈ Ω(Iz) for each w ∈ x ◦ y. Hence x ◦ y ⊆ Ω(Iz). Since Ω(Iz) is an
Ω-Smarandache hyper (⊆,∈)-ideal, we have x ∈ Ω(Iz), and so x ◦ z ⊆ I. Therefore I is an
Ω-Smarandache hyper (�,⊆,⊆)-ideal of H.
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