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POLYNOMIAL HULLS OF GRAPHS ON THE TORUS IN C?2
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ABSTRACT. We describe the polynomial hulls of graphs on the torus which are defined
by the complex conjugate functions of polynomials in C2.

1. Introduction. Let X be a compact subset in CV and X the polynomial hull of X. We
denote by C'(X) the Banach algebra of all continuous functions on X with sup-norm || ||x
and by P(X) the closure in C'(X) of the polynomials in the coordinates.

Let p(z,w) be an arbitrary polynomial in C? and f the restriction of the complex conju-
gate of p to the unit torus T? = {(z,w) € C? : |z| = 1,|w| = 1}. Let G(f) denote the graph
in C? of f on T?, i.e.,

G(f) = {(zw, f(z,w)) € C°: (2,w) € T}

H. Alexander([1]) and P. Ahern - W. Rudin ([2]) studied the structure of polynomial hulls
of graphs on the unit sphere in C™. In this paper we consider the structure of polynomial
hulls of graphs on T? which are defined by the complex conjugates of polynomials in C2.

Assume that the degrees of p(z,w) =Y ", Z?:o a;; 2w’ in E and w respectively are m
and n. We consider a polynomial k(z,w) = > 1" Z;'l:o G;;2™ w7 and rational function
h(z,w) = z~™w~"k(z,w). We have, for (z,w) € T?,

e~ 11 1
Z > T i = menk(z,w) = h(z,w)
1=0 5=0
We set 5 5
P P
&(%w) a_w(zaw)
Az,w) =

We can write as a product
t

1 .
Az, w) = pr Hqi(z,w) i
i=1

where ¢;(z,w) are irreducible polynomials. Let D be the open unit disk in C, T its boundary
and D? the open unit polydisk in C2. For each ¢;(z,w) put

Z(q;) = {(z,w) € C*: ¢;(z,w) = 0},
Qi=Z(¢;)NT? R;=Z(g;) ND2.
We put L = (D x {0}) U ({0} x D) and
V ={(z,w) € D2\ (T>UL) : p(z,w) = h(z,w)}.
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Let [2,w, f; T?] be the uniform algebra genarated by the coodinate functions z,w and

f on T?. Our result is that the polynomial hull of the graph G(f) can be deteremined as
follows.

Theorem. Assume that A(z,w) # 0 on D?\ L. We put
J={ie{l,2, - t}:0#£Qi#Qi Qi\(T2UL)C V}.
(a) If J # 0, then we have CT(?) = U {(z,w,p(z,w)) : (z,w) € @:} UG(f).

=
In this case p(z,w) =7¢ (constant) on Q.

(b) If J =0, then we have

G(f) = G(f), and [z,w, f; T?] = O(T?).

2. Facts and lemmas. Let M be a C* real submanifold of an open set U in CV. For
a point n € M we denote by T, M the real tangent space of M at n. M is called totally
real at n if T;,M contains no non-trivial complex subspaces. M is called totally real if M
is totally real at every point of M. For a subset S of C2 and a continuous function g on S,
we denote by G(g; S) the graph of g on S, i.e.,

G(g;9) = {(z,w,g(z,w)) € C*: (z,w) € S}.

When M is a totally real submanifold of U in C? and g is a C* function in U, it is known

—

that the graph G(g; M) is totally real. For the graph G(f) = G(p; T?) we have that G(f)
is connected and so it does not contain any isolated points, since the polynomial hull of
a compact connected set is connected. We need several facts and lemmas to decide the

polynomial hull of CT(?)

Theorem 2.1. ([4], [7]). Let M be a C*™ totally real submanifold of U in CV.

(a) If X is a compact polynomialy convex subset of M, then P(X) = C(X).

(b) For a point 7 € M there exsists a small ball By centered at i such that By N M is
polynomially convex.

Lemma 2.2. ([5]). If (2% w?) is a point in V with A(2% w") # 0, then there is an open
ball By centered at (2%, w®) such that By NV is totally real in By.

Lemma 2.3. ([5]). Let X be a compact connected subset of CV and U an open subset of
CN with UNX = 0. If X NU is contained in a totally real submanifold M of U, then we
have X N U = 0.

The proof of next lemma is obtained by the same way ([2]) in the case of the unit ball.

Lemma 2.4. Let g be a continuous function on T2. If (2°,w°) € T? and (2°,w°, (%) €

GG;\’JI‘Q), then ¢ = g(2°,w?).
Next lemma is a special case of Lemma 1 in [6]. By using the results of uniform algebras
it is also proved as follows.
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Lemma 2.5. Let g; and go be holomorphic functions on D? and f = (§1 + g2)|r2. Then
we have

G(f) C G(g1 + g2; D?).

Proof. Let A = [z,w, 51 + g2; T?] = [2,w,1;T?] and M4 the maximal ideal space of A.
We denote by X the joint spectrum of z, w, g; + g2. Since a point evaluation of T? belongs
My, G(f) is contained in X, and so G(f) € X = X (cf.[3]). For a point (zo,wo, o) in
G(f) there is a ¢ € M4 such that zo = ¢(z), wo = ¢(w) and (o = (g1 + g2). Then
|z0] = |¢(2)| < ||z|lt2 = 1 and similarly |wp| < 1. By using the polynomial approximation
of g; we have that (g;) = gi(20,wo), i = 1,2. Let u be the representing measure on T? for
. Then
©(91) :/ gdp :/ grdp = o(g1).
T2 T2

Thus we have that ¢(§1_+ 92) = ¢(g1) + ¢(g2) = g1(20,w0) + g2(20,wo) and (2o, wo, (o) is
contained in G(g1 + g2; D?).

O

3. Proof of Theorem. @ We write I = {1,2,---,t},

0q; dq;
Ei={(z,w) e R\ (T°UL): 9% (z,w) =0, or 8w(z,w) 0},
Fi= |J ®inR)\(T*UL),

jen\{i}
R =R\ (T’ULUE;UF),

=R\ (T*UL).
iel
It is known that the sets E; and R; N R; (i # j) are finite at most, respectively, and
Z(q:) \ (E; U F}) is a connected set in C2.

Step I. G(f)\G(H;T2UL) CG(p;2NV).
Proof. Let ¢ be the third coordinate of C3. By Lemma 2.5 we have that

G C{(zw,Q) s (zw) € D2, ¢ =plzw) )
and by the definition of k(z, w)

G(f) C {(27W,€) : (va) € Wa |<| < HPHT% 2Mw" ¢ — k(zaw) =0 }
Hence we have CT(?)\G(}?; T2UL) C G(p; V). Ifapoint (2%, w®) € V\X, then A(2%, w") # 0.
By Lemma 2.2 there is a ball By centered at (2°,w°) such that BoN(T?UL) = () and BoNV
is a totally real submanifold of By. Thus the graph G(p; Bo N'V) is also totally real and
(By x C)NG(f) =0. Tt follows from Lemma 2.3 that

—

G BonV)NG(f) =0,

and so

—

Gp:V\Z)NG(f) =0,
which proves Step 1.

—

Note. It is sufficient to investigate G(p; V N X), since the graph G(f) is connected and

—

G(f) CGp;T)UG(p; V NE)UG(p; L).
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Assume that for some i € I, V N R} # 0. For a point (2%, w®) in V N R}, there exist
a neighborhood Uy of (2°,w?) in R} and holomorphic functions ¢(\) and () on D such
that (29, w°) = (p(0),1(0)) and

Uo = {(¢(A),¥(N) : A € D}.
Step II. The case that ¢(A) and ¢ () satisfy the condition
ple(N), o(N)) = h(p(A), (X)) =0 on D. (1)

In this case, ¢;(z,w) is a common factor of p(z, w) — p(z°,w") and k(z, w) — 2™ w"p(z0, w°),
and so
R\ (T2UL)CV. (2)
Proof. We obtain the power series on I
ple(N),¥(N) = a0 + @A +a2X* + -+,
h((A), (X)) = bo + bi A+ baA® + - - - .
It follows from the assumption that for every polynomial g(\)

“ﬁﬂhfﬂﬂﬁﬁﬁﬁ—mwu»wM»«»w

= / {(@o + @A+ a@A? +---) — bo}q(N)dA.
[Al=1
Thus @; = ag = -+ = 0, dp = p(2%,w°) = by and @y — h(¢(N),1(\)) = 0 on D. Since ag
depends on ¢;, we put ¢; = ag. Then we can write that
k(z,w) —giz"w" = q;(z, w)k;(z,w),
p(z,w) — T = ¢;(2, w)pi(z, w)
for some polynomials p;(z,w) and k;(z,w). Thus (2) follows.

Step III. The case that (1) does not holds, i.e.,

p(e(N), (X)) = h(p(N), % (X)) # 0 on D. (3)
In this case, we have
GH\GEHT?UL) C GEHE:iNY) (4)
where ;= U R;\ (T*U L).
Je{i}

To show this we consider the condition (3) from two viewpoints of (5), (6) of Step IV
and V.
Step IV. If
p(e(N),(N)) —¢; =0 on D, (5)
then we have G(p; (V N R;) \ X)) N G(f) = 0.
Proof. Since ¢;(z,w) is an irreducible polynomial, it is a factor of p(z,w) — ¢;. Thus
p(z,w) —¢; =0 on R; and & — h(z,w) #Z 0 on D2\ (T2 U L). Thus the set

VAR ={(z,w) €D2\(T?UL) : G — h(z,w) = 0, ¢i(z,w) = 0}

is finite. Thus G(p; V N R;) is the set of isolated points. Since G(f) does not contain any

—

isolated points, we have G(p; V N R; \ ;) N G(f) = 0, which proves (5).
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Step V. Now let (29, w?) € R}. Assume that

p((A),(A)) — p(2°,w") # 0 on D. (6)
We can assume that ¢(A) = zp + A in pD for some positive pDD. We put

Wo = {(e(A),¥(A)) : A € pD}

and

W = (o + A 600) - X € oD, (000, 500) + 22 (o0, p(0) 20 % 0).

Step VI. If (6) holds, then G(p; W) is totally real, and so

G(p; R\ (T2ULUY) NG(f) = 0. (7)
Proof. We put A = z + iy and p = u + v (x,y,u,v real). The real tangent vectors at

(ZO + Aaw(A))p(ZO + Aaw(A))) to G(ﬁ? WO) for %7 )

— are as follows.
Y

B ORevy Olma) Ju v
v = (L0, ox (), ox (), ox’ 83:)’

B ORey Olma ou Ou
U2 = (0,13 8:(] ()‘)a 8:(] ( )7 8y’ 8y)

The rank of the matrix defined by components of vy, va, iv1, ivs is 4, since

1 0 wuy —vy
0 1 uy -—wy
0 1 vy ug
-1 0 vy, uy
Thus G(p; W() is a totally real manifold. It follows from Lemma 2.3 that

G(p; Wi\ ) N G(f) = 0.

dp 2
=—4(u} +v)) =4 ‘a

—

Since Wy \ W is a set of isolated points, by connectivity of G(f) we have
G Wo \ (Wg UE:))NG(f) =0.

When points (z9,wp) run in R}, the coresponding neighborhoods Uy cover Rf. Thus

Gp; R\ (%, UT2U L) N (7(7) = (). Since the set G(p; R; \ (R UT? U L)) is finite, we
have o

G(p; R\ (R; U UT? U L)) NG(f) =10,
and the assertion (7) is proved. From (5) and (7) we obtain (4) of Step III.

By the above facts we obtain the following:
Step VII. If we put
Ip={ic{1,2,---,t}: 0 # R;\(T?UL) CV},

then o

G(H\G@B;T*UL) C G(p;Uier, RiN V).

For i € Iy, we consider the following cases:

(i). Q: =10, R; #0. (il). 0 # Qi = Qi # R..
(ii). 0 # Q: # Qi = Ri. (iv). 0 # Qi # Qi # Ri.
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Step VIII. Assume that (ii) holds for i € I, then
G(ps i \ (T2U LU A) NG(f) =0, ®)

where A; = R;.

J€Io\{i}
Proof. We denote m; by the maximal order of an irreducible factor ¢;(z,w) in p(z,w),
and we define a polynomial p;(z,w) by

p(z,w) = ¢; = p1(2, w)gi(z, w)™.
By using pi(z,w) we put K = {(z,w) € D2 : p1(z,w) = 0}. For a point (2°,w°) €
R;\ (KUT?U L), we put

1 )pl(z,w).

Z,W) = —F——F———7
p2( ’ ) pl(zoawo

Since @Q; and {(2°,w")} are disjoint polynomially convex sets, there exist a polynomial
po(2,w), a neighborhood U of Q; and a neighborhood W of K in T? such that
1
pO(Zova) =1, and |p0(zaw)p2(sz)‘ < 5 on U,

1
[po(z, w)p2(z, w)| < 5 on w.
If we put M = ||p — ¢i|lr2, K1 = {(2,w) € D2 : p(z,w) — ¢; = 0}, and put

1
gl(zawvc:) =1- m(g —C_z)(p(Z,UJ) - Ci),
then we have

gl(szao =1lon G(ﬁ? Kl)

Since |g1] < 1 on G(p; T? \ (U UW)), there exists a positive integer k such that
1
[p2(2, w)po (2, w)g (2, w, OF < 5 on G(p; T\ (U UW)).
If we put g(z,w,¢) = p2(z, w)po(z, w)g1 (2, w, ()", then

9, w,0)1 < 3 on G(f), and g(=°, w”, p(z0, w)) = 1.

Thus (2%, w°, p(29,w)) ¢ G{(?) and so G(p; R; \ (K UT?U L)) N CT(?) = (). Since a set

(R, N K)\ (T?U L) is finite, by connectivity of G(f) we have
G(p;Ri\(AiuTQUL)DCT(?) =0.

which proves (8).

In the case (i), if we choose a point (2*,w*) in T? \ A;, and put Q; = {(z*,w*)}, then we
similarly obtain the proof of (i).

Step IX. Assume the (iii) holds, then
G(p; i) € G(). 9)
Proof. Since G(p; Q;) C G(f) = G(p; T?) and G(p; Q;) C {(2,w,() € C*: { = ¢;}, then we
obtain (9).
Step X. Assume that (iv) holds. Then we have
G(p: R\ (LUT>UQ,)) NG(f) = 0. (10).

Proof. Let (2°,w®) be a point of R; \ (L U T? U Qz) If @Q; in (ii) is replaced by Q;, we
similarly have (10).
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5. Examples.

Example 5.1. If p(z,w) = {(z +1) — (w+ 1)?}{(z + Dw? — 2(w + 1)?} and f = p|y2, then
1
h(z,w) = Wp(z,w) and

2p(z, w)
A(va) = 23wd g(z,w)
where

9(z,w) = wpy (2, w) — 22p,(z,w)

=2[(w +1)2% + w?(2w + 3)z — w* (2w + 3))].

The polynomial g(z,w) is 1rredu01ble The sets defined by the section 1 are as follows:
Ql—{(zw)e’ﬂ‘2 z—w?—2w=0}={(-1,-1)} = Q1.
Ry ={(z,w) €D : z — w? — 2w = 0}.
Q2 = {(z,w) € 11‘2 w? — z — 2zw =0} = {(=1,-1)} = Qa.
Ry = {(z, )ED2 w? — z — 2zw = 0}.

Rs = {(z,w) € D2 : g(z,w) = 0}.
Then we have that R; \ (T?UL) C V and § # Q; = Qj # R;, j = 1,2. Since g(z,w)
and p(z,w) — ¢ for every ¢ € C are relatively prime polynomials. Thus R3 \ (T? U L) is not
contained in V. Since Iy = {1,2} and J = @, by the theorem we have

Example 5.2. If p(z,w) = (z + w)(w + 2)(2w + 1) and f = p|r2, then we have that
1
h(z,w) = ﬁ(z + w)(w+2)(2w + 1) and

2
Az,w) = —og(z -+ w)(w +2) 20 + 1)g(z, )
where g(z,w) = —z(w? + 5w + 3) + w(3w? + 5w + 1). Since the polynomial g(z,w) is

irreducible, the sets {(z,w) € D2\ (T?UL) : z4+w = 0} and {(z,w) € D2\ (T2 U L) :
2w+ 1 =0} are contained in V, it follows from the theorem that

G(f) = G(f) U {(z,w,0) € D*: 2 + w = 0}.
Example 5.3. ([5]). Let p(z,w) be a homogeneous polynomial:

k—1

P(z,w) = cz™w" (2" + a1 2" 7w + ap2" 2w 4 - 4 apw®) (ar, #0)

=c(z — Mw)(z — Aw) - -+ (z — Apw)zMw"

where k is a positive integer, m and n are nonnegative integers, and c, A1, Aa, -, A\ are
some constants with cAj g - Ay # 0. We put

(1) It J #£0, thenG(f) Ujes (2w, 0);2 = Ajw = 0,w € D} UG(f).
(2) If J =0, then G(f) = G(f), and moreover [z, w, f; T?] = C(T?).
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Example 5.4. If p(z,w) = (2> — 1)w + z and f = p|r2, then h(z,w) = %

W(Zz —1g(z,w)
where g(z,w) = zw? + 2(2% + 1)w + z. We have that z — 1 is a factor of p(z,w) — 1 and
z 4+ 1 is a factor of p(z,w) + 1 and g(z,w) is an irreducible polynomial. Thus

and

Az, w) =

—

G(f) = G(f)u{(1,w,1): w e D} U{(~1,w, 1) : w € D}.
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