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Abstract. The equation AX = XB implies A∗X = XB∗ when A and B are nor-
mal operators is known as the familiar Fuglede-Putnam theorem. In this paper, the
hypothesis on A and B can be relaxed by using a Hilbert-Schmidt operator X: Let A
be a (p, k)-quasihyponormal operator and B∗ be an invertible (p, k)-quasihyponormal
operator such that AX = XB for a Hilbert Schmidt operators X, then A∗X = XB∗.
As a consequence of this result, we obtain that the range of the generalized derivation
induced by this class of operators is orthogonal to its kernel.

1 Introduction Let H be a separable infinite dimensional complex Hilbert space, and
let B(H) denote the algebra of all bounded linear operators on H . For any operator A in
B(H) set, as usual, | A |= (A∗A)

1
2 and [A∗, A] = A∗A − AA∗ = | A |2 − | A∗ |2 (the self

commutator of A), and consider the following standard definitions: A is normal if A∗A =
AA∗, hyponormal if A∗A − AA∗ ≥ 0, p-quasihyponormal if A∗((A∗A)p − (AA∗)p)A ≥ 0
(0 < p ≤ 1), (p, k)-quasihyponormal if A∗k((A∗A)p − (AA∗)p)Ak ≥ 0 (0 < p ≤ 1, k ∈ N).
If p = 1, k = 1 and p = k = 1, then A is k-quasihyponormal, p-quasihyponormal and
quasihyponormal respectively. A is said to be normaloid if ‖A‖ = r(A) (the spectral radius
of A). Let (N), (HN), (Q(p)), (Q(p, k)) and (NL) denote the classes constituting of normal,
hyponormal, p-quasihyponormal, (p, k)-quasihyponormal, and normaloid operators. These
classes are related by proper inclusion:

(N) ⊂ (HN) ⊂ (Q(p)) ⊂ (Q(p, k)) ⊂ (NL).

A (p, k)-quasihyponormal operator is an extension of hyponormal, p-hyponormal,
p-quasihyponormal and k- quasihyponorma. For an example of an operator in each these
classes that does not belong to the smaller classes (see [12, 13, 14, 24]). Here we present
some examples.

1) If T is hyponormal and invertible and 0 < p < 1 and T p exists, then T is p-hyponormal
and need not be hyponormal.

and
2) If M is the closure of the range of T k, then T is (p, k)-quasihyponormal if and only if

T |M is p-hyponormal. Thus, if T has dense range, then T is (p, k)-quasihyponormal if and
only if T is p-hyponormal.

and
3) It follows easily from (2) above that: A unilateral weight shift with weight sequence

{an}∞n=0 is (p, k)-quasihyponormal if and only if the sequence {an}∞n=k is non-decreasing,
(so the first k terms can be arbitrary). However, a bilateral weighted shift that is (p, k)-
quasihyponormal must actually be hyponormal (by item (2) above).
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A 1-hyponormal operator is called hyponormal operator, which has been studied by
many authors and it is known that hyponormal operators have many intersting properties
similar to those of normal operators (see[27]). A. Aluthge, B.C.Gupta, A.C. Arora and
P.Arora introduced p-hyponormal, p-quasihyponormal and k-quasihyponormal operators,
respectively (see[1, 2, 8]), and now it is known that these operators have many interesting
properties (see[7, 13, 21, 23]). It is obvious that p-hyponormal operators are q-hyponormal
for 0 < q ≤ p by Lowner-Heinz’s inequality (See [10, 15]). But (p, 1)-quasihyponormal
operators are not always (q, 1)-quasihyponormal operators for for 0 < q ≤ p (see[24]). Also,
it is obvious that (p, k)-quasihyponormal operators are (p, k + 1)-quasihyponormal.

The familiar Fuglede-Putnam Theorem is as follows (see [4], [9] and [11]):

Theorem 1.1 If A and B are normal operators and if X is an operator such that AX =
XB, then A∗X = XB∗.

S.K.Berberian [3] relaxes the hypothesis on A and B in Theorem 1.1 at the cost of
requiring X to be Hilbert-Schmidt class. H.K.Cha [5] showed that the hyponormality in
the result of Berberian [3] can be replaced by the quasihyponormality of A and B∗ under
some additional conditions. Recently M.Y.Lee [12] proved that if A is p-quasihyponormal
operator and B∗ is an invertible p-quasihyponormal operator such that AX = XB for
X ∈ C2(H) and ‖|A|1−p‖.
‖|B−1|1−p‖ ≤ 1, then A∗X = XB∗. In this paper we will show that this result remains true
without the condition ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1. We also prove that the above result remains
true for (p, k)-quasihyponormal without the additional condition ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1
showing that we don’t need this additional condition as in ([13], Theorem 4). Let T ∈ B(H)
be compact, and let s1(T ) ≥ s2(T ) ≥ ... ≥ 0 denote the singular values of T i.e., the
eigenvalues of |T | = (T ∗T )

1
2 arranged in their decreasing order. The operator T is said

to belong to the Schatten p-class Cp if ‖T ‖p = [
∑∞

i=1 sj(T )p]
1
p = [tr|T |p] 1

p < ∞, 1 ≤ p <
∞, where tr denotes the trace functional. Hence C1(H) is the trace class, C2(H) is the
Hilbert -Schmidt class, and C∞ is the class of compact operators with ‖T ‖∞ = s1(T ) =
sup‖f‖=1 ‖Tf‖ denoting the usual operator norm. For the general theory of the Schatten
p− classes the reader is referred to [17], [18]. Let δA,B be the generalized derivation defined
on B(H) by δA,B(X) = AX − XB. It is clear that δA,B(Cp) ⊆ Cp. However it can also
happen that δA,B(X) ∈ Cp for some X ∈ B(H) \ Cp, hence ran(δA,B |Cp) ⊆ ranδA,B ∩ Cp

and then we also have ran(δA,B |Cp)
Cp ⊆ ranδA,B ∩ Cp

Cp
, where (.)

Cp denotes the closure
of the Cp norm . A.Turnsek [19] asked the following question: When the reverse inclusion
is possible ? In this paper we consider the question when

ran(δA,B |C2)
C2

= ranδA,B∩C2

C2
. (1.1)

Or equivalently, if δA,B(X) ∈ C2, then δA,B(X) = LimnδA,B(Xn), and Xn ∈ C2. We
prove that (1.1) holds in the case when A is (p, k)-quasihyponormal and B∗ is invertible
(p, k)-quasihyponormal

2 Main results

Lemma 2.1 [25, Lemma 3] Let A be a (p, k)-quasihyponormal operator on Hilbert space
H. if λ ∈ C, x ∈ H and Ax = λx, then A∗x = λx.

Theorem 2.1 Let A and B operators in B(H). If A and B∗ are p-quasihypormal operators,
then the operator K : C2(H) → C2(H) defined by KX = AXB is p-quasihyponormal.
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Proof. It is known [3] that K∗X = A∗XB∗. Note that
by the uniqueness of the square root of a positive operators we have

(K∗K)
1
2 X = |K|X = |A|X|B∗|, (KK∗)

1
2 X = |K∗|X = |A∗|X |B|.

Thus for X ∈ C2(H)

K∗ (|K|2p − |K∗|2p
)KX = K (|K|2p − |K∗|2p

)
AXB =

A∗|A|2pAXB|B∗|2pB∗ − A∗|A∗|2pAXB|B|2pB∗ =

A∗ (|A|2p − |A∗|2p
)
AXB|B∗|2pB∗ + A∗|A|2pAXB

(|B∗|2p − |B|2p
)
B∗.

Now since A and B∗ are p-quasi hyponormal,

K∗ (|K|2p − |K∗|2p
)K ≥ 0

and so, K is p-quasihyponormal. by this we complete the proof. �

Now we are ready to extend Fuglede-Putnam theorem to p-quasihyponormal operators.

Theorem 2.2 Let A be p-quasihyponormal operator and B∗ be an invertible
p-quasihyponormal operator such that AX = XB for X ∈ C2(H). Then A∗X = XB∗.

Proof. Let K be defined on C2(H) by KY = AY B−1 for all Y ∈ C2(H). Since B∗ is p-
quasihyponormal, (B∗)−1 is p-quasihyponormal (see [12]). Then it follows from Lemma 2.1
that K is p-quasihyponormal, furthermore, KX = AXB−1 = X and so, X ia an eigenvector
of K. Now by applying Lemma 2.1 we get K∗X = A∗X(B−1)∗ = X , that is, A∗X = XB∗

and the proof is achieved. �

Remark 2.1 It is shown in [12] that if A is p-quasihyponormal operator and B∗ is an
invertible p-quasihyponormal operator such that AX = XB for X ∈ C2(H) and ‖|A|1−p‖.
‖|B−1|1−p‖ ≤ 1, then A∗X = XB∗. We proved in Theorem 2.2 that we don’t need the
additional condition ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1. Also M. Young Lee showed in [13] if A is
(p, k)-quasihyponormal operator and B∗ is an invertible (p, k)-quasihyponormal operator
such that AX = XB for X ∈ C2(H) and ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1, then A∗X = XB∗.
Here also we don’t need the additional condition ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1. Indeed, by a
slight modification in the proof of Theorem 2.1 we show that this theorem remains true
if we consider a (p, k)-quasihyponormal operator instead of a p-quasihyponormal operator.
Since an invertible (p, k)-quasihyponormal is (p, k)-quasihyponormal (see [12]), Theorem
2.2 remains true with (p, k)-quasihyponormal operators without the additional condition
‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1. Thus we have proved the following theorem:

Theorem 2.3 Let A be (p, k)-quasihyponormal operator and B∗ be an invertible (p, k)-
quasihyponormal operator such that AX = XB for X ∈ C2(H). Then A∗X = XB∗.

As a consequences of Theorem 2.3, we obtain

Corollary 2.1 [3] Assume that A,B and X are operators in an Hilbert space H such that
AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then A∗X = XB∗

under either of the following hypothesis
(1) A and B∗ are hyponormal;
(2) B is invertible and ‖A‖.‖B−1‖ ≤ 1.
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Corollary 2.2 [5] Let A be quasihyponormal operator and B∗ be an invertible quasihy-
ponormal operator such that AX = XB for X ∈ C2(H). Then A∗X = XB∗.

Corollary 2.3 [12] Let A be p-quasihyponormal operator and B∗ be an invertible p-quasihyponormal
(0 < p ≤ 1) operator such that AX = XB for X ∈ C2(H) and ‖|A|1−p‖.‖|B−1|1−p‖ ≤ 1.
Then A∗X = XB∗.

Corollary 2.4 [13] Let A be a (p, k)-quasihyponormal operator and B∗ be an invertible
(p, k)-quasihyponormal operator such that AX = XB for X ∈ C2(H) and ‖|A|1−p‖.‖|B−1|1−p‖ ≤
1. Then A∗X = XB∗.

Corollary 2.5 Let A be a p-hyponormal operator and B∗ be an invertible p-hyponormal
operator such that AX = XB for X ∈ C2(H). Then A∗X = XB∗.

Theorem 2.4 Let A,B be operators in B(H) and S ∈ C2. Then

‖δA,B(X) + S‖2
2 = ‖δA,B(X)‖2

2 + ‖S‖2
2 (2.1)

and ∥
∥δ∗A,B(X) + S

∥
∥2

2
=

∥
∥δ∗A,B(X)

∥
∥2

2
+ ‖S‖2

2 (2.2)

if and only if δA,B(S) = 0 = δA∗,B∗(S), for all X ∈ C2(H).

Proof. It is well known that the Hilbert-Schmidt class C2(H) is a Hilbert space under the
inner product

〈Y, Z〉 = tr(Z∗Y ) = tr(Y Z∗).

Note that
‖δA,B(X) + S‖2 = ‖δA,B(X)‖2 + ‖S‖2 + 2Re 〈δA,B(X), S〉

= ‖δA,B(X)‖2 + ‖S‖2 + 2Re
〈
X, δ∗A,B(S)

〉

and
‖δ∗A,B(X) + S‖2 = ‖δ∗A,B(X)‖2 + ‖S‖2 + 2Re 〈X, δA,B(S)〉 .

Hence by the equality δA,B(S) = 0 = δA∗,B∗(S) we obtain (2.1) and (2.2). �

Corollary 2.6 Let A,B be operators in B(H) and S ∈ C2. Then

‖δA,B(X) + S‖2
2 = ‖δA,B(X)‖2

2 + ‖S‖2
2

and ∥
∥δ∗A,B(X) + S

∥
∥2

2
=

∥
∥δ∗A,B(X)

∥
∥2

2
+ ‖S‖2

2

if and only if either of the following hypotheses hold:
(1) A and B∗ hyponormal operators
(2) A,B ∈ B(H) such that ‖Ax‖ ≥ ‖x‖ ≥ ‖Bx‖ for all x ∈ H
(3) A is p-hyponormal and B∗ is invertible p-hyponormal.
(4) A is k-quasihyponormal and B∗ is invertible k-quasihyponormal.
(5) A is p-quasihyponormal and B∗ is invertible p-quasihyponormal.

Now we will answer the question when

ran(δA,B |C2)
C2 = ranδA,B∩C2

C2
.
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Theorem 2.5 Let A and B be operators in B(H) such that KerδA,B ⊆ KerδA∗,B∗ . Then

ran(δA,B |C2(H))
C2(H)

= ranδA,B∩C2(H)
C2(H)

.

Proof. Since
ran⊥(δA,B |C2(H)) = Ker(δA,B |C2(H)).

Thus if S ∈ ran⊥(δA,B |C2(H)), then S ∈ Ker(δA,B |C2(H)). Now Theorem 2.4 would imply
that S ∈ (ranδA,B ∩ C2(H))⊥, that is,

ran⊥(δA,B |C2(H)) ⊆ (ranδA,B ∩ C2(H))⊥.

Since trivially
(ranδA,B ∩ C2(H))⊥ ⊆ ran⊥(δA,B |C2(H)).

Thus
ran⊥(δA,B |C2(H)) = (ranδA,B ∩ C2(H))⊥.

Consequently

ran(δA,B |C2(H))
C2(H)

= ranδA,B ∩ C2(H)
C2(H)

.

�

Corollary 2.7 Let A and B be operators in B(H). Then

ran(δA,B |C2(H))
C2(H)

= ranδA,B∩C2(H)
C2(H)

.

under any of the hypotheses (1)-(5) in Corollary 2.6.
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